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IBM	  VM/370	  

•  Released	  in	  1972	  
– Used	  with	  System/370,	  System/390,	  zSeries	  
mainframes	  

– Full	  virtualizaEon	  
•  Supported	  CP/CMS	  operaEng	  system	  
–  IniEal	  applicaEon	  was	  to	  support	  legacy	  OS	  

•  z/VM	  is	  newer	  version,	  most	  recent	  version	  
2010	  
– Be9er	  use	  of	  64-‐bit	  mainframes	  



Xen	  

•  2003:	  academic	  paper	  	  
– “Xen	  and	  the	  Art	  of	  VirtualizaEon”	  

•  ParavirtualizaEon	  
– Hypercalls	  vs	  system	  	  
	  	  	  	  calls	  
– Modified	  guest	  OS	  
– Each	  guest	  given	  	  
	  	  	  1	  or	  more	  	  VCPUs	  

•  Why?	  
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Figure 1: The structure of a machine running the Xen hyper-
visor, hosting a number of different guest operating systems,
including Domain0 running control software in a XenoLinux
environment.

this process was automated with scripts. In contrast, Linux needed
far fewer modifications to its generic memory system as it uses pre-
processor macros to access PTEs — the macro definitions provide
a convenient place to add the translation and hypervisor calls re-
quired by paravirtualization.

In both OSes, the architecture-specific sections are effectively
a port of the x86 code to our paravirtualized architecture. This
involved rewriting routines which used privileged instructions, and
removing a large amount of low-level system initialization code.
Again, more changes were required in Windows XP, mainly due
to the presence of legacy 16-bit emulation code and the need for
a somewhat different boot-loading mechanism. Note that the x86-
specific code base in XP is substantially larger than in Linux and
hence a larger porting effort should be expected.

2.3 Control and Management
Throughout the design and implementation of Xen, a goal has

been to separate policy from mechanism wherever possible. Al-
though the hypervisor must be involved in data-path aspects (for
example, scheduling the CPU between domains, filtering network
packets before transmission, or enforcing access control when read-
ing data blocks), there is no need for it to be involved in, or even
aware of, higher level issues such as how the CPU is to be shared,
or which kinds of packet each domain may transmit.

The resulting architecture is one in which the hypervisor itself
provides only basic control operations. These are exported through
an interface accessible from authorized domains; potentially com-
plex policy decisions, such as admission control, are best performed
by management software running over a guest OS rather than in
privileged hypervisor code.

The overall system structure is illustrated in Figure 1. Note that
a domain is created at boot time which is permitted to use the con-
trol interface. This initial domain, termed Domain0, is responsible
for hosting the application-level management software. The con-
trol interface provides the ability to create and terminate other do-
mains and to control their associated scheduling parameters, phys-
ical memory allocations and the access they are given to the ma-
chine’s physical disks and network devices.

In addition to processor and memory resources, the control inter-
face supports the creation and deletion of virtual network interfaces
(VIFs) and block devices (VBDs). These virtual I/O devices have
associated access-control information which determines which do-
mains can access them, and with what restrictions (for example, a

read-only VBD may be created, or a VIF may filter IP packets to
prevent source-address spoofing).

This control interface, together with profiling statistics on the
current state of the system, is exported to a suite of application-
level management software running in Domain0. This complement
of administrative tools allows convenient management of the entire
server: current tools can create and destroy domains, set network
filters and routing rules, monitor per-domain network activity at
packet and flow granularity, and create and delete virtual network
interfaces and virtual block devices. We anticipate the development
of higher-level tools to further automate the application of admin-
istrative policy.

3. DETAILED DESIGN
In this section we introduce the design of the major subsystems

that make up a Xen-based server. In each case we present both
Xen and guest OS functionality for clarity of exposition. The cur-
rent discussion of guest OSes focuses on XenoLinux as this is the
most mature; nonetheless our ongoing porting of Windows XP and
NetBSD gives us confidence that Xen is guest OS agnostic.

3.1 Control Transfer: Hypercalls and Events
Two mechanisms exist for control interactions between Xen and

an overlying domain: synchronous calls from a domain to Xen may
be made using a hypercall, while notifications are delivered to do-
mains from Xen using an asynchronous event mechanism.

The hypercall interface allows domains to perform a synchronous
software trap into the hypervisor to perform a privileged operation,
analogous to the use of system calls in conventional operating sys-
tems. An example use of a hypercall is to request a set of page-
table updates, in which Xen validates and applies a list of updates,
returning control to the calling domain when this is completed.

Communication from Xen to a domain is provided through an
asynchronous event mechanism, which replaces the usual delivery
mechanisms for device interrupts and allows lightweight notifica-
tion of important events such as domain-termination requests. Akin
to traditional Unix signals, there are only a small number of events,
each acting to flag a particular type of occurrence. For instance,
events are used to indicate that new data has been received over the
network, or that a virtual disk request has completed.

Pending events are stored in a per-domain bitmask which is up-
dated by Xen before invoking an event-callback handler specified
by the guest OS. The callback handler is responsible for resetting
the set of pending events, and responding to the notifications in an
appropriate manner. A domain may explicitly defer event handling
by setting a Xen-readable software flag: this is analogous to dis-
abling interrupts on a real processor.

3.2 Data Transfer: I/O Rings
The presence of a hypervisor means there is an additional pro-

tection domain between guest OSes and I/O devices, so it is crucial
that a data transfer mechanism be provided that allows data to move
vertically through the system with as little overhead as possible.

