
Professor	 Ristenpart	
h/p://www.cs.wisc.edu/~rist/	
rist	 at	 cs	 dot	 wisc	 dot	 edu	

University	 of	 Wisconsin	 CS	 642	

E-‐crime	

CS642:	 Computer	 Security	

Spam,	 phishing,	 scams	
•  Spam	

–  unsolicited	 bulk	 emails	
–  2006:	 80%	 of	 emails	 on	 web,	 85	 billion	 messages	 a	 day	

•  Scam	 spam	
–  Nigerian	 emails	 (advanced	 fee	 fraud	 /	 confidence	 trick)	

•  Phishing	
–  trick	 users	 into	 downloading	 malware,	 submiQng	 CC	 info	
to	 a/acker,	 etc.	

–  Spear	 phishing:	 targeted	 on	 individuals	 (used	 in	 high-‐
profile	 intrusions)	

Spanish	 Prisoner	 	
confidence	 trick	

•  Late	 19th	 century	
•  In	 contact	 with	 rich	
guy	 in	 Spanish	
prison	

•  Just	 need	 a	 li/le	
money	 to	 bribe	
guards,	 he’ll	 reward	
you	 greatly	

Spam	

•  The	 frontend	 (email	 recipients)	 	
– Filtering,	 classificaZon	
– Psychology,	 usability	

•  The	 backend	 (email	 generaZon)	
– Open	 email	 relays	 	
– Botnets	
– Social	 structure	 	 	

•  Affiliates	
•  Criminal	 organizaZons	

Botnets	

•  Botnets:	
– Command	 and	 Control	 (C&C)	
– Zombie	 hosts	 (bots)	

•  C&C	 type:	 	
–  centralized,	 peer-‐to-‐peer	

•  InfecZon	 vector:	 	
–  spam,	 random/targeted	 scanning	

•  Usage:	 	
– What	 they	 do:	 spam,	 DDoS,	 SEO,	 traffic	 generaZon,	
…	

How	 to	 make	 money	 off	 a	 botnet?	
•  Rental	

–  “Pay	 me	 money,	 and	 I’ll	 let	 you	 use	 my	 botnet…	 no	 quesZons	
asked”	

•  DDoS	 extorZon	
–  “Pay	 me	 or	 I	 take	 your	 legiZmate	 business	 off	 web”	

•  Bulk	 traffic	 selling	 	
–  “Pay	 me	 to	 direct	 bots	 to	 websites	 to	 boost	 visit	 counts”	

•  Click	 fraud,	 SEO	
–  “Simulate	 clicks	 on	 adverZsed	 links	 to	 generate	 revenue”	
–  Cloaking,	 link	 farms,	 etc.	

•  Thek	 of	 moneZzable	 data	 (eg.,	 financial	 accounts)	
•  Data	 ransom	

–  “I’ve	 encrypted	 your	 harddrive,	 now	 pay	 me	 money	 to	
unencrypt	 it”	

•  AdverZse	 products	

How	 to	 make	 money	 off	
financial	 credenZals?	

•  Money	 mules	
– Deposits	 into	 mules’	 account	
from	 the	 vicZm’s	

– Mule	 purchases	 items	 using	
stolen	 CCN,	 sells	 them	 online	

– Mule	 withdraws	 cash	 from	
ATMs	 using	 vicZm	 credenZals	

•  Wires	 money	 to	 (frequently)
former	 Soviet	 Union	
	

Underground	 forums	

0 50 100 150 200 250 300

verifiedvendor

admin

supermod

mod

vipmember

Median Count

post
pmsent
pmrecv

Figure 3: Median activity users engaged in prior
to transitioning groups for CC.

0 200 400 600 800 1000

vipmember

expert

supermod

mod

admin

Median Count

post
pmsent
pmrecv

Figure 4: Median activity users engaged in prior
to transitioning groups for FH.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50 60 70 80 90 100

%
 o

f U
se

rs
 (C

D
F)

% of Associates Involved

60% Int. Cumul. Frac.
70% Int. Cumul. Frac.
80% Int. Cumul. Frac.

Figure 5: Distribution of users’ interactions for
PMs on LC.

Threads Users Top
Category B S B S Subcategory

payments 5,294 5,074 1,354 1,281 paysafecard
game-related 935 951 449 459 steam
credit cards 597 798 339 421 unspecified cc
accounts 761 566 382 356 ebay
merchandise 390 518 246 334 iphone
software/keys 355 485 214 296 key/serial
services 155 562 119 384 carder
victim logs 380 334 237 232 viclog
mail/drop srvs 347 292 248 203 packstation
fraud tools 203 343 132 239 socks

Table 5: Top 10 most commonly traded merchandise categories on CC

4.4 Group Elevation
Users that join a forum are assigned a group, which roughly cor-

responds to their social status on the site. Generally, users start in
the pending authorization group, meaning they must perform some
action (e.g., respond to email confirmation) or undergo some type
of scrutiny before being given access to the forum. Once the user
has jumped through the necessary hoops, they begin in the “new-
bie” group. After some activity, users are generally elevated to a
non-newbie group and advance from there. Figures 3 and 4 show
the median amount of activity that users engaged in prior to tran-
sitioning to higher group levels for CC and FH (BH and HL were
similar to FH). All the forums place a large emphasis on public
postings versus private messaging, indicating that reputation comes
from being publicly active on the forums. Users with greater stand-
ing in the CC forum have the most balanced amount of activity,
posting and private messaging in roughly equal amounts.

4.5 User Interaction Analysis
Figure 5 shows how private message interactions are distributed

among users’ “associates” (i.e., fellow members they are linked
with) on LC, which has the greatest number of PMs. We looked
at these distributions to determine the extent to which users interact
with different individuals. For each user, we compute a distribu-
tion of private messaging events over the user’s associates. We then
looked at the 60%,70%, and 80% points in that distribution. Fig-
ure 5 suggests that users on LC exchange private messages with a
diverse set of individuals, versus users on traditional OSNs, who
interact with few of their friends. Wilson et al. [11] found that, for
users on Facebook, 20% of their friends account for 70% of their
interactions. In contrast, for users on LC, approximately 70% of
their associates are responsible for 70% of their private messages.
The corresponding graph for users linked via threads is similar.

5. MARKETPLACE
In this section we look at the types of goods and services ex-

changed on LC and CC, the two forums with the most well devel-

Threads Users Top
Category B S B S Subcategory

payments 8,507 8,092 1,539 1,409 paysafecard
game-related 2,379 2,584 924 987 steam
accounts 2,119 2,067 850 974 rapidshare
credit cards 996 1160 467 566 unspecified cc
software/keys 729 1410 422 740 key/serial
fraud tools 652 1155 363 601 socks
tutorials/guides 950 537 562 393 tutorials
mail/drop srvs 751 681 407 364 packstation
merchandise 493 721 264 404 ipod
services 266 916 176 555 carder

Table 6: Top 10 most commonly traded merchandise categories on LC.

oped and active trading marketplaces. We first look at what types of
goods are traded among these two underground communities, and
then analyze how social degree and reputation affect trading.

5.1 Merchandise
To determine what types of items are available on the forums,

we extracted thread titles containing the markers “[B]” or “[S]”,
denoting items that are being traded for and sought after, respec-
tively. We then wrote over 500 regular expressions to bin the items
into 18 categories; these hand-defined categories include merchan-
dise, banking information, drugs, mailing and dropping services,
and a number of other commonly observed wares/services. We cre-
ated the categories based on domain knowledge of illicit goods and
by randomly sampling trading thread titles. Using our regular ex-
pressions, we categorized 87% of the 14,430 CC threads and 77%
of 31,923 LC threads. Because users typically list several items for
trade in a single thread, a thread may be counted in multiple cat-
egories. There is a long tail of merchandise types that we did not
cover with our regular expressions; for example, on LC, threads
mention such items as “Internet hack N95” or “Proteine - Inko X-
TREME Muscle Gainer”, while on CC, threads offer up such goods
as “Conrad.de Kundenlogins” or “Pall Mall umsonst”.

Tables 5 and 6 show the top 10 most commonly traded items on
CC and LC (respectively), ordered by the number of total binned
threads in the designated category. The thread column shows the
number of thread titles containing terms associated with the cate-
gory, while the user column shows the number of distinct users who
created those threads. The “B” and “S” columns denote threads
where items were being traded for or sought after, respectively.

The items most commonly traded for are offline/online payments,
including PayPal, cash, Ukash, and PaySafeCards (PSC). Over 5%
of all threads involve trading for offline/online payments on both
forums. Traders in the underground market prefer PSC, a type of
prepaid online currency that is widely used in Europe. Gaming ac-
counts, in particular Steam, are the second most commonly traded
item; credit cards and accounts make up the next two traded for

Motoyama	 et	 al,	 An	 Analysis	 of	 Underground	 Forums,	 2011	

Agobot	 (circa	 2002)	
•  IRC	 botnet	
•  Rich	 feature	 set:	

– Well-‐documented,	 modular	 codebase	
–  IRC-‐based	 C&C	 system	
– Large	 catalogue	 of	 remote	 exploits	
– Limited	 code	 obfuscaZon	 and	 anZ-‐disassembly	
techniques	

– Built-‐in	 data	 collecZon	
– Mechanisms	 to	 disable	 anZvirus	
– Large	 set	 of	 bot	 commands	

Storm	 botnet	

•  Sept	 2007	
– Media:	 	 1	 –	 50	 million	 bots	
– More	 likely:	 10,000s	 to	 100,000s	

Enright	 2007	

Figure 6: Example from [17] of Gnutella’s network structure

Figure 7: All bots by geolocation from the Third Enumeration Experiment

network.

These techniques may already account for wide discrepancies in the estimated size of various

botnets seen in the media. [16, 28, 15] With so many groups taking uncoordinated actions, with

noticeable effects, it is only a matter of time before problems occur.

For example, one possible problem would be the effect of a researcher inflating the perceived

size of a botnet that is the subject of a criminal investigation. If such a case resulted in a

successful prosecution, and a damage estimate were to be derived based on the inflated count

of “infected” hosts, multiplied by some estimated cost-of-cleanup accepted by the courts, the

resulting damages would be similarly inflated. This is not out of the question, as several cases in

the past few years have included evidence obtained by law enforcement agents as to the number

of bots under the control of the suspect(s). [29, 22, 23, 7] It is likely that some of these suspects,

even if they admit to the numbers stated, may not know precisely how many hosts they truly

did compromise and control.

One final interesting observation, which we have not seen noted in any other research to

date, are the downward spikes in the bottom line (the reachable and responsive peers) of the

12

GeolocaZng	 bots	 enumerated	 for	 Naguche	 botnet	
Di/rich	 and	 Dietrich,	 “Discovery	 Techniques	 for	 P2P	 Botnets”	

Technique Description Pros Cons Used by

Monitor endpoint monitor traffic of a bot simple, generally applica-
ble

limited view, encryption [22, 23, 13, 20, 3]

Internet telescopes monitor random-scan in-
fection attempts

botnet-wide view limited applicability [8, 22, 23, 13, 20]

Monitor IRC record IRC C&C traffic simple, botnet-wide view only IRC botnets [8, 22, 23, 13, 20]
DNS redirect hijack C&C via DNS measure infection size limited applicability [5]
Sybil monitoring monitor numerous bots simple, passive resource-intensive, limited

view, structured P2P
[4]

Botnet crawling crawl botnet overlay enumerate large portion of
botnet

detectable [7]

DNS cache probing probe DNS caches for bot-
net C&C

simple, passive loose lower-bound [22, 23]

DNSBL
counter-intelligence

sniff DNSBL traffic, heuris-
tically identify bots

passive limited applicability [24]

Flow analysis detect botnets via flow-
based anomaly detection

wide-scale, handles encryp-
tion

tailored to IRC botnets [15]

Figure 1: A summary of botnet measurement techniques.

