
CS642:	 	
Computer	 Security	

Professor	 Ristenpart	
h9p://www.cs.wisc.edu/~rist/	
rist	 at	 cs	 dot	 wisc	 dot	 edu	

University	 of	 Wisconsin	 CS	 642	

VirtualizaEon	

University	 of	 Wisconsin	 CS	 642	

VirtualizaEon	 and	 cloud	 security	

VM	 IntrospecEon	

VMs	

VM	 image	 security	 issues	

Cloud	 compuEng	 paradigms	

IntrospecEon	

VirtualizaEon	

Hardware	 Hardware	

OS	

Process	 1	 Process	 2	 OS1	

P1	 P2	

Hypervisor	

No	 virtualizaEon	 Full	 virtualizaEon	

Hardware	

Hypervisor	

ParavirtualizaEon	

OS2	

P1	 P2	

OS1	
	
	

P1	 P2	

OS2	
	
	

P1	 P2	

Drivers	 Drivers	

Type-‐1:	 Hypervisor	 runs	 directly	 on	 hardware	

VirtualizaEon	

Hardware	 Hardware	

OS	

Process	 1	 Process	 2	 OS1	

P1	 P2	

Hypervisor	

No	 virtualizaEon	 Full	 virtualizaEon	

Hardware	

Hypervisor	

ParavirtualizaEon	

OS2	

P1	 P2	

OS1	
	
	

P1	 P2	

OS2	
	
	

P1	 P2	

Drivers	 Drivers	

Host	 OS	

Type-‐1:	 Hypervisor	 runs	 directly	 on	 hardware	
Type-‐2:	 Hypervisor	 runs	 on	 host	 OS	

IBM	 VM/370	

•  Released	 in	 1972	
– Used	 with	 System/370,	 System/390,	 zSeries	
mainframes	

– Full	 virtualizaEon	
•  Supported	 CP/CMS	 operaEng	 system	
–  IniEal	 applicaEon	 was	 to	 support	 legacy	 OS	

•  z/VM	 is	 newer	 version,	 most	 recent	 version	
2010	
– Be9er	 use	 of	 64-‐bit	 mainframes	

Xen	

•  2003:	 academic	 paper	 	
– “Xen	 and	 the	 Art	 of	 VirtualizaEon”	

•  ParavirtualizaEon	
– Hypercalls	 vs	 system	 	
	 	 	 	 calls	
– Modified	 guest	 OS	
– Each	 guest	 given	 	
	 	 	 1	 or	 more	 	 VCPUs	

•  Why?	

X
E
N

H/W (SMP x86, phy mem, enet, SCSI/IDE)

virtual
network

virtual
blockdev

virtual
x86 CPU

virtual
phy mem

Control
Plane

Software

GuestOS
(XenoLinux)

GuestOS
(XenoBSD)

GuestOS
(XenoXP)

User
Software

User
Software

User
Software

GuestOS
(XenoLinux)

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Xeno-Aware
Device Drivers

Domain0
control

interface

Figure 1: The structure of a machine running the Xen hyper-
visor, hosting a number of different guest operating systems,
including Domain0 running control software in a XenoLinux
environment.

this process was automated with scripts. In contrast, Linux needed
far fewer modifications to its generic memory system as it uses pre-
processor macros to access PTEs — the macro definitions provide
a convenient place to add the translation and hypervisor calls re-
quired by paravirtualization.

In both OSes, the architecture-specific sections are effectively
a port of the x86 code to our paravirtualized architecture. This
involved rewriting routines which used privileged instructions, and
removing a large amount of low-level system initialization code.
Again, more changes were required in Windows XP, mainly due
to the presence of legacy 16-bit emulation code and the need for
a somewhat different boot-loading mechanism. Note that the x86-
specific code base in XP is substantially larger than in Linux and
hence a larger porting effort should be expected.

2.3 Control and Management
Throughout the design and implementation of Xen, a goal has

been to separate policy from mechanism wherever possible. Al-
though the hypervisor must be involved in data-path aspects (for
example, scheduling the CPU between domains, filtering network
packets before transmission, or enforcing access control when read-
ing data blocks), there is no need for it to be involved in, or even
aware of, higher level issues such as how the CPU is to be shared,
or which kinds of packet each domain may transmit.