Two main factors have shaped the design of our I/O-transfer
mechanism: resource management and event notification. For re-
source accountability, we attempt to minimize the work required to
demultiplex data to a specific domain when an interrupt is received
from a device — the overhead of managing buffers is carried out
later where computation may be accounted to the appropriate do-
main. Similarly, memory committed to device I/O is provided by
the relevant domains wherever possible to prevent the crosstalk in-
herent in shared buffer pools; I/O buffers are protected during data
transfer by pinning the underlying page frames within Xen.



Other	  VM	  soluEons	  

• VMWare	  
• Virtual	  Box	  
• KVM	  



Example	  VM	  Use	  Cases	  

•  Legacy	  support	  (e.g.,	  VM/370)	  
•  Development	  
•  Server	  consolidaEon	  
•  Cloud	  compuEng	  Infrastructure-‐as-‐a-‐Service	  
•  Sandboxing	  /	  containment	  



Study	  of	  malware	  

•  Researchers	  use	  VMs	  to	  study	  
malware	  

•  Example	  of	  VM	  sandboxing	  
– Hypervisor	  must	  contain	  
malicious	  code	  

•  IntrospecEon	  
•  How	  would	  you	  evade	  analysis	  
as	  a	  malware	  writer?	  
– split	  personaliEes	  
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VMM	  Transparency	  

•  Adversary	  can	  detect	  if:	  
– ParavirtualizaEon	  
– Logical	  discrepancies	  	  

•  Expected	  CPU	  behavior	  vs	  virtualized	  	  
•  Red	  pill	  (Store	  Interrupt	  Descriptor	  Table	  instr)	  

– Timing	  discrepancies	  
•  Slower	  use	  of	  some	  resources	  
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DetecEon	  of	  VMWare	  

MOV	  EAX,564D5868	  <-‐-‐	  "VMXh"	  	  
MOV	  EBX,0	  	  
MOV	  ECX,0A	  	  
MOV	  EDX,5658	  <-‐-‐	  "VX"	  
IN	  EAX,DX	  <-‐-‐	  Check	  for	  VMWare	  	  
CMP	  EBX,564D5868	  

From	  	  
h9p://handlers.sans.org/tliston/ThwarEngVMDetecEon_Liston_Skoudis.pdf	  

IN	  instrucEon	  used	  by	  VMWare	  
to	  facilitate	  host-‐to-‐guest	  	  
communicaEon	  

VMWare:	  
	  places	  VMXh	  in	  EBX	  

Physical:	  
	  processor	  excepEon	  



Server	  consolidaEon	  

•  ConsolidaEon	  
– Use	  VMs	  to	  opEmize	  use	  of	  
hardware	  

– Pack	  as	  many	  VMs	  onto	  each	  
server	  as	  possible	  

– Turn	  off	  other	  servers	  
Hardware	  
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•  Threat	  model?	  
– Containment	  
–  IsolaEon	  
– Assume	  guests	  are/can	  be	  compromised	  

OS2	  

P1	   P2	  



ViolaEng	  containment	  

•  Escape-‐from-‐VM	  
– Vulnerability	  in	  VMM	  or	  host	  OS	  
(e.g.,	  Dom0)	  

– Seemingly	  rare,	  but	  exist	  

Hardware	  

OS1	  

P1	   P2	  

Hypervisor	  

OS2	  

P1	   P2	  



ViolaEng	  isolaEon	  

•  Covert	  channels	  between	  VMs	  
circumvent	  access	  controls	  
– Bugs	  in	  VMM	  
– Side-‐effects	  of	  resource	  usage	  

Hardware	  

OS1	  

P1	   P2	  

Hypervisor	  

OS2	  

P1	   P2	  



h9p://handlers.sans.org/tliston/ThwarEngVMDetecEon_Liston_Skoudis.pdf	  
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Isolation?

Just sayin'.... you know... thinking out loud. ;-)



ViolaEng	  isolaEon	  

•  Covert	  channels	  between	  VMs	  
circumvent	  access	  controls	  
– Bugs	  in	  VMM	  
– Side-‐effects	  of	  resource	  usage	  

•  DegradaEon-‐of-‐Service	  a9acks	  
– Guests	  might	  maliciously	  contend	  
for	  resources	  

– Xen	  scheduler	  vulnerability	  

Hardware	  

Hypervisor	  
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	  Measuring	  Resource	  ContenEon	  

•  ContenEon	  for	  the	  same	  resource	  
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Machine	   Intel	  Xeon	  E5430,	  
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Packages	   2,	  2	  cores	  per	  
package	  

LLC	  Size	   6MB	  per	  package	  



ViolaEng	  isolaEon	  

•  Covert	  channels	  between	  VMs	  
circumvent	  access	  controls	  
–  Bugs	  in	  VMM	  
–  Side-‐effects	  of	  resource	  usage	  

•  DegradaEon-‐of-‐Service	  a9acks	  
– Guests	  might	  maliciously	  contend	  
for	  resources	  

–  Xen	  scheduler	  vulnerability	  
•  Side	  channels	  
–  Spy	  on	  other	  guest	  via	  shared	  
resources	  
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Square-‐and-‐Mul>ply	  
/*	  y	  =	  xe	  mod	  N	  ,	  from	  libgcrypt*/	  
Modular	  Exponen>a>on	  (x,	  e,	  N):	  
	  let	  en	  …	  e1	  be	  the	  bits	  of	  e	  
	  y	  ←	  1	  
	  for	  ei	  in	  {en	  …e1}	  
	   	  y	  ←	  Square(y)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (S)	  
	   	  y	  ←	  Reduce(y,	  N)	  	  	  	  	  	  	  	  	  	  	  	  	  	  (R)	  
	   	  if	  	  ei	  =	  1	  then	  	  
	   	   	  y	  ←	  Mul>(y,	  x)	  	  	  	  	  	  	  (M)	  
	   	   	  y	  ←	  Reduce(y,	  N)	  	  	  	  (R)	  