8

C&C’s Largest botnet size Total # of
Study Method(s) used observed infection effective infected hosts

[13] IRC monitoring ∼100 226,585 – –
[8] IRC monitoring ∼180 ∼50,000 – ∼300,000

[22]
DNS cache probing 65 – – 85,000

IRC monitoring >100 >15,000 ∼3,000 –

[23]
DNS cache probing 100 – – 88,000

IRC monitoring 472 ∼100,000 >10,000 426,279
[5] DNS redirection ∼50 >350,000 – –
[15] flow analysis ∼376 – – ∼6,000,000
[7] botnet crawling 1 ∼160,000 ∼44,000 –

Figure 2: Size estimates from the literature. All sizes are the maximum ones given in the appro-
priate study and the final column represents the total number of infected hosts over all botnets
encountered.

sending spam or viruses, or engaging in DDoS attacks). Particularly, identification is done via
“internal upstream systems” (sensors on their network) recording scanning behavior and inbound
mail gateways generating lists of spamming hosts. Then, network flows originating or destined for
these suspected bots are gathered to analyze the network-wide communication patterns of these
bots, in particular using the flows to identify potential C&C servers using a set of heuristic-based
anomaly detection mechanisms. Such a flow-based approach is not deterred by encryption and it
gives a very wide-spread view of botnet behavior. On the other hand, their approach is tailored to
IRC botnets, and it is not necessarily applicable for other C&C systems (e.g., P2P). For example,
it remains unclear whether one can sort normal P2P traffic from botnet P2P traffic based just on
flow analysis.

4.3 Study results

The findings of the studies in [22, 23, 13, 20, 3, 15, 24, 4, 5, 7] provide varied impressions regarding
the current state of botnets on the Internet. We first focus on the sizes reported. Figure 2 provides
a summary of size estimates that have appeared in the literature. However, as pointed out in [23]
(and, perhaps, as alluded to by our critiques of the techniques) measurement of botnets using the
techniques discussed in the previous subsections is inherently error prone, and size estimates are
only relevant to the measurement technique used. Indeed, comparing across estimates is odious at
best since different methods for defining what constitutes a “botnet” or even a “bot” vary between
studies. The numbers listed are thus not precise measurements of botnet size, rather they provide
evidence of the existing botnet problem on the Internet.

Some studies provide more in-depth analysis beyond size metrics. In [22], they detail the growth
patterns of several botnets. The rate of infection spread is (for obvious reasons) closely related to
the propagation methods utilized, and there measurements bear witness to this. They provide
some statistics regarding bot churn, the rapidity with which bots join/leave the active portion of
the botnet. For the IRC botnets which were “chatty” (i.e., bots broadcast join and leave messages),
the average time spent on the C&C channel was only 25 minutes and 90% of bots left within 50
minutes of joining. They observe migration events (bots moving to a new C&C) and cloning events
(bots replicating themselves on IRC). (Note that these last two are evidence of effects causing
erroneous botnet size measurements.)

As discussed in depth in [5], bot churn has a strong diurnal component. Particularly, bots are

12

Size	 esZmates	 from	 literature	 as	 of	 2008	

Botnet	 takeover	 studies	

•  SpamalyZcs	 (Kanich	 et	 al.,	 2008)	
– Storm	 botnet	
– Rewrote	 spam	 to	 redirect	 to	 researcher-‐controlled	
websites	

– Goal:	 click-‐through	 rate	 measurement	
•  Torpig	 C&C	 sinkholing	 (Stone-‐gross	 et	 al.,	
2009)	
– Torpig	 botnet	
– Setup	 researcher	 controlled	 C&C	 server	 (DNS	
fasqlux)	

– Goal:	 analysis	 of	 stolen	 data	

Figure 2: The Storm spam campaign dataflow (Section 3.3)

and our measurement and rewriting infrastructure (Section 4).

(1) Workers request spam tasks through proxies, (2) proxies

forward spam workload responses from master servers, (3)

workers send the spam and (4) return delivery reports. Our

infrastructure infiltrates the C&C channels between workers

and proxies.

In the remainder of this section we provide a detailed description
of our Storm C&C rewriting engine, discuss how we use this tool
to obtain empirical estimates for spam delivery, click-through and
conversion rates and describe the heuristics used for differentiating
real user visits from those driven by automated crawlers, honey-
clients, etc. With this context, we then review the ethical basis
upon which these measurements were conducted.

4.1 C&C protocol rewriting

Our runtime C&C protocol rewriter consists of two components.
A custom Click-based network element redirects potential C&C
traffic to a fixed IP address and port, where a user-space proxy
server implemented in Python accepts incoming connections and
impersonates the proxy bots. This server in turn forwards connec-
tions back into the Click element, which redirects the traffic to the
intended proxy bot. To associate connections to the proxy server
with those forwarded by the proxy server, the Click element injects
a SOCKS-style destination header into the flows. The proxy server
uses this header to forward a connection to a particular address and
port, allowing the Click element to make the association. From that
point on, traffic flows transparently through the proxy server where
C&C traffic is parsed and rewritten as required. Rules for rewriting
can be installed independently for templates, dictionaries, and e-
mail address target lists. The rewriter logs all C&C traffic between
worker and our proxy bots, between the proxy bots and the master
servers, and all rewriting actions on the traffic.

Since C&C traffic arrives on arbitrary ports, we designed the
proxy server so that it initially handles any type of connection and
falls back to passive pass-through for any non-C&C traffic. Since

the proxy server needs to maintain a connection for each of the
(many) workers, we use a preforked, multithreaded design. A pool
of 30 processes allowed us to handle the full worker load for the
eight Storm proxy bots at all times.

4.2 Measuring spam delivery

To evaluate the effect of spam filtering along the e-mail delivery
path to user inboxes, we established a collection of test e-mail ac-
counts and arranged to have Storm worker bots send spam to those
accounts. We created multiple accounts at three popular free e-mail
providers (Gmail, Yahoo!, and Hotmail), accounts filtered through
our department commercial spam filtering appliance (a Barracuda
Spam Firewall Model 300 with slightly more permissive spam tag-
ging than the default setting), and multiple SMTP “sinks” at dis-
tinct institutions that accept any message sent to them (these served
as “controls” to ensure that spam e-mails were being successfully
delivered, absent any receiver-side spam filtering). When worker
bots request spam workloads, our rewriter appends these e-mail
addresses to the end of each delivery list. When a worker bot re-
ports success or failure back to the master servers, we remove any
success reports for our e-mail addresses to hide our modifications
from the botmaster.

We periodically poll each e-mail account (both inbox and
“junk/spam” folders) for the messages that it received, and we log
them with their timestamps. However, some of the messages we
receive have nothing to do with our study and must be filtered
out. These messages occur for a range of reasons, including spam
generated by “dictionary bots” that exhaustively target potential e-
mail addresses, or because the addresses we use are unintentionally
“leaked” (this can happen when a Storm worker bot connects to
our proxy and then leaves before it has finished sending its spam;
when it reconnects via a new proxy the delivery report to the mas-
ter servers will include our addresses). To filter such e-mail, we
validate that each message includes both a subject line used by our
selected campaigns and contains a link to one of the Web sites un-
der our control.

4.3 Measuring click-through and conversion

To evaluate how often users who receive spam actually visit the
sites advertised requires monitoring the advertised sites themselves.
Since it is generally impractical to monitor sites not under our con-
trol, we have arranged to have a fraction of Storm’s spam advertise
sites of our creation instead.

In particular, we have focused on two types of Storm spam cam-
paigns, a self-propagation campaign designed to spread the Storm
malware (typically under the guise of advertising an electronic
postcard site) and the other advertising a pharmacy site. These are
the two most popular Storm spam campaigns and represent over
40% of recent Storm activity [15].

For each of these campaigns, the Storm master servers distribute
a specific “dictionary” that contains the set of target URLs to be in-
serted into spam e-mails as they are generated by worker bots. To
divert user visits to our sites instead, the rewriter replaces any dic-
tionaries that pass through our proxies with entries only containing
URLs to our Web servers.

In general, we strive for verisimilitude with the actual Storm op-
eration. Thus, we are careful to construct these URLs in the same
manner as the real Storm sites (whether this is raw IP addresses, as
used in the self-propagation campaigns, or the particular “noun-
noun.com” naming schema used by the pharmacy campaign) to
ensure the generated spam is qualitatively indistinguishable from
the “real thing”. An important exception, unique to the pharmacy
campaign, is an identifier we add to the end of each URL by modi-

Kanich	 et	 al.,	 SpamalyZcs:	 An	 Empirical	 Analysis	 of	 Spam	 MarkeZng	 Conversion,	 2008	

The	 vicZms	

Figure 9: Geographic locations of the hosts that “convert” on spam: the 541 hosts that execute the emulated self-propagation
program (light grey), and the 28 hosts that visit the purchase page of the emulated pharmacy site (black).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Delivery Rate Prior to Blacklisting

D
el

iv
er

y
R

at
e

Po
st

 B
la

ck
lis

tin
g

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

! !!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !
!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

! !

!

!

!

!

!! !

!!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!!
!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

! !!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!
!

!
!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

! !

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

! !

!
!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!
!

!

!!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!!
!!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!
! !

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!!

!

!

!

!

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!
!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!!

!

!!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!!
!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!! !!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!! !

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!!!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!! !

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!!
!

!

!

!

!

!!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!!
!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!
!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
! !

!

!

!

!

!

!!

!

!

!

!!!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

! !
!

!

!

!

!

!!

!
!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!
!

!

!

!

!

!

!

!

!

!

!

!

!

! ! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!!

!

! !

!

!

!

!!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!
!

!

!!

!

!

!

!! !
!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

! !

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

! !

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!
!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!
!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!

!

!

!
!

!!

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!

!

!!

!

!

!
!

!

!

!

!

!

!
!

!

!

!

!

!

!
! !

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Figure 8: Change in per-domain delivery rates as seen prior
to a worker bot appearing in the blacklist (x-axis) vs. after ap-
pearing (y-axis). Each circle represents a domain targeted by
at least 1,000 analyzable deliveries, with the radius scaled in
proportion to the number of delivery attempts.

were present on the list and how their arrival on the list related

to their botnet activity. Of 40,864 workers that sent delivery re-

ports, fully 81% appeared on the CBL. Of those appearing at some

point on the list, 77% were on the list prior to our observing their

receipt of spamming directives, appearing first on the list 4.4 days

(median) earlier. Of those not initially listed but then listed sub-

sequently, the median interval until listing was 1.5 hours, strongly

suggesting that the spamming activity we observed them being in-

structed to conduct quickly led to their detection and blacklisting.

Of hosts never appearing on the list, more than 75% never reported

successful delivery of spam, indicating that the reason for their lack

of listing was simply their inability to effectively annoy anyone.

One confounding factor is that the CBL exhibits considerable

flux once an address first appears on the blacklist: the worker

bots typically (median) experience 5 cycles of listing-followed-by-

delisting. Much of this churn comes from a few periods of massive

delistings, which appear to be glitches in maintenance (or propa-

gation) of the blacklist rather than a response to external events.

(If delistings arose due to botmasters using the delisting process to

render their workers more effective for a while, then it might be

possible to monitor the delisting process in order to conduct botnet

counterintelligence, similar to that developed previously for black-

listing lookups [18].) Due to caching of blacklist entries by sites,

we thus face ambiguity regarding whether a given worker is viewed

as blacklisted at a given time. For our preliminary analysis, we sim-

ply consider a worker as blacklisted from the point where it first

appears on the CBL onwards.

We would expect that the impact of blacklisting on spam delivery

strongly depends on the domain targeted in a given e-mail, since

some domains incorporate blacklist feeds such as the CBL into

their mailer operations and others do not. To explore this effect,

Figure 8 plots the per-domain delivery rate: the number of spam e-

mails that workers reported as successfully delivered to the domain

divided by number attempted to that domain. The x-axis shows the

delivery rate for spams sent by a worker prior to its appearance in

the CBL, and the y-axis shows the rate after its appearance in the

CBL. We limit the plot to the 10,879 domains to which workers at-

tempted to deliver at least 1,000 spams. We plot delivery rates for

the two different campaigns as separate circles, though the over-

all nature of the plot does not change between them. The radius of

each plotted circle scales in proportion to the number of delivery at-

tempts, the largest corresponding to domains such as hotmail.com,

yahoo.com, and gmail.com.