The resulting architecture is one in which the hypervisor itself
provides only basic control operations. These are exported through
an interface accessible from authorized domains; potentially com-
plex policy decisions, such as admission control, are best performed
by management software running over a guest OS rather than in
privileged hypervisor code.

The overall system structure is illustrated in Figure 1. Note that
a domain is created at boot time which is permitted to use the con-
trol interface. This initial domain, termed Domain0, is responsible
for hosting the application-level management software. The con-
trol interface provides the ability to create and terminate other do-
mains and to control their associated scheduling parameters, phys-
ical memory allocations and the access they are given to the ma-
chine’s physical disks and network devices.

In addition to processor and memory resources, the control inter-
face supports the creation and deletion of virtual network interfaces
(VIFs) and block devices (VBDs). These virtual I/O devices have
associated access-control information which determines which do-
mains can access them, and with what restrictions (for example, a

read-only VBD may be created, or a VIF may filter IP packets to
prevent source-address spoofing).

This control interface, together with profiling statistics on the
current state of the system, is exported to a suite of application-
level management software running in Domain0. This complement
of administrative tools allows convenient management of the entire
server: current tools can create and destroy domains, set network
filters and routing rules, monitor per-domain network activity at
packet and flow granularity, and create and delete virtual network
interfaces and virtual block devices. We anticipate the development
of higher-level tools to further automate the application of admin-
istrative policy.

3. DETAILED DESIGN
In this section we introduce the design of the major subsystems

that make up a Xen-based server. In each case we present both
Xen and guest OS functionality for clarity of exposition. The cur-
rent discussion of guest OSes focuses on XenoLinux as this is the
most mature; nonetheless our ongoing porting of Windows XP and
NetBSD gives us confidence that Xen is guest OS agnostic.

3.1 Control Transfer: Hypercalls and Events
Two mechanisms exist for control interactions between Xen and

an overlying domain: synchronous calls from a domain to Xen may
be made using a hypercall, while notifications are delivered to do-
mains from Xen using an asynchronous event mechanism.

The hypercall interface allows domains to perform a synchronous
software trap into the hypervisor to perform a privileged operation,
analogous to the use of system calls in conventional operating sys-
tems. An example use of a hypercall is to request a set of page-
table updates, in which Xen validates and applies a list of updates,
returning control to the calling domain when this is completed.

Communication from Xen to a domain is provided through an
asynchronous event mechanism, which replaces the usual delivery
mechanisms for device interrupts and allows lightweight notifica-
tion of important events such as domain-termination requests. Akin
to traditional Unix signals, there are only a small number of events,
each acting to flag a particular type of occurrence. For instance,
events are used to indicate that new data has been received over the
network, or that a virtual disk request has completed.

Pending events are stored in a per-domain bitmask which is up-
dated by Xen before invoking an event-callback handler specified
by the guest OS. The callback handler is responsible for resetting
the set of pending events, and responding to the notifications in an
appropriate manner. A domain may explicitly defer event handling
by setting a Xen-readable software flag: this is analogous to dis-
abling interrupts on a real processor.

3.2 Data Transfer: I/O Rings
The presence of a hypervisor means there is an additional pro-

tection domain between guest OSes and I/O devices, so it is crucial
that a data transfer mechanism be provided that allows data to move
vertically through the system with as little overhead as possible.

Two main factors have shaped the design of our I/O-transfer
mechanism: resource management and event notification. For re-
source accountability, we attempt to minimize the work required to
demultiplex data to a specific domain when an interrupt is received
from a device — the overhead of managing buffers is carried out
later where computation may be accounted to the appropriate do-
main. Similarly, memory committed to device I/O is provided by
the relevant domains wherever possible to prevent the crosstalk in-
herent in shared buffer pools; I/O buffers are protected during data
transfer by pinning the underlying page frames within Xen.