	  

ei	  =	  1	  →	  SRMR	  
ei	  =	  0	  →	  SR	  

Control	  flow	  (sequence	  of	  instrucEons	  used)	  leaks	  secret	  



Xen	  core	  scheduling	  

Virtualiza>on	  (Xen)	  

L1	  
I-‐Cache	  

AWacker	  

VM	  

Vic>m	  

VM	  

L1	  
I-‐Cache	  

L1	  
I-‐Cache	  

L1	  
I-‐Cache	  

Xen	  core	  scheduler	  determines	  
the	  VCPU	  to	  CPU	  core	  assignment	  
	  
Typical	  configuraEon:	  
VCPUs	  of	  different	  VMs	  will	  osen	  
Eme-‐share	  a	  core,	  assignment	  
changes	  over	  Eme	  



Time-‐sharing	  a	  core	  

Vic>m	  AWacker	  

VM/VCPU	  

30ms	   30ms	  
Time	  

VM/VCPU	  

L1	  
I-‐Cache	  

Idea	  will	  be	  to	  snoop	  on	  
the	  I-‐cache	  usage	  every	  	  
Eme	  the	  a9acker	  gets	  
to	  run	  



Prime-‐Probe	  Protocol	  

Time	  PROBE	  Runs	  square	  op	  PRIME	  

Cache	  Set	  
4-‐way	  set	  associa>ve	  

L1	  I-‐Cache	  

Vector	  of	  cache	  set	  
Emings,	  biased	  by	  	  
cache	  usage	  of	  vicEm	  



Prime-‐Probe	  Protocol	  

Time	  PROBE	  Runs	  mul>ply	  op	  PRIME	  

Cache	  Set	  
4-‐way	  set	  associa>ve	  

L1	  I-‐Cache	  

Vector	  of	  cache	  set	  
Emings,	  biased	  by	  	  
cache	  usage	  of	  vicEm	  

Square	  and	  MulEply	  give	  different-‐looking	  Eming	  
vectors	  (in	  the	  absence	  of	  noise)	  



Time-‐sharing	  a	  core	  

Vic>m	  AWacker	  

VM/VCPU	  

30ms	   30ms	  
Time	  

VM/VCPU	  

L1	  
I-‐Cache	  

Problem:	  
Default	  scheduling	  	  
quantum	  is	  30ms	  in	  Xen	  
	  
ExponenEaEon	  for	  4096-‐bit	  
modulus	  takes	  about	  
200ms	  to	  complete	  



Ideally	  …	  

1	  instruc>on?	  

•  Use	  Interrupts	  to	  preempt	  the	  vicEm:	  
•  Timer	  interrupts?	  
•  Network	  interrupts?	  
•  HPET	  interrupts?	  
•  Inter-‐Processor	  interrupts	  (IPI)!	  

Time	  



Inter-‐Processor	  Interrupts	  

Vic>m	  

CPU	  core	  

AWacker	  
VCPU	  

AWacker	  VM	  

VM/VCPU	  

IPI	  
VCPU	  

CPU	  core	  

For(	  ;	  ;	  )	  {	  
	  	  send_IPI();	  
	  	  Delay();	  
}	  

Virtualiza>on	  (Xen)	  



Cross-‐VM	  Side	  Channel	  Probing	  

2.5	  µs	  

Time	  
2.5	  µs	   2.5	  µs	  



Outline	  

Cross-‐VM	  
Side	  Channel	  

Probing	  

Cache	  
PaWern	  

Classifica>on	  

Noise	  
Reduc>on	  

Code-‐Path	  
Reassembly	  

Vectors	  of	  cache	  
measurements	  

Sequences	  of	  SVM-‐
classified	  labels	  

Fragments	  of	  
code	  path	  

Stage	  1	   Stage	  2	  

Stage	  3	   Stage	  4	  



Evalua>on	  
•  Intel	  Yorkfield	  processor	  
– 4	  cores,	  32KB	  L1	  instrucEon	  cache	  

•  Xen	  +	  linux	  +	  GnuPG	  +	  libgcrypt	  
– Xen	  4.0	  
– Ubuntu	  10.04,	  kernel	  version	  2.6.32.16	  
– VicEm	  runs	  GnuPG	  v.2.0.19	  (latest)	  
–  libgcrypt	  1.5.0	  (latest)	  
– ElGamal	  decrypEon,	  4096	  bits	  



Results	  

•  Work-‐Conserving	  Scheduler	  
– 300,000,000	  prime-‐probe	  results	  (6	  hours)	  
– Over	  300	  key	  fragments	  
– Brute	  force	  the	  key	  in	  ~9800	  guesses	  
	  

•  Non-‐Work-‐Conserving	  Scheduler	  
– 1,900,000,000	  prime-‐probe	  results	  (45	  hours)	  
– Over	  300	  key	  fragments	  
– Brute	  force	  the	  key	  in	  ~6600	  guesses	  



Lessons	  

•  Don’t	  rely	  on:	  
– VMM	  transparency	  
– Containment	  
– Strong	  isolaEon	  (side	  channels	  exist)	  