From the plot we clearly see a range of blacklisting behavior by

different domains. Some employ other effective anti-spam filtering,

indicated by their appearance near the origin — spam did not get

through even prior to appearing on the CBL blacklist. Some make

heavy use of either the CBL or a similar list (y-axis near zero, but

x-axis greater than zero), while others appear insensitive to black-

listing (those lying on the diagonal). Since points lie predominantly

Kanich	 et	 al.,	 SpamalyZcs:	 An	 Empirical	 Analysis	 of	 Spam	 MarkeZng	 Conversion,	 2008	

Observed	 Conversion	 Rate	

•  350	 million	 email	 messages	 delivered	
•  26	 day	 campaign	
•  28	 “sales”	 	 	

– 0.00001%	
– 27	 of	 these	 male-‐enhancement	 products	

•  StaZsZcal	 significance?	

Botnet	 takeover	 studies	

•  SpamalyZcs	 (Kanich	 et	 al.,	 2008)	
– Storm	 botnet	
– Rewrote	 spam	 to	 redirect	 to	 researcher-‐controlled	
websites	

– Goal:	 click-‐through	 rate	 measurement	
•  Torpig	 C&C	 sinkholing	 (Stone-‐gross	 et	 al.,	
2009)	
– Torpig	 botnet	
– Setup	 researcher	 controlled	 C&C	 server	 (DNS	
fasqlux)	

– Goal:	 analysis	 of	 stolen	 data	

Vulnerable web server

(1)
(2)

Mebroot
drive-by-download server

(4)
Torpig C&C server

Injection server

Mebroot C&C server

(3)

Victim client

(becomes a bot)

GET /

<iframe>

GET /?gnh5

gnh5.exe

Torpig DLLs

Stolen data

Config

URL

Phishing HTML

(5)

(6)

(7)

Figure 1: The Torpig network infrastructure. Shaded in gray are the components for which a domain generation algorithm is used.

The component that we “hijacked” is shown with dotted background.

During our monitoring, the C&C server distributed three mod-
ules, which comprise the Torpig malware. Mebroot injects these
modules (i.e., DLLs) into a number of applications. These appli-
cations include the Service Control Manager (services.exe),
the file manager, and 29 other popular applications, such as web
browsers (e.g., Microsoft Internet Explorer, Firefox, Opera), FTP
clients (CuteFTP, LeechFTP), email clients (e.g., Thunderbird, Out-
look, Eudora), instant messengers (e.g., Skype, ICQ), and system
programs (e.g., the command line interpreter cmd.exe). After
the injection, Torpig can inspect all the data handled by these pro-
grams and identify and store interesting pieces of information, such
as credentials for online accounts and stored passwords.

Periodically (every twenty minutes, during the time we moni-
tored the botnet), Torpig contacts the Torpig C&C server to upload
the data stolen since the previous reporting time (6). This com-
munication with the server is also over HTTP and is protected by
a simple obfuscation mechanism, based on XORing the clear text
with an 8-byte key and base64 encoding. This scheme was broken
by security researchers at the end of 2008, and tools are available
to automate the decryption [20]. The C&C server can reply to a
bot in one of several ways. The server can simply acknowledge the
data. We call this reply an okn response, from the string contained
in the server’s reply. In addition, the C&C server can send a con-
figuration file to the bot (we call this reply an okc response). The
configuration file is obfuscated using a simple XOR-11 encoding.
It specifies how often the bot should contact the C&C server, a set
of hard-coded servers to be used as backup, and a set of parameters
to perform “man-in-the-browser” phishing attacks [14].

Torpig uses phishing attacks to actively elicit additional, sensi-
tive information from its victims, which, otherwise, may not be ob-
served during the passive monitoring it normally performs. These
attacks occur in two steps. First, whenever the infected machine
visits one of the domains specified in the configuration file (typi-
cally, a banking web site), Torpig issues a request to an injection
server. The server’s response specifies a page on the target domain
where the attack should be triggered (we call this page the trigger
page, and it is typically set to the login page of a site), a URL on
the injection server that contains the phishing content (the injection
URL), and a number of parameters that are used to fine tune the
attack (e.g., whether the attack is active and the maximum number
of times it can be launched). The second step occurs when the user
visits the trigger page. At that time, Torpig requests the injection
URL from the injection server and injects the returned content into
the user’s browser (7). This content typically consists of an HTML
form that asks the user for sensitive information, for example, credit
card numbers and social security numbers.

These phishing attacks are very difficult to detect, even for at-
tentive users. In fact, the injected content carefully reproduces

the style and look-and-feel of the target web site. Furthermore,
the injection mechanism defies all phishing indicators included in
modern browsers. For example, the SSL configuration appears
correct, and so does the URL displayed in the address bar. An
example screen-shot of a Torpig phishing page for Wells Fargo
Bank is shown in Figure 2. Notice that the URL correctly points
to https://online.wellsfargo.com/signon, the SSL
certificate has been validated, and the address bar displays a pad-
lock. Also, the page has the same style as the original web site.

Figure 2: A man-in-the-browser phishing attack.

Communication with the injection server is protected using the
standard HTTPS protocol. However, since Torpig does not check
the validity of the server’s certificate and blindly accepts any self-
signed certificate, it is possible to mount a man-in-the-middle at-
tack and recover the data exchanged with the injection server.

In summary, Torpig relies on a fairly complex network infras-
tructure to infect machines, retrieve updates, perform active phish-
ing attacks, and send the stolen information to its C&C server.
However, we observed that the schemes used to protect the com-
munication in the Torpig botnet (except those used by the Mebroot
C&C) are insufficient to guarantee basic security properties (con-
fidentiality, integrity, and authenticity). This was a weakness that
enabled us to seize control of the botnet.

3. DOMAIN FLUX

A fundamental aspect of any botnet is that of coordination; i.e.,
how the bots identify and communicate with their C&C servers.
Traditionally, C&C hosts have been located by their bots using their

Stone-‐Gross	 et	 al.,	 Your	 Botnet	 is	 My	 Botnet:	 Analysis	 of	 a	 Botnet	 Takeover,	 2009	 	

Malware Analysis

 www.computer.org/security 65

reboots the machine, it can reuse them immediately
without having to contact the C&C server. It also
time stamps the modules and names them after exist-
ing !les in the same directory (with a di"erent, ran-
dom extension) to avoid raising suspicion. After the
initial update, Mebroot contacts its C&C server pe-
riodically, in two-hour intervals, to report its current
con!guration (that is, the type and version number
of the currently installed modules) and to receive any
updates. All communication with the C&C server oc-
curs via HTTP requests and responses using a sophis-
ticated, custom encryption algorithm.

In the case of the Torpig botnet, the Mebroot
C&C server distributes the Torpig malware modules,
and Mebroot injects them into some number of ap-
plications. These might include the Service Control
Manager (services.exe), the !le manager, Web
browsers (for example, Internet Explorer, Firefox,
and Opera), FTP clients (such as CuteFTP and
LeechFTP), email clients (such as Thunderbird, Out-
look, and Eudora), instant messengers (for example,
Skype and ICQ), and system programs (such as the
command-line interpreter cmd.exe). After the injec-
tion, Torpig can inspect all the data handled by the
infected programs and identify and store interesting
pieces of information, such as credentials for online
accounts and stored passwords.

Every 20 minutes, Torpig contacts the Torpig
C&C server to upload stolen data (step 6). This com-
munication with the server also occurs over HTTP,
protected by a simple obfuscation mechanism based on
XORing the cleartext with an 8-byte key and base64
encoding the result. (Security researchers broke this
scheme at the end of 2008, and tools are now avail-
able to automate the decryption, such as Don Jackson’s
Untorpig, available from www.secureworks.com/
research/tools/untorpig/.) The C&C server can reply
to a bot in one of several ways. The server can sim-
ply acknowledge the data in what we call an okn re-
sponse, because of the string contained in the server’s
reply. The C&C server can also send a con!guration
!le to the bot (we call this an okc response), obfus-
cated by a simple XOR-11 encoding. This !le speci-
!es how often the bot should contact the C&C server,
a set of hard-coded servers to be used as backup, and
a set of parameters to perform “man-in-the-browser”
phishing attacks.

Torpig uses phishing attacks to actively elicit ad-
ditional, sensitive information from its victims beyond
that which it might acquire during the passive moni-
toring it normally performs. These attacks occur in
two steps. First, whenever the infected machine visits
one of the domains speci!ed in the con!guration !le
(typically a banking webpage), Torpig issues a request
to an injection server. The server’s response identi-

!es a trigger page on the target domain to instigate the
attack (typically the site’s login page), a URL on the
injection server that contains the phishing content
(the injection URL), and several parameters for !ne-
tuning the attack (for example, specifying whether the
attack is active and the maximum number of times
to launch it). The second step occurs when the user
visits the trigger page: Torpig requests the injection
URL from the injection server and puts the returned
content into the user’s browser (step 7). This content
typically consists of an HTML form that asks the user
for sensitive information, such as credit-card and so-
cial security numbers.

Even attentive users !nd these phishing attacks dif-
!cult to detect. The injected content carefully repro-
duces the target webpage’s style and “look and feel,”
and the injection mechanism de!es all phishing indi-
cators included in modern browsers. For example, the
SSL con!guration appears correct, as does the URL
displayed in the address bar, as shown in Figure 2, a
screenshot of a Torpig phishing page for Chase Bank.

Torpig relies on a fairly complex network infra-
structure to infect machines, retrieve updates, perform

Mebroot
C&C
server

5

Torpig
C&C
server

Con!gurationStolen
data

Phishing
HTML

URL

Hijacked
component

Mebroot
Drive-by

download server

Becomes a bot

Victim Bot

Compromised
Web server

gnh5.exe
4

GET/
?gnh5

3

1

2 Redirection

GET/

6

Injection
server

7

Torpig
DLLs

Figure 1. The Torpig network infrastructure. Shaded in gray are the
components owned by the criminals. The Torpig command-and-control
server is the component that we “hijacked.” Step 1: attackers modify
vulnerable webpages. Step 2: modi!ed page redirects victim’s browser to
drive-by download server. Step 3: vulnerable browser requests JavaScript.
Step 4: victim downloads and executes Mebroot to become a bot. Step 5:
bot obtains Torpig modules. Step 6: bot uploads data stolen from victim’s
computer. Step 7: when browsing a targeted site, victim is redirected to
HTML injection server for man-in-the-browser attack.

Stone-‐Gross	 et	 al.,	 Your	 Botnet	 is	 My	 Botnet:	 Analysis	 of	 a	 Botnet	 Takeover,	 2009	 	

Malware Analysis

68 IEEE SECURITY & PRIVACY JANUARY/FEBRUARY 2011

tion is unsuccessful, it then tries to extract the same
information from the primary physical hard disk
drive (IDE or SATA). It then uses the disk informa-
tion as input to a hashing function that produces the
!nal nid value. If the attempts to retrieve hardware
information fail, Torpig obtains the nid value by
concatenating a hard-coded value with the Windows
volume serial number.

We attempted to validate whether the nid is
unique for each bot by correlating this value with the
other information provided in the submission header
and with bot connection patterns to our server. In
particular, we expected that all submissions with a
speci!c nid would also report the same values for the
os, cn, bld, and ver !elds. Instead, we found 2,079
cases for which this assumption did not hold. There-
fore, we conclude that counting unique nids under-
estimates the botnet’s footprint. As a reference point,
between 25 January 2009 and 4 February 2009, we
observed 180,835 nid values.

To more accurately identify the infected machines,
we used the nid, os, cn, bld, and ver values from
the submission header. Although the nid value is
mostly unique among bots, the other !elds help dis-
tinguish di"erent machines that have the same nid.
In particular, Torpig determines the os (OS version
number) and cn (locale information) !elds with the
system calls GetVersionEx and GetLocale Info,
respectively, which don’t change unless the user
modi!es the locale information or changes the OS.
The Torpig binary contains hard-coded values for
the bld and ver !elds. By counting unique tuples
from the Torpig headers consisting of (nid, os, cn,
bld, ver), we estimated that the botnet’s footprint
for the 10 days of our monitoring consisted of more
than 182,000 machines.