Other	 VM	 soluEons	

• VMWare	
• Virtual	 Box	
• KVM	

Example	 VM	 Use	 Cases	

•  Legacy	 support	 (e.g.,	 VM/370)	
•  Development	
•  Server	 consolidaEon	
•  Cloud	 compuEng	 Infrastructure-‐as-‐a-‐Service	
•  Sandboxing	 /	 containment	

Study	 of	 malware	

•  Researchers	 use	 VMs	 to	 study	
malware	

•  Example	 of	 VM	 sandboxing	
– Hypervisor	 must	 contain	
malicious	 code	

•  IntrospecEon	
•  How	 would	 you	 evade	 analysis	
as	 a	 malware	 writer?	
– split	 personaliEes	

Hardware	

OS1	

P1	 P2	

Hypervisor	

OS2	

P1	 P2	

VMM	 Transparency	

•  Adversary	 can	 detect	 if:	
– ParavirtualizaEon	
– Logical	 discrepancies	 	

•  Expected	 CPU	 behavior	 vs	 virtualized	 	
•  Red	 pill	 (Store	 Interrupt	 Descriptor	 Table	 instr)	

– Timing	 discrepancies	
•  Slower	 use	 of	 some	 resources	

Hardware	

OS1	

P1	 P2	

Hardware	

OS1	

P1	 P2	

VMM	

A	 B	

Garfinkel	 et	 al.	
“CompaEbility	
is	 not	 transparency:	
VMM	 DetecEon	
Myths	 and	 Reality”	

OS1	

P1	 P2	

???	

Adversary	
controlled	

Is	 this	 opEon	
A	 or	 B?	

DetecEon	 of	 VMWare	

MOV	 EAX,564D5868	 <-‐-‐	 "VMXh"	 	
MOV	 EBX,0	 	
MOV	 ECX,0A	 	
MOV	 EDX,5658	 <-‐-‐	 "VX"	
IN	 EAX,DX	 <-‐-‐	 Check	 for	 VMWare	 	
CMP	 EBX,564D5868	

From	 	
h9p://handlers.sans.org/tliston/ThwarEngVMDetecEon_Liston_Skoudis.pdf	

IN	 instrucEon	 used	 by	 VMWare	
to	 facilitate	 host-‐to-‐guest	 	
communicaEon	

VMWare:	
	 places	 VMXh	 in	 EBX	

Physical:	
	 processor	 excepEon	

Server	 consolidaEon	

•  ConsolidaEon	
– Use	 VMs	 to	 opEmize	 use	 of	
hardware	

– Pack	 as	 many	 VMs	 onto	 each	
server	 as	 possible	

– Turn	 off	 other	 servers	
Hardware	

OS1	

P1	 P2	

Hypervisor	

OS2	

P1	 P2	

•  Threat	 model?	
– Containment	
–  IsolaEon	
– Assume	 guests	 are/can	 be	 compromised	

OS2	

P1	 P2	

ViolaEng	 containment	

•  Escape-‐from-‐VM	
– Vulnerability	 in	 VMM	 or	 host	 OS	
(e.g.,	 Dom0)	

– Seemingly	 rare,	 but	 exist	

Hardware	

OS1	

P1	 P2	

Hypervisor	

OS2	

P1	 P2	

ViolaEng	 isolaEon	

•  Covert	 channels	 between	 VMs	
circumvent	 access	 controls	
– Bugs	 in	 VMM	
– Side-‐effects	 of	 resource	 usage	

Hardware	

OS1	

P1	 P2	

Hypervisor	

OS2	

P1	 P2	

h9p://handlers.sans.org/tliston/ThwarEngVMDetecEon_Liston_Skoudis.pdf	

26

©2006 Tom Liston / Ed Skoudis 26

Isolation?

Just sayin'.... you know... thinking out loud. ;-)

ViolaEng	 isolaEon	

•  Covert	 channels	 between	 VMs	
circumvent	 access	 controls	
– Bugs	 in	 VMM	
– Side-‐effects	 of	 resource	 usage	

•  DegradaEon-‐of-‐Service	 a9acks	
– Guests	 might	 maliciously	 contend	
for	 resources	