•  Securing	  guest	  OS	  and	  host	  OS	  sEll	  very	  
important	  



Virtual	  Machine	  Management	  

•  Snapshots	  
– Volume	  snapshot	  /	  checkpoint	  	  

•  persistent	  storage	  of	  VM	  
•  must	  boot	  from	  storage	  when	  resuming	  snapshot	  

– Full	  snapshot	  
•  persistent	  storage	  and	  ephemeral	  storage	  (memory,	  
register	  states,	  caches,	  etc.)	  
•  start/resume	  in	  between	  (essenEally)	  arbitrary	  
instrucEons	  

•  VM	  image	  is	  a	  file	  that	  stores	  a	  snapshot	  



“Protect	  Against	  Adware	  and	  Spyware:	  Users	  protect	  their	  PCs	  against	  adware,	  
spyware	  and	  other	  malware	  while	  browsing	  the	  Internet	  with	  Firefox	  in	  a	  virtual	  
machine.”	  
[h9p://www.vmware.com/company/news/releases/player.html]	  

h9p://www.freesosware.com/	  

browser	  exploit	  

Virtual	  machine	  compromised,	  but	  not	  host	  OS	  

Resezng	  to	  snapshot	  removes	  malware	  

Clean	  	  
snapshot	  	  
of	  VM	  with	  	  
browser	  	  
running	  

Virtual	  machines	  and	  secure	  browsing	  



VM	  Management	  issues	  

•  Reset	  vulnerabiliEes	  
– We	  saw	  crypto/RNG	  related	  vulnerabilites	  last	  
week	  (reuse	  of	  randomness)	  

– Guest	  OS	  and	  applicaEon	  quiescing	  
•  Lack	  of	  diversity	  	  
•  IdenEty	  management	  /	  credenEals	  



Amazon	  Machine	  Images	  (AMIs)	  
•  Users	  set	  up	  volume	  snapshots	  /	  checkpoints	  
that	  can	  then	  be	  run	  on	  the	  ElasEc	  Compute	  
Cloud	  (EC2)	  

•  Can	  be	  marked	  as	  public	  and	  anyone	  can	  use	  
your	  AMI	  

Storage	  service	  
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Figure 1: System Architecture

and bitnami for Linux). Despite these attempts, there are
cases in which the robot may fail to retrieve the correct login
information. This is the case, for example, for AMIs whose
credentials are distributed only to the image provider’s cus-
tomers by companies that make business by renting AMIs.
Hence, these type of images are outside the scope of our
evaluation.

After an AMI has been successfully instantiated by the
robot, it is tested by two different scanners. The Remote
Scanner collects the list of open ports1 using the NMap tool [23],
and downloads the index page of the installed web applica-
tions. In Section 5, we explain how an attacker can use
this information as a fingerprint to identify running images.
The Local Scanner component is responsible for uploading
and running a set of tests. The test suite to be executed
is packaged together in a self-extracting archive, uploaded
to the AMI, and run on the machine with administrative
privileges. In addition, the Local Scanner also analyzes the
system for known vulnerabilities using the Nessus tool [30].
For AMIs running Microsoft Windows, the scripting of au-
tomated tasks is complicated by the limited remote adminis-
tration functionalities offered by the Windows environment.
In this case, we mounted the remote disk and transfered the
data using the SMB/Netbios subsystem. We then used the
psexec tool [27] to execute remote commands and invoke
the tests.

The test suite uploaded by the Local Scanner includes 24
tests grouped in 4 categories: general, network, privacy, and
security (for the complete list see Appendix A).

The general category contains tests that collect general
information about the system (e.g. the Linux distribution
name, or the Windows version), the list of running processes,
the file-system status (e.g., the mounted partitions), the list
of installed packages, and the list of loaded kernel mod-
ules. In addition to these basic tests, the general category
also contains scripts that save a copy of interesting data,
such as emails (e.g., /var/mail), log files (e.g., /var/log
and %USER\Local Settings), and installed web applications
(e.g., /var/www and HKEY_LOCAL_MACHINE\SOFTWARE).
1 Since Amazon does not allow external portscans of EC2
machines, we first established a virtual private network con-
nection to the AMI through SSH, and then scanned the ma-
chine through this tunnel.

The privacy test cases focus on finding any sensitive in-
formation that may have been forgotten by the user that
published the AMI. This includes, for example, unprotected
private keys, application history files, shell history logs, and
the content of the directory saved by the general test cases.
Another important task of this test suite is to scan the
filesystem to retrieve the contents of undeleted files.

The network test suite focuses on network-related infor-
mation, such as shared directories and the list of open sock-
ets. These lists, together with the processes bound to the
sockets, can be used to verify if the image is establishing
suspicious connections.

Finally, the security test suite consists of a number of
well-known audit tools for Windows and Linux. Some of
these tools look for the evidence of known rootkits, Tro-
jans and backdoors (e.g. Chkrootkit, RootkitHunter and
RootkitRevealer), while others specifically check for pro-
cesses and sockets that have been hidden from the user
(PsTools/PsList and unhide). In this phase, we also run
the ClamAV antivirus software (see Section 4.2) to scan for
the presence of known malware samples.

These security tests also contain checks for credentials
that have been left or forgotten on the system (e.g., database
passwords, login passwords, and SSH public keys). As al-
ready mentioned in an Amazon report published in June
2011 [15], these credentials could potentially be used as back-
doors to allows attackers to log into running AMIs.