Botnet size vs. IP count. It’s well known that count-
ing the number of infected bots by counting the
unique IP addresses that connect to the botnet’s C&C
server is problematic, due to network e"ects such as
DHCP churn and NAT.

During 10 days of monitoring, we observed
182,914 bots. In contrast, 1,247,642 unique IP ad-
dresses contacted our server during the same period.
Therefore, taking the IP count as the botnet’s foot-
print would overestimate the actual size by an order
of magnitude.

While the aggregate number of unique IP address-
es distorts the size of the botnet’s footprint, counting
IP addresses can help determine a close approxima-
tion of the botnet’s size using other metrics. The me-
dian and average sizes of Torpig’s live population were
49,272 and 48,532, respectively. The live population
#uctuates, with peaks corresponding to 9:00 a.m. Pa-
ci!c Standard Time (PST), when the most computers
are simultaneously online in the US and Europe. The
smallest live population occurs around 9:00 p.m. PST,
when more people in the US and Europe are o$ine.
The observed number of unique bot IDs and unique
IP addresses per hour are virtually identical, as shown
in Figure 3—on average, the bot IDs were only 1.3
percent fewer than the number of IP addresses. Thus,
the number of unique IP addresses per hour provides a
good estimation of the botnet’s live population.

DHCP and NAT e"ects account for the di"er-
ence between IP count and the actual bot count.
Networks using DHCP or connecting through dial-
up lines allocate clients (machines on the network)
an address from a pool of available IP addresses. The
allocation is often dynamic, meaning that a client
doesn’t always get the same IP address, which can
in#ate the number of observed IP addresses at the
botnet C&C server. Short leases (the length of time
for which the allocation is valid) can further mag-
nify this e"ect. This phenomenon was very com-
mon during our monitoring. In fact, we identi!ed
some ISPs that rotated IP addresses so frequently that
almost every time an infected host connected to us,
it had a new IP address. In one instance, a single
host changed IP addresses 694 times in just 10 days.
In other cases, a host was associated with di"erent
IP addresses on the same autonomous systems but
in di"erent class B/16 subnets. Overall, we observed
706 di"erent machines with more than 100 unique
IP addresses each.

Threats and Data Analysis
In our research, we found that Torpig creates a con-
siderable potential for damage, due not only to the
sheer volume of data it collects but also to the amount
of computing resources the botnet makes available.

N
um

be
r

of
 b

ot
 ID

s/
IP

s

80,000

70,000

60,000

50,000

40,000

30,000

20,000

10,000

0
4 Feb.25 Jan. 27 Jan. 29 Jan. 31 Jan. 2 Feb.

IPs
Bot IDs

Figure 3. Unique bot IDs and IP addresses per hour. The number of unique IP
addresses per hour provides a good estimation of Torpig’s live population.

Stone-‐Gross	 et	 al.,	 Your	 Botnet	 is	 My	 Botnet:	 Analysis	 of	 a	 Botnet	 Takeover,	 2009	 	

Malware Analysis

 www.computer.org/security 67

a 256-bit AES key known by only those working on
the project and stored o!ine. After our experiment was
completed, we copied the encrypted data to an external
drive, removed the data from our machines, and placed
the drive in a safe.

Botnet Analysis
As mentioned previously, we collected almost 70
Gbytes of data over the 10 days that we controlled
Torpig. Here, we review our data analysis and impor-
tant insights into the size of botnets and their victims.

Data Collection and Format
All bots communicate with the Torpig C&C through
HTTP POST requests, using a URL that contains the
hexadecimal representation of the bot identi"er and a
submission header. The body of the request contains
the data stolen from the victim’s machine, if any. The
bot encrypts the submission header and the body us-
ing the Torpig encryption algorithm, and it uses the
bot identi"er (a token based on the infected machine’s
hardware and software characteristics) as the symmet-
ric key, sending it in the clear.

After decryption, the submission header consists of
several key value pairs that provide basic information
about the bot. More precisely, the header contains the
time stamp for the last update of the con"guration "le
(ts), the IP address of the bot or a list of IP addresses
for a multihomed machine (ip), the port numbers of
the HTTP and SOCKS proxies that Torpig opens on
the infected machine (hport and sport), the oper-
ating system version and locale (os and cn), the bot
identi"er (nid), and the build and version number of
Torpig (bld and ver).

The request body consists of data items of di#erent
types, depending on the stolen information. Table 1
shows the di#erent data types that we observed dur-
ing our monitoring, in order of frequency. Form data
items contain the contents of HTML forms submit-
ted via POST requests by the victim’s browser. Torpig
collects the URL of the form’s host, the URL for the
form’s submission, and the name, value, and type of
all form "elds. These data items frequently contain
the usernames and passwords required to authenticate
with websites. Note that credentials transmitted over
HTTPS aren’t safe from Torpig, since Torpig accesses
them before encryption through the SSL.

Email items consist of email addresses, presumably
useful for spam purposes. The Windows password data
type is used to transmit Windows passwords and other
uncategorized data elements. Torpig obtains this in-
formation from email clients, such as Outlook, Thun-
derbird, and Eudora. POP account, HTTP account,
FTP account, and SMTP account data types contain the
credentials used to access these accounts at their re-

spective servers. Torpig obtains this information by
exploiting the password manager functionality pro-
vided by most Web and email clients. SMTP account
items also contain the source and destination addresses
of emails sent via SMTP. Finally, mailbox account items
contain the con"guration information for email ac-
counts—that is, the email address associated with the
mailbox and the credentials required to access the
mailbox and to send emails from it.

Botnet Size
In order to better understand the scale of the threat
posed by Torpig, we needed to determine the bot-
net’s size. We refer to two de"nitions as introduced
by M.A. Rajab and colleagues3: its footprint, which in-
dicates the total number of machines that have been
compromised over time, and its live population, which
denotes the number of compromised hosts simultane-
ously communicating with the C&C server.

The Torpig architecture provides an advantageous
perspective for measuring the botnet’s size. In fact,
since we centrally and directly observed every in-
fected machine that normally would have connected
to the botmaster’s server, we had a complete view of
the machines in the botnet. In addition, our collec-
tion methodology was entirely passive and thus avoid-
ed active probing that might have otherwise polluted
the measured network. Fortunately, Torpig generates
and transmits unique and persistent IDs that make for
good identi"ers of infected machines.

Counting bots using submission header fields. As
a starting point to estimate the botnet’s footprint,
we analyzed the nid "eld that Torpig sends in the
submission header. By reverse engineering the Tor-
pig binary, we were able to reconstruct the algorithm
used to compute this 8-byte value. The algorithm
"rst queries the infected machine’s primary SCSI
hard disk for its model and serial numbers. If no SCSI
hard disk is present, or retrieving the disk informa-

Table 1. Data items sent to our C&C server by Torpig bots.

Data type Data items

Form data 11,966,532

Email 1,258,862

Windows password 1,235,122

POP account 415,206

HTTP account 411,039

SMTP account 100,472

Mailbox account 54,090

FTP account 12,307

Stone-‐Gross	 et	 al.,	 Your	 Botnet	 is	 My	 Botnet:	 Analysis	 of	 a	 Botnet	 Takeover,	 2009	 	

Country Institutions Accounts
(#) (#)

US 60 4,287
IT 34 1,459
DE 122 641
ES 18 228
PL 14 102
Other 162 1,593
Total 410 8,310

Table 3: Accounts at financial institutions stolen by Torpig.

to our C&C server. We will see that Torpig creates a considerable
potential for damage due not only to the shear volume of data it
collects, but also to the amount of computing resources the botnet
makes available.

6.1 Financial Data Stealing
Consistent with the past few years’ shift of malware from a for-

fun (or notoriety) activity to a for-profit enterprise [10, 15], Torpig
is specifically crafted to obtain information that can be readily mon-
etized in the underground market. Financial information, such as
bank accounts and credit card numbers, is particularly sought af-
ter. For example, the typical Torpig configuration file lists roughly
300 domains belonging to banks and other financial institutions that
will be the target of the “man-in-the-browser” phishing attacks de-
scribed in Section 2.

Table 3 reports the number of accounts at financial institutions
(such as banks, online trading, and investment companies) that were
stolen by Torpig and sent to our C&C server. In ten days, Torpig ob-
tained the credentials of 8,310 accounts at 410 different institutions.
The top targeted institutions were PayPal (1,770 accounts), Poste
Italiane (765), Capital One (314), E*Trade (304), and Chase (217).
On the other end of the spectrum, a large number of companies had
only a handful of compromised accounts (e.g., 310 had ten or less).
The large number of institutions that had been breached made no-
tifying all of the interested parties a monumental effort. It is also
interesting to observe that 38% of the credentials stolen by Torpig
were obtained from the password manager of browsers, rather than
by intercepting an actual login session. It was possible to infer that
number because Torpig uses different data formats to upload stolen
credentials from different sources.

Another target for collection by Torpig is credit card data. Using
a credit card validation heuristic that includes the Luhn algorithm
and matching against the correct number of digits and numeric pre-
fixes of card numbers from the most popular credit card companies,
we extracted 1,660 unique credit and debit card numbers from our
collected data. Through IP address geolocation, we surmise that
49% of the card numbers came from victims in the US, 12% from
Italy, and 8% from Spain, with 40 other countries making up the
balance. The most common cards include Visa (1,056), Master-
Card (447), American Express (81), Maestro (36), and Discover
(24).

While 86% of the victims contributed only a single card number,
others offered a few more. Of particular interest is the case of a
single victim from whom 30 credit card numbers were extracted.
Upon manual examination, we discovered that the victim was an
agent for an at-home, distributed call center. It seems that the card
numbers were those of customers of the company that the agent
was working for, and they were being entered into the call center’s
central database for order processing.

Quantifying the value of the financial information stolen by Tor-
pig is an uncertain process because of the characteristics of the un-

 0

 200

 400

 600

 800

 1000

 1200

 1400

01-21 01-23 01-25 01-27 01-29 01-31 02-02 02-04 02-06
 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

N
ew

 b
an

k
 a

cc
o
u
n
ts

 a
n
d
 c

re
d
it

 c
ar

d
s

(#
)

V
al

u
e

($
)

Date

New bank accounts and credit cards
Max value
Min value

Figure 12: The arrival rate of financial data.

derground markets where it may end up being traded. A report by
Symantec [43] indicated (loose) ranges of prices for common goods
and, in particular, priced credit cards between $0.10–$25 and bank
accounts from $10–$1,000. If these figures are accurate, in ten days
of activity, the Torpig controllers may have profited anywhere be-
tween $83K and $8.3M.

Furthermore, we wanted to determine the rate at which the bot-
net produces new financial information for its controllers. Clearly,
a botnet that generates all of its value in a few days and later only
recycles stale information is less valuable than one where fresh data
is steadily produced. Figure 12 shows the rate at which new bank
accounts and credit card numbers were obtained during our moni-
toring period. In the ten days when we had control of the botnet,
new data was continuously stolen and reported by Torpig bots.

6.2 Proxies
As we mentioned previously, Torpig opens two ports on the lo-

cal machine, one to be used as a SOCKS proxy, the other as an
HTTP proxy. 20.2% of the machines we observed were publicly
accessible. Their proxies, therefore, could be easily leveraged by
miscreants to, for example, send spam or navigate anonymously. In
particular, we wanted to verify if spam was sent through machines
in the Torpig botnet. We focused on the 10,000 IPs that contacted
us most frequently. These, arguably, correspond to machines that
are available for longer times and that are, thus, more likely to be
used by the botmasters. We matched these IPs against the ZEN
blocklist, a well-known and accurate list of IP addresses linked to
spamming, which is compiled by the Spamhaus project [44]. We
found that one IP was marked as a verified spam source or spam op-
eration and 244 (2.45%) were flagged as having open proxies that
are used for spam purposes or being infected with spam-related
malware. While we have no evidence that the presence of these IPs
on the ZEN blocklist is a consequence of the Torpig infection, it is
clear that Torpig has the potential to drag its victims into a variety
of malicious activities. Furthermore, since most IPs are “clean”,
they can be used for spamming, anonymous navigation, or other
dubious enterprises.