– Xen	 scheduler	 vulnerability	

Hardware	

Hypervisor	

OS2	

P1	 P2	

OS1	

P1	 P2	

	 Measuring	 Resource	 ContenEon	

•  ContenEon	 for	 the	 same	 resource	

19	

0	

100	

200	

300	

400	

500	

600	

CPU	 Net	 Disk	 Memory	 Cache	

Pe
rf
or
m
an

ce
	 D
eg
ra
da

>o
n	
(%

)	 Local	 Xen	 Testbed	

Machine	 Intel	 Xeon	 E5430,	
2.66	 Ghz	

Packages	 2,	 2	 cores	 per	
package	

LLC	 Size	 6MB	 per	 package	

ViolaEng	 isolaEon	

•  Covert	 channels	 between	 VMs	
circumvent	 access	 controls	
–  Bugs	 in	 VMM	
–  Side-‐effects	 of	 resource	 usage	

•  DegradaEon-‐of-‐Service	 a9acks	
– Guests	 might	 maliciously	 contend	
for	 resources	

–  Xen	 scheduler	 vulnerability	
•  Side	 channels	
–  Spy	 on	 other	 guest	 via	 shared	
resources	

Hardware	

Hypervisor	

OS2	

P1	 P2	

OS1	

P1	 P2	

Square-‐and-‐Mul>ply	
/*	 y	 =	 xe	 mod	 N	 ,	 from	 libgcrypt*/	
Modular	 Exponen>a>on	 (x,	 e,	 N):	
	 let	 en	 …	 e1	 be	 the	 bits	 of	 e	
	 y	 ←	 1	
	 for	 ei	 in	 {en	 …e1}	
	 	 y	 ←	 Square(y)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (S)	
	 	 y	 ←	 Reduce(y,	 N)	 	 	 	 	 	 	 	 	 	 	 	 	 	 (R)	
	 	 if	 	 ei	 =	 1	 then	 	
	 	 	 y	 ←	 Mul>(y,	 x)	 	 	 	 	 	 	 (M)	
	 	 	 y	 ←	 Reduce(y,	 N)	 	 	 	 (R)	

	

ei	 =	 1	 →	 SRMR	
ei	 =	 0	 →	 SR	

Control	 flow	 (sequence	 of	 instrucEons	 used)	 leaks	 secret	

Xen	 core	 scheduling	

Virtualiza>on	 (Xen)	

L1	
I-‐Cache	

AWacker	

VM	

Vic>m	

VM	

L1	
I-‐Cache	

L1	
I-‐Cache	

L1	
I-‐Cache	

Xen	 core	 scheduler	 determines	
the	 VCPU	 to	 CPU	 core	 assignment	
	
Typical	 configuraEon:	
VCPUs	 of	 different	 VMs	 will	 osen	
Eme-‐share	 a	 core,	 assignment	
changes	 over	 Eme	

Time-‐sharing	 a	 core	

Vic>m	 AWacker	

VM/VCPU	

30ms	 30ms	
Time	

VM/VCPU	

L1	
I-‐Cache	

Idea	 will	 be	 to	 snoop	 on	
the	 I-‐cache	 usage	 every	 	
Eme	 the	 a9acker	 gets	
to	 run	

Prime-‐Probe	 Protocol	

Time	 PROBE	 Runs	 square	 op	 PRIME	

Cache	 Set	
4-‐way	 set	 associa>ve	

L1	 I-‐Cache	

Vector	 of	 cache	 set	
Emings,	 biased	 by	 	
cache	 usage	 of	 vicEm	

Prime-‐Probe	 Protocol	

Time	 PROBE	 Runs	 mul>ply	 op	 PRIME	

Cache	 Set	
4-‐way	 set	 associa>ve	

L1	 I-‐Cache	

Vector	 of	 cache	 set	
Emings,	 biased	 by	 	
cache	 usage	 of	 vicEm	

Square	 and	 MulEply	 give	 different-‐looking	 Eming	
vectors	 (in	 the	 absence	 of	 noise)	

Time-‐sharing	 a	 core	

Vic>m	 AWacker	

VM/VCPU	

30ms	 30ms	
Time	

VM/VCPU	

L1	
I-‐Cache	

Problem:	
Default	 scheduling	 	
quantum	 is	 30ms	 in	 Xen	
	
ExponenEaEon	 for	 4096-‐bit	
modulus	 takes	 about	
200ms	 to	 complete	

Ideally	 …	

1	 instruc>on?	