4 Results of the AMIs Analysis

Over a period of five months, between November 2010 to
May 2011, we used our automated system to instantiate and
analyze all Amazon images available in the Europe, Asia,
US East, and US West data centers. In total, the cata-
log of these data centers contained 8,448 Linux AMIs and
1,202 Windows AMIs. Note that we were successfully able
to analyze in depth a total of 5,303 AMIs. In the remaining
cases, a number of technical problems prevented our tool to
successfully complete the analysis. For example, sometimes
an AMI did not start because the corresponding manifest
file was missing, or corrupted. In some cases, the running
image was not responding to SSH, or Remote Desktop con-
nections. In other cases, the Amazon API failed to launch
the machine, or our robot was not able to retrieve valid login
credentials. These problems were particularly common for
Windows machines where, in 45% of the images, the Ama-
zon service was not able to provide us with a valid username
and password to login into the machine. Nevertheless, we
believe that a successful analysis of over 5,000 different im-
ages represents a sample large enough to be representative
of the security and privacy status of publicly available AMIs.

Table 1 shows a number of general statistics we collected
from the AMIs we analyzed. Our audit process took on av-
erage 77 minutes for Windows machines, and 21 minutes for
the Linux images. This large difference is due to two main
reasons: first, Windows machines in the Amazon cloud take
a much longer time to start, and, second, our antivirus test
was configured to analyze the entire Windows file-system,
while only focused the analysis on directories containing ex-
ecutables for the Linux machines.

In the rest of this section, we present and discuss the re-
sults of the individual test suites.
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Average #/AMI Windows Linux
Audit duration 77 min 21 min
Installed packages – 416
Running Processes 32 54
Shares 3.9 0
Established sockets 2.75 2.52
Listening sockets 22 6
Users 3.8 24.8
Used disk space 1.07 GB 2.67 GB

Table 1: General Statistics

4.1 Software Vulnerabilities

The goal of this first phase of testing is to confirm the fact
that the software running on each AMIs is often out of date
and, therefore, must be immediately updated by the user
after the image is instantiated.

For this purpose, we decided to run Nessus [30], an au-
tomated vulnerability scanner, on each AMI under test. In
order to improve the accuracy of the results, our testing
system provided Nessus with the image login credentials, so
that the tool was able to perform a more precise local scan.
In addition, to further reduce the false positives, the vulner-
ability scanner was automatically configured to run only the
tests corresponding to the actual software installed on the
machine. Nessus classifies each vulnerability with a sever-
ity level ranging from 0 to 3. Since we were not interested
in analyzing each single vulnerability, but just in assessing
the general security level of the software that was installed,
we only considered vulnerabilities with the highest severity
(e.g., critical vulnerabilities such as remote code execution).

We also looked at the most common vulnerabilities that
affect Windows and Linux AMIs. These results are detailed
in Appendix B.

From our analysis, 98% of Windows AMIs and 58% of
Linux AMIs contain software with critical vulnerabilities.
This observation was not typically restricted to a single ap-
plication but often involved multiple services: an average of
46 for Windows and 11 for Linux images (the overall dis-
tribution is reported in Figure 2). On a broader scale, we
observed that a large number of images come with software
that is more than two years old. Our findings empirically
demonstrate that renting and using an AMI without any
adequate security assessment poses a real security risk for
users. To further prove this point, in Section 4.2, we describe
how one of the machines we were testing was probably com-
promised by an Internet malware in the short time that we
were running our experiments.

4.2 Security Risks

Malware

As part of our tests, we used ClamAV [8], an open source an-
tivirus engine, to analyze the filesystem on the target AMI.
ClamAV contains about 850,000 signatures to identify dif-
ferent types of known malware instances such as viruses,
worms, spyware, and trojans. Since most of the existing
malware targets the Windows operating systems, we ana-
lyzed the complete file-system tree of Windows AMIs, while
we limited the coverage for Linux AMIs to common binary
directories (e.g. /usr/bin, /bin, and /sbin). As a conse-
quence, the scan time took on average of 40 minutes for a
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Figure 2: Distribution AMIs / Vulnerabilites (Win-
dows and Linux)

Windows installation, and less then a minute for a Linux
one.
In our malware analysis, we discovered two infected AMIs,

both Windows-based. The first machine was infected with
a Trojan-Spy malware (variant 50112). This trojan has a
wide range of capabilities, including performing key logging,
monitoring processes on the computer, and stealing data
from files saved on the machine. By manually analyzing
this machine, we found that it was hosting different types of
suspicious content such as Trojan.Firepass, a tool to de-
crypt and recover the passwords stored by Firefox. The sec-
ond infected machine contained variant 173287 of the Tro-
jan.Agent malware. This malware allows a malicious user
to spy on the browsing habits of users, modify Internet Ex-
plorer settings, and download other malicious content.
While we were able to manually confirm the first case,

we were unable to further analyze the second infected ma-
chine. In fact, after we rented it again for a manual analysis
a few hours after the automated test, the infected files did
not existed anymore. Hence, we believe that the AMI was
most probably compromised by an automatically propagat-
ing malware during the time that we were executing our
tests. In fact, the software vulnerability analysis showed
that different services running on the machine suffered from
known, remotely exploitable, vulnerabilities.

Unsolicited connections

Unsolicited outgoing connections from an invoked instance
to an external address may be an indication for a significant
security problem. For example, such connections could be

Linux	  AMIs	  

Also:	  Malware	  found	  on	  a	  couple	  AMIs	  
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the evidence of some kind of backdoor, or the sign for a mal-
ware infection. Outgoing connections that are more stealthy
may also be used to gather information about the AMI’s us-
age, and collect IP target addresses that can then be used
to attack the instance through another built-in backdoor.