6.3 Denial-of-Service
To approximate the amount of aggregate bandwidth among in-

fected hosts, we mapped the IP addresses to their network speed,
using the ip2location2 database. This information is summarized
in Table 4. Unfortunately the database does not contain records for
about two-thirds of the IP addresses, but from the information that
it provides, we can see that cable and DSL lines account for 65% of
the infected hosts. If we assume the same distribution of network
speed for the unknown IP addresses, there is a tremendous amount
of bandwidth in the hands of the botmaster, considering that there
2http://www.ip2location.com

Stone-‐Gross	 et	 al.,	 Your	 Botnet	 is	 My	 Botnet:	 Analysis	 of	 a	 Botnet	 Takeover,	 2009	 	

Botnets	

•  Botnets:	
– Command	 and	 Control	 (C&C)	
– Zombie	 hosts	 (bots)	

•  C&C	 type:	 	
–  centralized,	 peer-‐to-‐peer	

•  InfecZon	 vector:	 	
–  spam,	 random/targeted	 scanning	

•  Usage:	 	
– What	 they	 do:	 spam,	 DDoS,	 SEO,	 traffic	 generaZon,	
…	

Botnet	 countermeasures?	

•  InfecZon	 prevenZon	
•  InfecZon	 detecZon	 	
•  C&C	 take-‐down	
•  Undermine	 the	 economics	

– Banking	 take-‐down	

InfecZon	 detecZon	 &	 remediaZon	

C&C	 takedowns	

h/p://www.wired.com/threatlevel/2012/03/
microsok-‐botnet-‐takedown/	

Botnet	 countermeasures?	

•  InfecZon	 prevenZon	
•  InfecZon	 detecZon	 	
•  C&C	 take-‐down	
•  Undermine	 the	 economics	

– Banking	 take-‐down	

Studying	 grey/black	 market	 products	

•  AcZve	 measurement	 studies	 to:	
– Understand	 (probably	 illicit)	 services	 on	 web	
– Find	 ways	 to	 defuse	 underground	 markets	

•  Previous	 studies	 looked	 at	 botnets	 themselves	
and	 vicZms	

•  Let’s	 look	 at	 the	 “backend”	

Traffic	 sellers	

•  Click	 fraud	
•  Click	 traffic	 sellers	

– grey-‐market	
– Class	 project	 pilot	 study	 to	 see	 what	 these	 sellers	
are	 all	 about	

•  Botnet	 traffic?	 	
•  LegiZmate	 project?	

– h/p://cseweb.ucsd.edu/~tristenp/buytraffic/	

revisitors.com	
Customer	

Affiliate	
Affiliate	

Unknown	 traffic	 sources	

Click	 traffic	 sellers	

mediatraffic.com	

Web	 site	 CP10k	 Claimed	 traffic	 source	

~$70	 AdWare	 (Voomba)	 pop-‐ups	

www.trafficdeliver.com	 ~$34.69	 “AdverZser	 exchange”	

revisitors.com	 ~$48.95	 Recently	 expired	 	
domain	 redirecZon?	

qualitytrafficsupply.com	 ~$55.00	 Contextual	 adverZsements	

Affiliate networks: paid to send traffic
Traffic resellers: resell purchased traffic

Q
ua

lit
y

of
 w

eb
si

te
's

 E
ng

lis
h

Targeted vs. untargeted: specify geographic preferences

Experimental methodology

(1) Setup several web sites (xxx.sysnet.ucsd.edu)

(2) Attempt to purchase web traffic

Used temporary VISA number, but real name, etc.

(3) Sit back and let the research data come to us ...

2 pages: index.html is landing site
 lucky.html linked to by index.html

Example site linked from
webpage

Adventures in purchasing web traffic...

Giving people money not as easy as I expected:

revisitors.com	

qualitytrafficsupply.com	

mediatraffic.com	

www.trafficdeliver.com	

Took my money
Sent “targeted” US traffic

Took my money
No response...

Wanted $200 deposit

Took my money ...
... but gave it back!

When did traffic arrive?

When did traffic arrive?

l  Not a typical pattern for traffic

When did traffic arrive?

l  Traffic has really high-degree of temporal proximity
l  Anecdote: many IPs visit times clustered within seconds

Is the traffic from bots or other malware?

Source	 Num	 IPs	

CBL	

0	

21	

Current	 Storm	

Other interesting anecdotal evidence

Percentage	

0.0%	

1.7%	

4 HEAD requests from distinct IPs with referrer

http://www.routetraffic.net/delivery/statistics/
8x0ada67md29fk799sa4.html

!"#$%&'()*++,-
.,/,(/$01234
5"6/'%5"7'/$%3

5,8$9)*++,-$:';(<*<=,/(
.,/,(/$31
5"6/'%5"7'/$%341

>,?@$%9)*++,-$%&8#")8/
.,/,(/$001
5"6/'%5"7'/$%AB4

Figure 3: User mouse activity overlayed on the main page visited by traffic from three vendors, one representative from each tier.

re
vi

si
to

rs

re
vi

si
to

rs
(U

K
)

ha
nd

yt
ra

ffi
c

ha
nd

yt
ra

ffi
c

(U
K
)

ae
tra

ffi
c

re
nt

-a
-li

st

A
dw

or
ds

A
dw

or
ds

(U
K
)

Ya
ho

o

N
on

e

Vendors

0

2

4

6

8

10

12

A
ve

ra
g
e

M
o
u
se

M
o
ve

s
/
V

is
it

(a) Average # of mouse moves per visit

0 20 40 60 80 100 120
20

30

40

50

60

70

80

90

100

Number of MouseMovements

%
 o

f
V

is
it

revisitors

revisitors (U.K.)

handytraffic

handytraffic (U.K.)

aetraffic

rent−a−list

Adwords

Adwords (U.K.)

Yahoo

None

Adwords(UK)

Rent−a−list

Yahoo

Adwords

(b) CDF of # of mouse moves per visit across all visits

Figure 4: User mouse activity recorded on each site.

Figure 5(a) shows the average number of link accesses per visit
across all visits to our servers. Traffic from bulk vendors re-
sult in negligible accesses to links on our pages, while visitors via
the higher tier vendors access two or more links on average. Fig-
ure 5(b) shows the CDFs of the number of link accesses per visit
for all visits. The distributions show the behavior in more detail.
As might be expected, a small percentage of visits had many link
access via Google and Yahoo. Traffic via the bulk vendors resulted
in negligible, if any, link accesses. As with mouse activity, from the
perspective of accesses to embedded links traffic from bulk vendors
looks suspiciously inorganic.

4.4 User-Agent
Next we examine the distributions of User-Agent strings of the

visitors to our sites as another possible signature. The User-Agent
field in HTTP requests identifies the client software used to make
the request. Web browsers set the field to identify the browser
software and the operating system on which the browser is run-
ning (Web servers can use this information to tailor content ac-
cordingly). Crawlers and other automated clients set the User-
Agent field using a unique, often self-identifying string. Automated
clients, such as crawlers looking for malware and cloaking, can also
use a popular browser+OS User-Agent combination to superficially
hide their nature.

In general, we expect the users visiting our sites to reflect the
popularity distribution of browsers and operating systems. We used
the user-agent-string.info tool [2] to extract OS and browser
information from the User-Agent strings from the requests to our
servers. Figure 6 shows the distribution of browser and operating
systems combinations for three representative traffic vendors, one
from each tier. Reflecting browser and OS popularities, Windows

and IE dominate traffic from the middle of top-tier vendors. In
contrast, Linux and Firefox dominate traffic for the bulk vendor
Aetraffic. Google Adwords and Rent-a-list have a relatively rich
variety of browsers and OSes, including smartphones, whereas the
low-tier Aetraffic has two dominant OS/browser combinations.

4.5 Referrers
We use the Referer field from HTTP requests, when present,

to locate the page which led users to visit our sites. We then visit the
referrer site and take a snapshot of the page, capturing the context
in which our site was advertised in real time.

Automatically snapshotting the referring page does not work in
every instance for a variety of reasons. Vendors like Google Ad-
words prevent disclosure of such information by proxying/inserting
a referrer’s field, resulting in an empty page.4 On the other hand,
other vendors like Revisitors have a referrer field that is always a
subpage that is part of their domain.5 Although we do not observe
precisely how our site is advertised, we do however learn the gen-
eral mechanism they use to advertise it. Early in our experiments
with one (now-defunct) bulk traffic vendor QualityTrafficSupply,
using our snapshotting tool to visit the referrers induced a HTTP
denial-of-service attack on our server. Although annoying to deal
with, such behavior serves as a heavy-handed signature that the
vendor employs dubious means for delivering traffic to their clients.
To avoid this and conserve space, we enabled our snapshotting tool
for a limited amount of time. Overall, we were able to obtain snap-
shots for 10–40% of the total visits to all of our sites.

4http://googleads.g.doubleclick.net/pagead/ads?client=ca-pub-
0121688737141704
5http://www.revisitors.com/admin/?VFJDSz0xMzcx

Zhang	 et	 al.,	 Got	 Traffic?	 An	 EvaluaZon	 of	 Click	 Traffic	 Providers,	 2011	

Spam-‐adverZsed	 products	
•  PharmaceuZcals	
•  Sokware	
•  Watches	
•  etc.	

•  What	 is	 order	 volume?	
•  What	 kinds	 of	 things	 are	
being	 purchased?	

•  What	 are	 weak	 links	 for	
disrupZon?	

h/p://www.rioricopharmacy.com/	

Figure 1: Infrastructure involved in a single URL’s value chain, including advertisement, click support and realization steps.

machine in Brazil (➍). The user’s browser initiates an HTTP
request to the machine (➎), and receives content that renders
the storefront for “Pharmacy Express,” a brand associated
with the Mailien pharmaceutical affiliate program based in
Russia (➏).

After selecting an item to purchase and clicking on
“Checkout”, the storefront redirects the user to a payment
portal served from payquickonline.com (this time serving
content via an IP address in Turkey), which accepts the
user’s shipping, email contact, and payment information, and
provides an order confirmation number. Subsequent email
confirms the order, provides an EMS tracking number, and
includes a contact email for customer questions. The bank
that issued the user’s credit card transfers money to the
acquiring bank, in this case the Azerigazbank Joint-Stock
Investment Bank in Baku, Azerbaijan (BIN 404610, ➐).
Ten days later the product arrives, blister-packaged, in a
cushioned white envelope with postal markings indicating
a supplier named PPW based in Chennai, India as its
originator (➑).

C. Cybercrime economics

Alongside the myriad studies of the various components
employed in spam (e.g., botnets, fast flux, etc.), a literature
has recently emerged that focuses on using economic tools
for understanding cybercrime (including spam) in a more
systematic fashion, with an aim towards enabling better
reasoning about effective interventions. Here we highlight
elements of this work that have influenced our study.

Some of the earliest such work has aimed to understand
the scope of underground markets based on the value of
found goods (typically stolen financial credentials), either as
seen on IRC chatrooms [10], forums [59], malware “drop-
zones” [16], or directly by intercepting communications to
botnet C&C servers [50]. Herley and Florêncio critique this
line of work as not distinguishing between claimed and
true losses, and speculate that such environments inherently

reflect “lemon markets” in which few participants are likely
to acquire significant profits (particularly spammers) [15].
While this hypothesis remains untested, its outcome is
orthogonal to our focus of understanding the structure of
the value chain itself.

Our own previous work on spam conversion also used
empirical means to infer parts of the return-on-investment
picture in the spam business model [21]. By contrast,
this study aims to be considerably more comprehensive in
breadth (covering what we believe reflect most large spam
campaigns) and depth (covering the fullness of the value
chain), but offering less precision regarding specific costs.

Finally, another line of work has examined interventions
from an economic basis, considering the efficacy of site
and domain takedown in creating an economic impediment
for cybercrime enterprises (notably phishing) [6], [35], [36].
Molnar et al. further develop this approach via comparisons
with research on the illicit drug ecosystem [34]. Our work
builds on this, but focuses deeply on the spam problem in
particular.