•  Use	 Interrupts	 to	 preempt	 the	 vicEm:	
•  Timer	 interrupts?	
•  Network	 interrupts?	
•  HPET	 interrupts?	
•  Inter-‐Processor	 interrupts	 (IPI)!	

Time	

Inter-‐Processor	 Interrupts	

Vic>m	

CPU	 core	

AWacker	
VCPU	

AWacker	 VM	

VM/VCPU	

IPI	
VCPU	

CPU	 core	

For(;	 ;)	 {	
	 	 send_IPI();	
	 	 Delay();	
}	

Virtualiza>on	 (Xen)	

Cross-‐VM	 Side	 Channel	 Probing	

2.5	 µs	

Time	
2.5	 µs	 2.5	 µs	

Outline	

Cross-‐VM	
Side	 Channel	

Probing	

Cache	
PaWern	

Classifica>on	

Noise	
Reduc>on	

Code-‐Path	
Reassembly	

Vectors	 of	 cache	
measurements	

Sequences	 of	 SVM-‐
classified	 labels	

Fragments	 of	
code	 path	

Stage	 1	 Stage	 2	

Stage	 3	 Stage	 4	

Evalua>on	
•  Intel	 Yorkfield	 processor	
– 4	 cores,	 32KB	 L1	 instrucEon	 cache	

•  Xen	 +	 linux	 +	 GnuPG	 +	 libgcrypt	
– Xen	 4.0	
– Ubuntu	 10.04,	 kernel	 version	 2.6.32.16	
– VicEm	 runs	 GnuPG	 v.2.0.19	 (latest)	
–  libgcrypt	 1.5.0	 (latest)	
– ElGamal	 decrypEon,	 4096	 bits	

Results	

•  Work-‐Conserving	 Scheduler	
– 300,000,000	 prime-‐probe	 results	 (6	 hours)	
– Over	 300	 key	 fragments	
– Brute	 force	 the	 key	 in	 ~9800	 guesses	
	

•  Non-‐Work-‐Conserving	 Scheduler	
– 1,900,000,000	 prime-‐probe	 results	 (45	 hours)	
– Over	 300	 key	 fragments	
– Brute	 force	 the	 key	 in	 ~6600	 guesses	

Lessons	

•  Don’t	 rely	 on:	
– VMM	 transparency	
– Containment	
– Strong	 isolaEon	 (side	 channels	 exist)	

•  Securing	 guest	 OS	 and	 host	 OS	 sEll	 very	
important	

Virtual	 Machine	 Management	

•  Snapshots	
– Volume	 snapshot	 /	 checkpoint	 	

•  persistent	 storage	 of	 VM	
•  must	 boot	 from	 storage	 when	 resuming	 snapshot	

– Full	 snapshot	
•  persistent	 storage	 and	 ephemeral	 storage	 (memory,	
register	 states,	 caches,	 etc.)	
•  start/resume	 in	 between	 (essenEally)	 arbitrary	
instrucEons	

•  VM	 image	 is	 a	 file	 that	 stores	 a	 snapshot	

“Protect	 Against	 Adware	 and	 Spyware:	 Users	 protect	 their	 PCs	 against	 adware,	
spyware	 and	 other	 malware	 while	 browsing	 the	 Internet	 with	 Firefox	 in	 a	 virtual	
machine.”	
[h9p://www.vmware.com/company/news/releases/player.html]	

h9p://www.freesosware.com/	

browser	 exploit	

Virtual	 machine	 compromised,	 but	 not	 host	 OS	

Resezng	 to	 snapshot	 removes	 malware	

Clean	 	
snapshot	 	
of	 VM	 with	 	
browser	 	
running	

Virtual	 machines	 and	 secure	 browsing	

VM	 Management	 issues	

•  Reset	 vulnerabiliEes	
– We	 saw	 crypto/RNG	 related	 vulnerabilites	 last	
week	 (reuse	 of	 randomness)	

– Guest	 OS	 and	 applicaEon	 quiescing	
•  Lack	 of	 diversity	 	
•  IdenEty	 management	 /	 credenEals	

Amazon	 Machine	 Images	 (AMIs)	
•  Users	 set	 up	 volume	 snapshots	 /	 checkpoints	
that	 can	 then	 be	 run	 on	 the	 ElasEc	 Compute	
Cloud	 (EC2)	

•  Can	 be	 marked	 as	 public	 and	 anyone	 can	 use	
your	 AMI	

Storage	 service	

!"