In our experiments, we observed several images that opened
connections to various web applications within and outside
of Amazon EC2. These connections were apparently check-
ing for the availability of new versions of the installed soft-
ware. Unfortunately, it is almost impossible to distinguish
between a legitimate connection (e.g., a software update)
and a connection that is used for malicious purposes.

Nevertheless, we noticed a number of suspicious connec-
tions on several Linux images: The Linux operating system
comes with a service called syslog [3] for recording various
events generated by the system (e.g., the login and logout
of users, the connection of hardware devices, or incoming
requests toward the web server).

Standard installations record these kinds of events in files
usually stored under the /var/log directory and only users
with administrative privileges are allowed to access the logs
generated by the syslog service. In our tests, we discovered
two AMIs in which the syslog daemon was configured to
send the log messages to a remote host, out of the control of
the user instantiating the image. It is clear that this setup
constitutes a privacy breach, since confidential information,
normally stored locally under a protected directory, were
sent out to a third party machine.

Backdoors and Leftover Credentials

The primary mechanism to connect to a Linux machine re-
motely is through the ssh service. When a user rents an
AMI, she is required to provide the public part of the her
ssh key that it is then stored by Amazon in the autho-
rized_keys in the home directory. The first problem with
this process is that a user who is malicious and does not
remove her public key from the image before making it pub-
lic could login into any running instance of the AMI. The
existence of these kinds of potential backdoors is known by
Amazon since the beginning of April 2011 [25].

A second problem is related to the fact that the ssh server
may also permit password-based authentication, thus pro-
viding a similar backdoor functionality if the AMI provider
does not remove her passwords from the machine. In addi-
tion, while leftover ssh keys only allow people with the corre-
sponding private key (normally the AMI image creator), to
obtain access to the instance, passwords provide a larger at-
tack vector: Anybody can extract the password hashes from
an AMI, and try to crack them using a password-cracking
tool (e.g., John the Ripper [13]).

In other words, ssh keys were probably left on the images
by mistake, and without a malicious intent. The same ap-
plies to password, with the difference that passwords can
also be exploited by third parties, transforming a mistake in
a serious security problem.

During our tests, we gathered these leftover credentials,
and performed an analysis to verify if a remote login would
be possible by checking the account information in /etc/passwd
and /etc/shadow, as well as the remote access configuration
of OpenSSH.

The results, summarized in Table 2, show that the prob-
lem of leftover credentials is significant: 21.8% of the scanned
AMIs contain leftover credentials that would allow a third-

East West EU Asia Total
AMIs (%) 34.8 8.4 9.8 6.3 21.8
With Passwd 67 10 22 2 101
With SSH keys 794 53 86 32 965
With Both 71 6 9 4 90
Superuser Priv. 783 57 105 26 971
User Priv. 149 12 12 12 185

Table 2: Left credentials per AMI

party to remotely login into the machine. The table also
reports the type of credentials, and lists how many of these
would grant superuser privileges (either via root, sudo or su
with a password).

4.3 Privacy Risks

The sharing of AMIs not only bears risks for the customers
who rent them, but also for the user who creates and dis-
tributes the image. In fact, if the image contains sensitive in-
formation, this would be available to anybody who is renting
the AMI. For example, an attacker can gather SSH private
keys to break into other machines, or use forgotten Amazon
Web Services (AWS) keys to start instances at the image
provider’s cost. In addition, other data sources such as the
browser and shell histories, or the database of last login at-
tempts can be used to identify and de-anonymize the AMI’s
creator.

Private keys

We developed a number of tests to search the AMIs’ file-
system for typical filenames used to store keys (e.g., id_dsa
and id_rsa for SSH keys, and pk-[0-9A-Z]*.pem and cert-
[0-9A-Z]*.pem for AWS API keys). Our system was able
to identify 67 Amazon API keys, and 56 private SSH keys
that were forgotten. The API keys are not password pro-
tected and, therefore, can immediately be used to start im-
ages on the cloud at the expense of the key’s owner. Even
though it is good security practice to protect SSH keys with
a passphrase, 54 out of 56 keys were not protected. Thus,
these keys are easily reusable by anybody who has access to
them. Although some of the keys may have been generated
specifically to install and configure the AMI, it would not
be a surprising discovery if some users reused their own per-
sonal key, or use the key on the AMI to access other hosts,
or Amazon images.
By consulting the last login attempts (i.e., by lastlog

or last commands), an attacker can easily retrieve IP ad-
dresses that likely belong to other machines owned by the
same person. Our analysis showed that 22% of the analyzed
AMIs contain information in at least one of the last login
databases. The lastb database contains the failed login at-
tempts, and therefore, can also be very helpful in retrieving
user account passwords since passwords that are mistyped or
typed too early often appear as user names in this database.
There were 187 AMIs that contained a total of 66,601 entries
in their lastb databases. Note that host names gathered
from the shell history, the SSH user configuration, and the
SSH server connection logs can also provide useful clues to
an attacker.

Browser History

Nine AMIs contained a Firefox history file (two concerning
root and seven concerning a normal user). Note that because
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Finding Total Image Remote
Amazon RDS 4 0 4
dDNS 1 0 1
SQL 7 6 1
MySql 58 45 13
WebApp 3 2 1
VNC 1 1 0
Total 74 54 20

Table 3: Credentials in history files

of ethical concerns, we did not manually inspect the contents
of the browser history. Rather, we used scripts to check
which domains had been contacted. From the automated
analysis of the history file, we discovered that one machine
was used by a person to log into the portal of a Fortune 500
company. The same user then logged into his/her personal
Google email account. Combining this kind of information,
history files can easily be used to de-anonymize, and reveal
information about the image’s creator.