III. DATA COLLECTION METHODOLOGY

In this section we describe our datasets and the method-
ology by which we collected, processed, and validated
them. Figure 2 concisely summarizes our data sources and
methods. We start with a variety of full-message spam feeds,
URL feeds, and our own botnet-harvested spam (➊). Feed
parsers extract embedded URLs from the raw feed data for
further processing (➋). A DNS crawler enumerates various
resource record sets of the URL’s domain, while a farm
of Web crawlers visits the URLs and records HTTP-level
interactions and landing pages (➌). A clustering tool clusters
pages by content similarity (➍). A content tagger labels the
content clusters according to the category of goods sold, and
the associated affiliate programs (➎). We then make targeted
purchases from each affiliate program (➏), and store the
feed data and distilled and derived metadata in a database

From	 Levchenko	 et	 al.,	 “Click	 Trajectories:	 End-‐to-‐End	 Analysis	 of	 the	 Spam	
Value	 Chain”,	 IEEE	 Symposium	 on	 Security	 and	 Privacy,	 2011	

Measurement	 apparatus	 #1	

Figure 1: How the purchase pair technique works. In this hypothetical situation, two measurement purchases are made that bracket
some number of intervening purchases made by real customers. Because order number allocation is implemented by a serialized
sequential increment, the difference in the order numbers between measurement purchases, N = 23, corresponds to the total
number of orders processed by the affiliate program in the intervening time.

proximate IP addresses, and provided a unique email ad-
dress for each order. We used five contact phone numbers
for order confirmation, three from Google Voice and two
via prepaid cell phones, with all inbound calls routed to
the prepaid cell phones. In a few instances we found it
necessary to place orders from IP addresses closely ge-
olocated to the vicinity of the billing address for a given
card, as the fraud check process for one affiliate program
(EuroSoft) was sensitive to this feature. Another program
(Royal Software) would only accept one order per IP ad-
dress, requiring IP address diversity as well.

In total we placed 156 such orders. We scheduled them
both periodically over a three-week period as well as
in patterns designed to help elucidate more detail about
transaction volume and to test for internal consistency, as
discussed below.

Finally, in addition to the raw data from our own
purchase records, we were able to capture several pur-
chase order numbers via forum scraping. This opportu-
nity arose because affiliate programs typically sponsor
online forums that establish a community among their
affiliates and provide a channel for distributing opera-
tional information (e.g., changes in software or name
servers), sharing experiences (e.g., which registrars will
tolerate domains used to host pharmaceutical stores), and
to raise complaints or questions. One forum in particular,
for the GlavMed program, included an extended “com-
plaint” thread in which individual affiliates complained
about orders that had not yet cleared payment process-
ing (important to them since affiliates are only paid for
each settled transaction that they deliver). These affiliates
chose to document their complaints by listing the order
number they were waiting for, which we determined was
in precisely the same format and numeric range as the
order numbers presented to purchasers. By mining this
forum we obtained 122 numbers for past orders, includ-
ing orders dating back to 2008.

Affiliate Program Phase 1 Phase 2
(1/10 – 11/10) (1/11 – 2/11)

Rx–Promotion 7 27
Pharmacy Express 3 9
GlavMed 12 14
Online Pharmacy 5 16
EvaPharmacy 7 16
33drugs 4 16
4RX 1 13
EuroSoft 3 25
Royal Software 2 9
SoftSales 2 11

Table 1: Active orders placed to sites of each affiliate program
in the two different time phases of our study. In addition, we op-
portunistically gathered 122 orders for GlavMed covering the
period between 2/08 and 1/11.

Note that this data contains an innate time bias since
the date of complaint inevitably came a while later than
the time of purchase (unlike our own purchases). For this
reason, we identify opportunistically gathered points dis-
tinctly when analyzing the data. We will see below that
the bias proves to be relatively minor.

We summarize the total data set in Table 1. It includes
order numbers from 202 active purchases and 122 oppor-
tunistically gathered data points.

3.3 Consistency
While our initial observations of monotonicity are quite
suggestive, we need to consider other possible explana-
tions and confounding factors as well. Here we evaluate
the data for internal consistency—the degree to which
the data appears best explained by the sequential update
hypothesis rather than other plausible explanations. At
the end of the paper we also consider the issue of ex-
ternal consistency using “ground truth” revenue data for
one program.

Kanich	 et	 al.,	 Show	 Me	 the	 Money:	 Characterizing	 Spam-‐adverZsed	 Revenue,	 2011	

O
rd

er
 ID

Jan 5 Jan 15 Jan 25 Feb 4
!! !

!
!

!
!

!
!

!
!!! !!!

323 id/day

 3
3d

ru
gs

Jan 5 Jan 15 Jan 25 Feb 4
!

!
!

!!
!!

!
!!

!!!

263 id/day

 4
rx

!

! !
!

!

!

! !!!!
!

! ! !
!!!!!!!!

!!749 id/day

 e
ur

os
of

t

!!

!!

!

!

!

!

!
! !!!!

!

!

887 id/day

 e
va

!
!

!
!

!
!

!
!

!

!!!
!!!582 id/day

 g
la

vm
ed

!! !
! ! ! !

! ! ! !!! !!!

192 id/day

 o
nl

in
e

!!

!
!

! !
! ! !

261 id/day
 p

ha
rm

ex

!
!

!
!

!
!

!
!!

443 id/day

 ro
ya

l

Jan 5 Jan 15 Jan 25 Feb 4

!!

!!

!
!

!
! !!!! ! ! ! ! ! !!!

!!!!!!!

455 id/day

 rx
−p

ro
m

o

Jan 5 Jan 15 Jan 25 Feb 4

! ! ! ! ! ! ! !! !!

49 id/day

 s
of

ts
al

es

Figure 4: Collected data points and best fit slope showing the inferred order rate for ten different spam-advertised affiliate programs.
Order numbers are zero-normalized and the vertical scale of each plot is identical.

However, our particular server was apparently dispropor-
tionately popular, as it appears in 31% of all contempo-
raneous visits made by our URL crawler (perhaps due
to its particularly good connectivity). In turn, each im-
age server hosts an nginx Web proxy able to serve the
entirety of the image corpus.

4.2 Basket inference
Since the log we use is limited to embedded Web page
images, and in fact only includes one fifth of the images
fetched during a particular visit, there are considerable
challenges involved in inferring item selection purely
from this data. We next discuss how this inference tech-
nique works (illustrated at a high level in Figure 5) as
well as its fundamental limitations.7

We mapped out the purchasing workflow involved in
ordering from an EvaPharmacy site, and observed that all
purchases involve visiting four key kinds of pages in or-
der: landing, product, shopping cart, and checkout. The
landing page generally includes over 40 distinct embed-
ded images. Thus, even though images are split among
five servers, it is highly likely that multiple objects from
each landing page are fetched via our server (each with
a referrer field identifying the landing page from which
it was requested).8 We observe 752,000 distinct IP ad-

7This general approach is similar in character to Moore and Clay-
ton’s inference of phishing page visits from Webalizer logs [20].

8We validated this observation using our crawled data, which
showed that the landing pages using :8080 image hosting always used
five distinct servers. Thus, any image server assigned to a particular
visit is guaranteed to see the landing page load for that visit.

dresses that visited and included referrer information
during our five-day period.

When a visitor selects a particular drug from the land-
ing page, the reply takes them to an associated product
page. This page in turn prompts them to select the par-
ticular dosage and quantity they wish to purchase. The
precise construction of product pages differs between the
set of site templates (i.e., storefront brands) used by Eva-
Pharmacy. However, all include at least a few new im-
ages not found on the landing page, and the most popu-
lar template fetches five additional images. The number
of additional images varies on a per-template basis, not
a per-product basis within each template. Thus, for some
templates we may have less opportunity to observe what
product the user selects, but this does not affect our esti-
mate of the distribution of products selected, because the
diminished opportunity is not correlated with particular
products.

Next, upon selecting a product, the user is taken to the
shopping cart page, which again includes a large number
(often a dozen or more) of new images representing prod-
uct recommendations. We observe 4,879 cart visits from
3,872 distinct IP addresses. This allows us to estimate
a product-selection conversion rate: the fraction of visi-
tors who select an item for purchase. Based on the total
number of visitors where we have referrer information,
the conversion percentage on an IP basis is 0.5%.9 Of
these, 3,089 cart additions have preceding visits to prod-

9For comparison, in our previous work we measured a visit-to-
product-selection conversion rate of 2% [10].

Kanich	 et	 al.,	 Show	 Me	 the	 Money:	 Characterizing	 Spam-‐adverZsed	 Revenue,	 2011	

Measurement	 Apparatus	 #2	

Figure 5: How a user interacts with an EvaPharmacy Web site, beginning with the landing page and then proceeding to a product
page and the shopping cart. The main Web site contains embedded images hosted on separate compromised systems. When a
browser visits such pages, the referrer information is sent to the image hosting servers for every new image visited.

uct pages, which allows us to infer the selected product.
To quantify overall shopping cart addition activity, we
compare the total number of visits to the number of vis-
its to the shopping cart page. To quantify individual item
popularity, we examine the subset of visits for which the
customer workflow allows us to infer which specific item
was added to the cart.

There are three key limitations to this approach.
First and foremost, the final page in the purchasing
workflow—the checkout page—generally does not in-
clude unique image content, and thus does not appear in
our logs (even if it did, our approach could not determine
whether checkout completed correctly). Thus, we can
only observe that a user inserted an item into their cart,
but not that they completed a purchase attempt. In gen-
eral, this is only an issue to the degree that shopping cart
abandonment correlates with variables of interest (e.g.,
drug choice). The second limitation is that pages typi-
cally use the same image for all dosages and quantities
on a given product page, and therefore we cannot distin-
guish these features (e.g., we cannot distinguish between
a user selecting 120 tablets of 25mg Viagra tablets vs.
an order of 10 tablets, each of 100mg). Finally, we can-
not disambiguate multiple items selected for purchase.
When a user visits a product page followed by the shop-
ping cart page, we can infer that they selected the associ-
ated product. However, if the visitor then continues shop-
ping and visits additional product pages, we cannot de-
termine whether they added these products or simply ex-
amined them (subsequent visits to the shopping cart page
add few new recommended products; recommendations
appear based on the first item in the cart). We choose
the conservative approach and only consider the products
that we are confident the user selected, which will cause
us to under-represent those drugs typically purchased to-
gether.

Another issue is that pharmacy formularies, while
largely similar, are not identical between programs. In

particular, some pharmacy programs (e.g., Online Phar-
macy) offer Schedule II drugs (e.g., Oxycodone and Vi-
codin). However, since EvaPharmacy does not sell such
drugs, our data does not capture this category of demand.

Finally, our dataset also has potential bias due to the
particular means used to drive traffic to it. We found
that 45 of the 50 top landing pages observed in the host-
ing data also appeared in our spam-driven crawler data,
demonstrating directly that these landing pages were ad-
vertised through email spam. While these pages could
also be advertised using less risky methods such as
SEO, this seems unlikely since spam-advertised URLs
are swiftly blacklisted [14]. Thus, we suspect (but cannot
prove) that our data may only capture the purchasing be-
havior for the spam-advertised pharmacies; different ad-
vertising vectors could conceivably attract different de-
mographics with different purchasing patterns.

Given these limitations, we now report the results
of two analyses: product popularity (what customers
buy) and customer distribution (where the money comes
from).

4.3 Product popularity
Our first analysis focuses on simple popularity: what in-
dividual items users put into their shopping carts (Ta-
ble 3a) and what broad (seller-defined) categories of
pharmaceuticals were popular (Table 3b) during our
measurement period. Although naturally dominated by
the various ED and sexually-related pharmaceuticals, we
find a surprisingly long tail; indeed, 38% of all items
added to the cart were not in this category. We observed
289 distinct products, including popular mass-market
products such as Zithromax (31), Acomplia (27), Nex-
ium (26), and Propecia (27); but also Cipro (11; a com-
monly prescribed antibiotic), Actos (6; a treatment for
Type 2 diabetes), Buspar (12; anti-anxiety), Seoquel (9;
anti-schitzophrenia), Clomid (8; ovulation inducer), and
Gleevec (1; used to treat Leukemia and other cancers).

Product Quantity Min order

Generic Viagra 568 $78.80
Cialis 286 $78.00
Cialis/Viagra Combo Pack 172 $74.95
Viagra Super Active+ 121 $134.80
Female (pink) Viagra 119 $44.00
Human Growth Hormone 104 $83.95
Soma (Carisoprodol) 99 $94.80
Viagra Professional 87 $139.80
Levitra 83 $100.80
Viagra Super Force 81 $88.80
Cialis Super Active+ 72 $172.80
Amoxicillin 47 $35.40
Lipitor 38 $14.40
Ultram 38 $45.60
Tramadol 36 $82.80
Prozac 35 $19.50
Cialis Professional 33 $176.00
Retin A 31 $47.85

(a)

Category Quantity

Men’s Health 1760
Pain Relief 232
Women’s Health 183
General Hearth 135
Antibiotics 134
Antidepressants 95
Weight Loss 92
Allergy & Asthma 85
Heart & Blood Pressure 72
Skin Care 54
Stomach 41
Mental Health & Epilepsy 33
Anxiety & Sleep Aids 33
Diabetes 22
Smoking Cessation 22
Vitamins and Herbal Suppliments 18
Eye Care 15
Anti-Viral 14

(b)

Table 3: Table (a) shows the top 18 product items added to visitor shopping carts (representing 66% of all items added). Table (b)
shows the top 18 seller-defined product categories (representing 99% of all items).

of time. However, we do not know, on a per-program ba-
sis, the actual average purchase price. Thus, we explore
three different approximations, all of which we believe
are conservative.

First, for on-line pharmacies we use the static value of
roughly $100 as reported in our previous “Spamalytics”
study [10]. However, this study only considered one par-
ticular site, covered only 28 customers, and was unable
to handle more than a single item placed in a cart (i.e.,
it could not capture information about customers buying
multiple items).

We also consider a second approximation based on the
minimum priced item (including shipping) on the site for
each program under study. Since sites can have enormous
catalogs, we restrict the set of items under considera-
tion as follows. For pharmacy sites, we consider the top
18 most popular items as determined by the analysis of
EvaPharmacy in § 4 (these top 18 items constituted 66%
of order volume in our analysis). For each of these items
present in the target pharmacy, we find the minimum-
priced instance (i.e., lowest dosage and quantity) and use
the overall minimum as our per-order price. For small
deviations between pharmacy formularies (e.g., differ-
ent Viagra store-brand variants) we simply substitute one
item for the other. We repeat this same process for soft-
ware, but since we do not have a reference set of most
popular items for this market, we simply use the de-
clared “bestsellers” at each site (16 at Royal Software,
36 and SoftSales and 76 at EuroSoft)—again using the

minimum priced item to represent the average price per
order.

Finally, we calculate a “basket-weighted average”
price using measured popularity data. For pharmacies we
again consider the 18 most popular EvaPharmacy items
and extract the overlap set with other pharmacies. Us-
ing the relative frequency of elements in this intersec-
tion, we calculate a popularity vector that we then use
to weight the minimum item price; we use the sum of
these weights as the average price per order. Intuitively,
this approach tries to accommodate the fact that prod-
uct’s have non-uniform popularity, while still using the
conservative assumption that users order the minimum
dosage and quantity for each item. Note that we implic-
itly assume that the distribution of drug popularity holds
roughly the same between online pharmacies.10

We repeated this analysis, as before, with site-declared
best-selling software packages. To gauge relative popu-
larity, we searched a large BitTorrent metasearch engine
(isohunt.com), which indexes 541 sites tracking over
6.5 million torrents. We assigned a popularity to each
software item in proportion to the sum of the seeders and
leechers on all torrents matching a given product name.
We then weighted the total prices (inclusive of any han-
dling charge) by this popularity metric to arrive at an es-
timate of the average order price.

10One data point supporting this view is Rx–Promotion’s rank-
ordered list of best selling drugs. The ten most popular items sold by
both pharmacies are virtually the same and ranked in the same order.

Kanich	 et	 al.,	 Show	 Me	 the	 Money:	 Characterizing	 Spam-‐adverZsed	 Revenue,	 2011	

Figure 2: Our data collection and processing workflow.

for subsequent analysis in Section IV. (Steps ➎ and ➏ are
partially manual operations, the others are fully automated.)

The rest of this section describes these steps in detail.

A. Collecting Spam-Advertised URLs

Our study is driven by a broad range of data sources of
varying types, some of which are provided by third parties,
while others we collect ourselves. Since the goal of this
study is to decompose the spam ecosystem, it is natural
that our seed data arises from spam email itself. More
specifically, we focus on the URLs embedded within such
email, since these are the vectors used to drive recipient
traffic to particular Web sites. To support this goal, we

Feed Feed Received Distinct
Name Description URLs Domains

Feed A MX honeypot 32,548,304 100,631
Feed B Seeded honey accounts 73,614,895 35,506
Feed C MX honeypot 451,603,575 1,315,292
Feed D Seeded honey accounts 30,991,248 79,040
Feed X MX honeypot 198,871,030 2,127,164
Feed Y Human identified 10,733,231 1,051,211
Feed Z MX honeypot 12,517,244 67,856
Cutwail Bot 3,267,575 65
Grum Bot 11,920,449 348
MegaD Bot 1,221,253 4
Rustock Bot 141,621,731 13,612,815
Other bots Bot 7,768 4

Total 968,918,303 17,813,952

Table I: Feeds of spam-advertised URLs used in this study. We
collected feed data from August 1, 2010 through October 31, 2010.

obtained seven distinct URL feeds from third-party partners
(including multiple commercial anti-spam providers), and
harvested URLs from our own botfarm environment.

For this study, we used the data from these feeds from
August 1, 2010 through October 31, 2010, which together
comprised nearly 1 billion URLs. Table I summarizes our
feed sources along with the “type” of each feed, the number
of URLs received in the feed during this time period, and
the number of distinct registered domains in those URLs.
Note that the “bot” feeds tend to be focused spam sources,
while the other feeds are spam sinks comprised of a blend
of spam from a variety of sources. Further, individual feeds,
particularly those gathered directly from botnets, can be
heavily skewed in their makeup. For example, we received
over 11M URLs from the Grum bot, but these only contained
348 distinct registered domains. Conversely, the 13M distinct
domains produced by the Rustock bot are artifacts of a
“blacklist-poisoning” campaign undertaken by the bot op-
erators that comprised millions of “garbage” domains [54].
Thus, one must be mindful of these issues when analyzing
such feed data in aggregate.

From these feeds we extract and normalize embedded
URLs and insert them into a large multi-terabyte Postgres
database. The resulting “feed tables” drive virtually all
subsequent data gathering.

B. Crawler data

The URL feed data subsequently drives active crawling
measurements that collect information about both the DNS
infrastructure used to name the site being advertised and the
Web hosting infrastructure that serves site content to visitors.
We use distinct crawlers for each set of measurements.

DNS Crawler: We developed a DNS crawler to iden-
tify the name server infrastructure used to support spam-
advertised domains, and the address records they specify for
hosting those names. Under normal use of DNS this process
would be straightforward, but in practice it is significantly

Levchenko	 et	 al.,	 Click	 Trajectories:	 	
An	 End-‐to-‐End	 Analysis	 of	 the	 Spam	 	
Value	 Chain,	 2011	

Supplier Item Origin Affiliate Programs

Aracoma Drug Orange bottle of tablets (pharma) WV, USA ClFr
Combitic Global Caplet Pvt. Ltd. Blister-packed tablets (pharma) Delhi, India GlvMd
M.K. Choudhary Blister-packed tablets (pharma) Thane, India OLPh
PPW Blister-packed tablets (pharma) Chennai, India PhEx, Stmul, Trust, ClFr
K. Sekar Blister-packed tablets (pharma) Villupuram, India WldPh
Rhine Inc. Blister-packed tablets (pharma) Thane, India RxPrm, DrgRev
Supreme Suppliers Blister-packed tablets (pharma) Mumbai, India Eva
Chen Hua Small white plastic bottles (herbal) Jiangmen, China Stud
Etech Media Ltd Novelty-sized supplement (herbal) Christchurch, NZ Staln
Herbal Health Fulfillment Warehouse White plastic bottle (herbal) MA, USA Eva
MK Sales White plastic bottle (herbal) WA, USA GlvMd
Riverton, Utah shipper White plastic bottle (herbal) UT, USA DrMax, Grow
Guo Zhonglei Foam-wrapped replica watch Baoding, China Dstn, UltRp

Table VI: List of product suppliers and associated affiliate programs and/or store brands.

For example, all of our software purchases (across all
programs) were coded as 5734 (Computer Software Stores)
and 85% of all pharmacy purchases (again across programs)
were coded as 5912 (Drug Stores and Pharmacies). ZedCash
transactions (replica and herbal) are an exception, being
somewhat deceptive, and each was coded as 5969 (Direct

Marketing—Other). The few other exceptions are either
minor transpositions (e.g., 5921 instead of 5912), singleton
instances in which a minor program uses a generic code
(e.g., 5999, 8999) with a bank that we only observed in
one transaction, and finally Greenline which is the sole
pharmaceutical affiliate program that cleared transactions
through a US Bank during our study (completely miscoded
as 5732, Electronic Sales, across multiple purchases). The
latter two cases suggest that some minor programs with less
reliable payment relationships do try to hide the nature of
their transactions, but generally speaking, category coding
is correct. A key reason for this may be the substantial
fines imposed by Visa on acquirers when miscoded merchant
accounts are discovered “laundering” high-risk goods.

Finally, for two of the largest pharmacy programs,
GlavMed and RX–Promotion, we also purchased from
“canonical” instances of their sites advertised on their online
support forums. We verified that they use the same bank,
order number format, and email template as the spam-
advertised instances. This evidence undermines the claim,
made by some programs, that spammers have stolen their
templates and they do not allow spam-based advertising.

Fulfillment: Fulfillment for physical goods was sourced
from 13 different suppliers (as determined by declared
shipper and packaging), of which eight were again seen
more than once (see Table VI). All pharmaceutical tablets
shipped from India, except for one shipped from within
the United States (from a minor program), while replicas
shipped universally from China. While we received herbal
supplement products from China and New Zealand, most (by
volume) shipped from within the United States. This result
is consistent with our expectation since, unlike the other

goods, herbal products have weaker regulatory oversight and
are less likely to counterfeit existing brands and trademarks.
For pharmaceuticals, the style of blister packs, pill shapes,
and lot numbers were all exclusive to an individual nominal
sender and all lot numbers from each nominal sender were
identical. Overall, we find that only modest levels of supplier
sharing between pharmaceutical programs (e.g., Pharmacy
Express, Stimul-cash, and Club-first all sourced a particular
product from PPW in Chennai, while RX–Promotion and
DrugRevenue both sourced the same drug from Rhine Inc.
in Thane). This analysis is limited since we only ordered a
small number of distinct products and we know (anecdotally)
that pharmaceutical programs use a network of suppliers to
cover different portions of their formulary.

We did not receive enough replicas to make a convincing
analysis, but all ZedCash-originated replicas were low-
quality and appear to be of identical origin. Finally, pur-
chased software instances were bit-for-bit identical between
sites of the same store brand and distinct across different
affiliate programs (we found no malware in any of these
images). In general, we did not identify any particularly clear
bottleneck in fulfillment and we surmise that suppliers are
likely to be plentiful.

C. Intervention analysis

Finally, we now reconsider these different resources in
the spam monetization pipeline, but this time explicitly from
the standpoint of the defender. In particular, for any given
registered domain used in spam, the defender may choose
to intervene by either blocking its advertising (e.g., filtering
spam), disrupting its click support (e.g., takedowns for name
servers of hosting sites), or interfering with the realization
step (e.g., shutting down merchant accounts).18 But which
of these interventions will have the most impact?

18In each case, it is typically possible to employ either a “takedown”
approach (removing the resource comprehensively) or cheaper “blacklist-
ing” approach at more limited scope (disallowing access to the resource
for a subset of users), but for simplicity we model the interventions in the
takedown style.