Shell History

When we tested the AMI using our test suite, we inspected
common shell history files (e.g. ∼/.history, ∼/.bash_history,
∼/.sh_history) that were left on the image when it was
created. We discovered that 612 AMIs (i.e., 11.54% of the
total) contained at least one single history file. We found a
total of 869 files that stored interesting information (471 for
root and 398 for generic users), and that contained 158,354
lines of command history. In these logs, we identified 74 dif-
ferent authentication credentials that were specified in the
command line, and consequently recorded on file (ref. Ta-
ble 3).

For example, the standard MySQL client allows to spec-
ify the password from the command line using the -p flag.
A similar scenario occurs when sensitive information, such
as a password or a credit card number, is transferred to a
web application using an HTTP GET request. GET re-
quests, contrary to POST submissions, are stored on the
web server’s logs. The credentials we discovered belong to
two categories: local and remote.

The credentials in the image group grant an attacker ac-
cess to a service/resource that is hosted on the AMI. In
contrast, remote credentials enable the access to a remote
target. For example, we identified remote credentials that
can be used to modify (and access) the domain name in-
formation of a dynamic DNS account. A malicious user
that obtains a DNS management password can easily change
the DNS configuration, and redirect the traffic of the orig-
inal host to his own machines. In addition, we discovered
four credentials for the Amazon Relational Database Service
(RDS) [32] – a web service to set up, operate, and scale a
relational database in the Amazon cloud. We also found
credentials for local and remote web applications for differ-
ent uses (e.g. Evergreen, GlassFish, and Vertica) and for
a database performance monitoring service. One machine
was configured with VNC, and its password was specified
from the command line. Finally, we were able to collect 13
credentials for MySQL that were used in the authentication
of remote databases.

Recovery of deleted files

In the previous sections, we discussed the types of sensitive
information that may be forgotten by the image provider.
Unfortunately, the simple solution of deleting this informa-
tion before making the image publicly available is not satis-
factory from a security point of view.
In many file systems, when a user deletes a file, the space

occupied by the file is marked as free, but the content of the
file physically remains on the media (e.g. the hard-disk).
The contents of the deleted file are definitely lost only when
this marked space is overwritten by another file. Utilities
such as shred, wipe, sfill, scrub and zerofree make data
recovery difficult either by overwriting the file’s contents be-
fore the file is actually unlinked, or by overwriting all the
corresponding empty blocks in the filesystem (i.e., secure
deletion or wiping). When these security mechanisms are
not used, it is possible to use tools (e.g., extundelete and
Winundelete) to attempt to recover previously deleted files.
In the context of Amazon EC2, in order to publish a cus-

tom image on the Amazon Cloud, a user has to prepare her
image using a predefined procedure called bundling. This
procedure involves three main steps: Create an image from
a loopback device or a mounted filesystem, compress and en-
crypt the image, and finally, split it into manageable parts
so that it can be uploaded to the S3 storage.
The first step of this procedure changes across different

bundling methods adopted by the user (ref. Table 4). For
example, the ec2-bundle-image method is used to bundle
an image that was prepared in a loopback file. In this case,
the tool transfers the data to the image using a block level
operation (e.g. similar to the dd utility). In contrast, if the
user wishes to bundle a running system, she can choose the
ec2-bundle-vol tool that creates the image by recursively
copying files from the live filesystem (e.g., using rsync). In
this case, the bundle system works at the file level.
Any filesystem image created with a block-level tool will

also contain blocks marked as free, and thus may contain
parts of deleted files. As a result, out of the four bundling
methods provided by Amazon, three are prone to a file un-
deletion attack.
To show that our concerns have practical security impli-

cations, we randomly selected 1,100 Linux AMIs in four dif-
ferent regions (US East/West, Europe and Asia). We then
used the extundelete data recovery utility [5] to analyze
the filesystem, and recover the contents of all deleted files.
In our experiment, we were able to recover files for 98% of
the AMIs (from a minimum of 6 to a maximum of more
than 40,000 files per AMI). In total, we were able to retrieve
28.3GB of data (i.e., an average of 24MB per AMI).
We collected statistics on the type (Table 5) of the un-

deleted files by remotely running the file command. Note
that in order to protect the privacy of Amazon users, we
did not access the contents of the recovered data, and we
also did not transfer this data out of the vulnerable AMI.
The table shows a breakdown of the types of sensitive data
we were able to retrieve (e.g., PDFs, Office documents, pri-
vate keys). Again, note that the Amazon AWS keys are not
password-protected. That is, an attacker that gains access
to these keys is then able to instantiate Amazon resources
(e.g. S3 and AWS services) at the victim’s expense (i.e., the
costs are charged to the victim’s credit card).
In our analysis, we verified if the same problem exists for

Windows AMIs. We analyzed some images using the Win-
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Method Level Vulnerable
ec2-bundle-vol File-System No
ec2-bundle-image Block Yes
From AMI snapshot Block Yes
From VMWare Block Yes

Table 4: Tested Bundle Methods

Type #
Home files (/home, /root) 33,011
Images (min. 800x600) 1,085
Microsoft Office documents 336
Amazon AWS certificates and access keys 293
SSH private keys 232
PGP/GPG private keys 151
PDF documents 141
Password file (/etc/shadow) 106

Table 5: Recovered data from deleted files

Undelete tool [31], and were able to recover deleted files in
all cases. Interestingly, we were also able to undeleted 8,996
files from an official image that was published by Amazon
AWS itself.

5 Machine Fingerprinting
In the previous sections, we presented a number of experi-
ments we conducted to assess the security and privacy issues
involved in the release and use of public AMIs. The results
of our experiments showed that a large number of factors
must be considered when making sure that a virtual ma-
chine image can be operated securely (e.g., services must be
patched and information must be sanitized).

A number of the issues we described in the previous sec-
tions could potentially be exploited by an attacker (or a ma-
licious image provider) to obtain unauthorized remote access
to any running machine that adopted a certain vulnerable
AMI. However, finding the right target is not necessarily an
easy task.

For example, suppose that a malicious provider distributes
an image containing his own ssh key, so that he can later lo-
gin into the virtual machines as root. Unfortunately, unless
he also adds some kind of mechanism to “call back home”
and notify him of the IP address of every new instance, he
would have to brute force all the Amazon IP space to try
to find a running machine on which he can use his creden-
tials. To avoid this problem, in this section we explore the
feasibility of automatically

In order to explore the feasibility, from an attacker point
of view, of automatically matching a running instance back
to the corresponding AMI, we started our experiment by
querying different public IP registries (ARIN, RIPE, and
LAPNIC) to obtained a list of all IPs belonging to the Ama-
zon EC2 service for the regions US East/West, Europe and
Asia. The result was a set of sub-networks that comprises
653,401 distinct IPs that are potentially associated with run-
ning images.

For each IP, we queried the status of thirty commonly used
ports (i.e., using the NMap tool), and compared the results
with the information extracted from the AMI analysis. We
only queried a limited number of ports because our aim was
to be as non-intrusive as possible. (i.e., see Section 6 for
a detailed discussion of ethical considerations, precautions,

Candidates
Approach Instances 1 10 50
SSH 130,580 2,149 8,869 11,762
Services 203,563 7,017 30,345 63,512
Web 125,554 5,548 31,651 54,918

Table 6: Discovered Instances

and collaboration with Amazon). For the same reason, we
configured NMap to only send a few packets per second to
prevent any flooding, or denial of service effect.
Our scan detected 233,228 running instances. This num-

ber may not reflect the exact number of instances there were
indeed running. That is, there may have been virtual ma-
chines that might have been blocking all ports.
We adopted three different approaches to match and map

a running instance to a set of possible AMIs. The three
methods are based on the comparison of the SSH keys, ver-
sions of network services, and web-application signatures.
Table 6 depicts the results obtained by applying the three

techniques. The first column shows the number of running
instances to which a certain technique could be applied (e.g.,
the number of instances where we were able to grab the SSH
banner). The last two columns report the number of running
machines for which a certain matching approach was able to
reduce the set of candidate AMIs to either 10 or 50 per
matched instance. Since 50 possibilities is a number that
is small enough to be easily brute-forced manually, we can
conclude that it is possible to identify the AMI used in more
than half of the running machines.

SSH matching Every SSH server has a host key that is
used to identify itself. The public part of this key is used
to verify the authenticity of the server. Therefore, this key
is disclosed to the clients. In the EC2, the host key of an
image needs to be regenerated upon instantiation of an AMI
for two reasons: First, a host key that is shared among sev-
eral machines makes these servers vulnerable to man-in-the-
middle attacks (i.e., especially when the private host key is
freely accessible). Second, an unaltered host key can serve
as an identifier for the AMI, and may thus convey sensitive
information about the software that is used in the instance.
This key regeneration operation is normally performed by

the cloud-init script provided by Amazon. The script
should normally be invoked at startup when the image is
first booted. However, if the image provider either forgets
or intentionally decides not to add the script to his AMI,
this important initialization procedure is not performed. In
such cases, it is very easy for an attacker to match the SSH
keys extracted from the AMIs with the ones obtained from
a simple NMap scan. As reported in Table 6, we were able
to precisely identify over 2,100 AMI instances by using this
method.

Service matching In the cases where the ssh-based iden-
tification failed, we attempted to compare the banners cap-
tured by NMap with the information extracted from the ser-
vices installed on the AMIs. In particular, we compared the
service name, the service version, and (optionally) the ad-
ditional information fields returned by the thirty common
ports we scanned in our experiment.
The service-matching approach is not as precise as the ssh-

based identification. Hence, it may produce false positives if



Response	  
“They	  told	  me	  it’s	  not	  their	  concern,	  they	  just	  provide	  	  
compuEng	  power,”	  Balduzzi	  says.	  “It’s	  like	  if	  you	  upload	  naked	  	  
pictures	  to	  Facebook.	  It’s	  not	  a	  good	  pracEce,	  but	  it’s	  not	  	  
Facebook’s	  problem.”	  

h9p://www.forbes.com/sites/andygreenberg/2011/11/08/	  
researchers-‐find-‐amazon-‐cloud-‐servers-‐teeming-‐with-‐backdoors-‐and-‐other-‐peoples-‐data/	  

•  Amazon	  noEfied	  customers	  with	  vulnerable	  AMIs	  
•  Made	  private	  AMIs	  of	  non-‐responsive	  customers	  
•  New	  tutorials	  for	  bundling	  systems	  
•  Working	  on	  undelete	  issues…	  



Lessons	  

•  New	  sosware	  management	  pracEces	  needed	  
with	  VM	  snapshots	  

•  Discussion:	  
– New	  tool	  support?	  	  
– How	  much	  worse	  is	  this	  than	  non-‐cloud	  server	  
deployments?	  

•  We	  have	  about	  ~1600	  AMIs	  downloaded	  
ourselves.	  Research	  project	  ideas?	  