Levchenko	 et	 al.,	 Click	 Trajectories:	 An	 End-‐to-‐End	 Analysis	 of	 the	 Spam	 Value	 Chain,	 2011	

•  120	 items	 purchased	
•  76	 authorized	 	
•  56	 se/led	
•  49	 products	 delivered	

•  2	 sent	 aker	 mailbox	 lease	 ended	
•  2	 no	 follow-‐up	 email	 	
•  2	 resent	 aker	 mailbox	 lease	 ended	
•  1	 promised	 refund	 (never	 obtained)	

Registrar

%
 o

f
sp

a
m

0

20

40

60

80

100

 −NauNet (RU)

 −Beijing Innovative (CN)

 −Bizcn.com (CN)

 −China Springboard (CN)

 −eNom (US)

1 2 5 10 20 50 100

AS serving Web/DNS

0

20

40

60

80

100

 −
C

hi
na

ne
t (

C
N

)
 −

E
vo

lv
a

(R
O

)

 −Evolva (RO)

 −VLineTelecom (UA)

1 2 5 10 20 50 100 500

Target
DNS server
Web server

Bank

0

20

40

60

80

100

Azerigazbank

Saint Kitts

DnB Nord

Latvia Savings

B + N
B + S

W
ells Fargo

Visa Iceland

W
irecard

Borgun Hf

State Mauritius

Cartu Bank

Latvijas Pasta

Figure 5: Takedown effectiveness when considering domain registrars (left), DNS and Web hosters (center) and acquiring banks (right).

or weeks). Even for so-called third-party accounts (whereby
a payment processor acts as middleman and “fronts” for the
merchant with both the bank and Visa/Mastercard) we have
been unable to locate providers willing to provide operating
accounts in less than five days, and such providers have
significant account “holdbacks” that they reclaim when there
are problems.21 Thus, unlike the other resources in the spam
value chain, we believe payment infrastructure has far fewer
alternatives and far higher switching cost.

Indeed, our subsequent measurements bear this out. For
four months after our study we continued to place orders
through the major affiliate programs. Many continued to
use the same banks four months later (e.g., all replica and
herbal products sold through ZedCash, all pharmaceuticals
from Online Pharmacy and all software from Auth. Soft.
Resellers). Moreover, while many programs did change
(typically in January or February 2011), they still stayed
within same set of banks we identified earlier. For exam-
ple, transactions with EvaPharmacy, Greenline, and OEM
Soft Store have started clearing through B&N Bank in
Russia, while Royal Software, EuroSoft and Soft Sales,
have rotated through two different Latvian Banks and B
& S Card Service of Germany. Indeed, the only new bank
appearing in our follow-on purchases is Bank Standard
(a private commercial bank in Azerbaijan, BIN 412939);
RX–Promotion, GlavMed, and Mailien (a.k.a. Pharmacy
Express) all appear to have moved to this bank (from
Azerigazbank) on or around January 25th. Finally, one
order placed with DrugRevenue failed due to insufficient
funds, and was promptly retried through two different banks
(but again, from the same set). This suggests that while
cooperating third-party payment processors may be able to
route transactions through merchant accounts at difference

21To get a sense of the kinds of institutions we examined, consider
this advertisement of one typical provider: “We have ready-made shell
companies already incorporated, immediately available.”

banks, the set of banks currently available for such activities
is quite modest.

D. Policy options
There are two potential approaches for intervening at

the payment tier of the value chain. One is to directly
engage the merchant banks and pressure them to stop doing
business with such merchants (similar to Legitscript’s role
with registrars [25], [28]). However, this approach is likely
to be slow—very likely slower than the time to acquire
new banking facilities. Moreover, due to incongruities in
intellectual property protection, it is not even clear that the
sale of such goods is illegal in the countries in which such
banks are located. Indeed, a sentiment often expressed in
the spammer community, which resonates in many such
countries, is that the goods they advertise address a real
need in the West, and efforts to criminalize their actions are
motivated primarily by Western market protectionism.

However, since spam is ultimately supported by Western
money, it is perhaps more feasible to address this problem
in the West as well. To wit, if U.S. issuing banks (i.e.,
banks that provide credit cards to U.S. consumers) were to
refuse to settle certain transactions (e.g., card-not-present
transactions for a subset of Merchant Category Codes) with
the banks identified as supporting spam-advertised goods,
then the underlying enterprise would be dramatically de-
monetized. Furthermore, it appears plausible that such a
“financial blacklist” could be updated very quickly (driven
by modest numbers of undercover buys, as in our study) and
far more rapidly than the turn-around time to acquire new
banking resources—a rare asymmetry favoring the anti-spam
community. Furthermore, for a subset of spam-advertised
goods (regulated pharmaceuticals, brand replica products,
and pirated software) there is a legal basis for enforcing such
a policy.22 While we suspect that the political challenges for

22Herbal products, being largely unregulated, are a more complex issue.

%	 of	 	
spam	

Levchenko	 et	 al.,	 Click	 Trajectories:	 An	 End-‐to-‐End	 Analysis	 of	 the	 Spam	 Value	 Chain,	 2011	

Can	 we	 thro/le	 abuse	 by	 targeZng	
merchant	 accounts	 at	 banks?	

•  McCoy	 et	 al.,	 Priceless:	 The	 Role	 of	 Payments	 in	
Abuse-‐adverZsed	 Goods,	 2012	 	

•  Made	 purchases	 to	 pharma	 and	 sokware	 OEM	
programs,	 while	 also	 working	 with	
brandholders	 to	 make	 complaints	 to	 Visa/MC	

Payment refused
pk5me442031295060
tacuinumsanitatiscom

wwworderhelpbiz
bullhealpcom442035193071

442034112431da5me
bd7me442034110680
442070996123ge5me

Payment refused
onlinepaymentgpmcom

wsdospdasro
joychaffbusinesscor

newrxshop
medbynet

yourhealthbynet
pharmacy2home15622866138

Payment refused
herbsbeecom18553275103
gotherbalscom1855829720

pay4herbscom18663285997
herbals911com
getherbalscom

webrxescrowcom
33medscom1877340891

thefastmedscom
33medscom

rxbestmedscom1877399
100herbals

unknown
33drugscom1866333784

33drugscom18663337847

!!!

!

!

!!

!

!

!

M
ailien

R
xC

ash
33D

rugs

Jan 2011 Jul 2011 Jan 2012 Jul 2012
Time of purchase

C
AI

D

Bank
!

!

Azerigazbank
Bank Standard
Bank of China
Cartu Bank
International Bank of Azerbaijan
Latvijas Pasta Banka
Liberty Bank
No authorization attempted
Rietumu Banka
State Bank of Mauritius
TBC Bank

Figure 3: Various strategies affiliate programs use for processing card payments at banks: one terminal at a bank at a time (Mailien), multiple
terminals at one bank simultaneously (RxCash), terminals at multiple banks simultaneously (33Drugs).

establish unique relationships with banks, such as ZedCash which
moves all of its processing (including replica and herbal sales) to
Bank of China and Agricultural Bank of China with whom it con-
tinues to operate today. Finally, State Bank of Mauritius and the two
Georgian banks, TBC and Libery, come to dominate the “mid-tier”
of pharmaceutical programs starting in roughly August of 2011.

For software affiliate programs (graph not shown), we found that
most programs process orders simultaneously through four banks
(again suggesting a shared third-party processor) until November
2011 when the programs all scramble to find alternate payment ar-
rangements (Sections 4.4 and 4.5).

4.3 Program banking strategies
Programs use different strategies for managing payment process-

ing that vary in terms of overhead and risk management. Figure 3
shows examples of four strategies among pharmaceutical programs.
For each program, we show rows corresponding to individual mer-
chant descriptors (text strings that are provided to the issuer and
would appear on the customer’s payment card statement) used to
process the credit cards for the orders we placed through the pro-
gram. Each merchant descriptor corresponds to a “terminal”, a spe-
cific merchant account at a bank tied to processing orders with a
specific merchant category code (MCC).14 We plot points on a row
for the purchases we made that were processed using that specific
terminal. Since each terminal is tied to a specific bank, we mark
points on a row that identify the bank the terminal is associated
with. Rows for a program with the same mark indicates that we ob-
served a program using multiple terminals at a bank, and rows with
different marks indicate that a program uses multiple banks. As be-
fore, we draw a line between purchases processed using the same
terminal if they appear within two months of each other. When ap-
propriate, on a separate row for each program we also show points
when we attempted purchases from the program but the merchant
rejected our order (i.e., did not attempt to authorize our card).

14Technically, identical descriptors could be used for different ac-
counts, but since we have access to the CAID information we can
ensure that each of these corresponds to a unique merchant ID.

Figure 4: Example of a program receiving complaints to a card net-
work. Rows denote distinct merchant descriptors; row “X” shows
refused orders.

Some programs like Mailien use a single terminal at a bank at a
time, only switching when forced to. Staying with one bank mini-
mizes the cost and overhead of establishing merchant accounts with
another bank, but leaves the affiliate program open to the risk of los-
ing all processing capability if the bank terminates their relation-
ship. For example, when Azerigazbank globally stops processing
for these kinds of merchants, Mailien switches to Bank Standard
and uses single terminals serially over time. As per the previous
description of risk, it is precisely during these times when Mailien
is switching between banks or merchant accounts at a bank that our
orders are unable to be processed.

To further reduce risk, other programs use multiple terminals at
a bank simultaneously. When RxCash processes cards through Lib-
erty Bank, for example, it appears as if it is using at least two ter-
minals at a time on two different occasions.

Finally, some programs like 33Drugs maintain simultaneous re-
lationships at multiple banks at a time. Between July 2011 and
January 2012, our purchases are processed through four different
banks on existing terminals that we had originally seen used in
early 2011. Maintaining active merchant accounts at multiple banks
simultaneously has both cost and time overheads associated with it,
but it also reduces risk since the program is not dependent on a sin-
gle bank for processing cards and it gives the program flexibility in

Wrote	 one	 eloquent	 affiliate	 in	 March	 of	 this	 year,	
“Right	 now	 most	 affiliate	 eprograms	 have	 a	 mass	 of	
declines,	 cancels	 and	 pendings,	 and	 it	 doesn’t	 depend	
much	 on	 the	 program	 IMHO,	 there	 is	 a	 general	 sad	
picture,	 fucking	 Visa	 is	 burning	 us	 with	 napalm.”	

McCoy	 et	 al.,	 Priceless:	 The	 Role	 of	 Payments	 in	 Abuse-‐adverZsed	 Goods,	 2012	 	

Ethics	
•  We	 have	 seen	 researchers:	

– measuring	 illicit	 acZviZes	 of	 vicZms	
– parZcipaZng	 in	 spam	 campaigns	
–  taking	 ownership	 of	 bots	 	 /	 botnet	 C&C	
– purchasing	 goods	 from	 criminal	 organizaZons	
– port	 scanning	 vicZms	

•  Ethics	 discussion	 in	 papers:	
– short	 discussion	 jusZfying	 lack	 of	 harm	
– “beyond	 the	 scope	 of	 this	 work”	

From	 paper	 on	 Torpig	 takeover	 (Stone-‐Gross	 et	 al.)	
	
PRINCIPLE	 1.	 The	 sinkholed	 botnet	 should	 be	 operated	 so	
that	 any	 harm	 and/or	 damage	 to	 vicZms	 and	 targets	 of	
a/acks	 would	 be	 minimized.	
	
PRINCIPLE	 2.	 The	 sinkholed	 botnet	 should	 collect	 enough	 in-‐	
formaZon	 to	 enable	 noZficaZon	 and	 remediaZon	 of	 affected	
par-‐	 Zes.	

E-‐crime	 is	 a	 complex	 ecosystem	

•  Lots	 of	 moving	 parts	
•  Economics	 important	

– FascinaZng	 measurement	 studies	
•  Technical	 mechanisms	 oken	 don’t	 measure	 up	
•  “In	 Planning	 Digital	 Defenses,	 the	 Biggest	
Obstacle	 Is	 Human	 Ingenuity”	 -‐Stefan	 Savage	
– h/p://www.nyZmes.com/2011/12/06/science/
stefan-‐savage-‐girding-‐for-‐digital-‐threats-‐we-‐
havent-‐imagined-‐yet.html?_r=1&ref=science	