#$%$&

'()&*(&+*&,-./0'

1,)&.23+&,

#,4$&,.25*((,6

/(*78)+)

#,)37&)

9$5*7.25*((,6

/0')

:;7$*-.<.=>,53&,

25*(

!*&*

'()&*(5+*&,./0'

?@,5A.9$B+(

?6,-,(&+*7)

C37(,6*%+7+&8
?$(D+B36*&+$(

Figure 1: System Architecture

and bitnami for Linux). Despite these attempts, there are
cases in which the robot may fail to retrieve the correct login
information. This is the case, for example, for AMIs whose
credentials are distributed only to the image provider’s cus-
tomers by companies that make business by renting AMIs.
Hence, these type of images are outside the scope of our
evaluation.

After an AMI has been successfully instantiated by the
robot, it is tested by two different scanners. The Remote
Scanner collects the list of open ports1 using the NMap tool [23],
and downloads the index page of the installed web applica-
tions. In Section 5, we explain how an attacker can use
this information as a fingerprint to identify running images.
The Local Scanner component is responsible for uploading
and running a set of tests. The test suite to be executed
is packaged together in a self-extracting archive, uploaded
to the AMI, and run on the machine with administrative
privileges. In addition, the Local Scanner also analyzes the
system for known vulnerabilities using the Nessus tool [30].
For AMIs running Microsoft Windows, the scripting of au-
tomated tasks is complicated by the limited remote adminis-
tration functionalities offered by the Windows environment.
In this case, we mounted the remote disk and transfered the
data using the SMB/Netbios subsystem. We then used the
psexec tool [27] to execute remote commands and invoke
the tests.

The test suite uploaded by the Local Scanner includes 24
tests grouped in 4 categories: general, network, privacy, and
security (for the complete list see Appendix A).

The general category contains tests that collect general
information about the system (e.g. the Linux distribution
name, or the Windows version), the list of running processes,
the file-system status (e.g., the mounted partitions), the list
of installed packages, and the list of loaded kernel mod-
ules. In addition to these basic tests, the general category
also contains scripts that save a copy of interesting data,
such as emails (e.g., /var/mail), log files (e.g., /var/log
and %USER\Local Settings), and installed web applications
(e.g., /var/www and HKEY_LOCAL_MACHINE\SOFTWARE).
1 Since Amazon does not allow external portscans of EC2
machines, we first established a virtual private network con-
nection to the AMI through SSH, and then scanned the ma-
chine through this tunnel.

The privacy test cases focus on finding any sensitive in-
formation that may have been forgotten by the user that
published the AMI. This includes, for example, unprotected
private keys, application history files, shell history logs, and
the content of the directory saved by the general test cases.
Another important task of this test suite is to scan the
filesystem to retrieve the contents of undeleted files.

The network test suite focuses on network-related infor-
mation, such as shared directories and the list of open sock-
ets. These lists, together with the processes bound to the
sockets, can be used to verify if the image is establishing
suspicious connections.

Finally, the security test suite consists of a number of
well-known audit tools for Windows and Linux. Some of
these tools look for the evidence of known rootkits, Tro-
jans and backdoors (e.g. Chkrootkit, RootkitHunter and
RootkitRevealer), while others specifically check for pro-
cesses and sockets that have been hidden from the user
(PsTools/PsList and unhide). In this phase, we also run
the ClamAV antivirus software (see Section 4.2) to scan for
the presence of known malware samples.

These security tests also contain checks for credentials
that have been left or forgotten on the system (e.g., database
passwords, login passwords, and SSH public keys). As al-
ready mentioned in an Amazon report published in June
2011 [15], these credentials could potentially be used as back-
doors to allows attackers to log into running AMIs.

4 Results of the AMIs Analysis

Over a period of five months, between November 2010 to
May 2011, we used our automated system to instantiate and
analyze all Amazon images available in the Europe, Asia,
US East, and US West data centers. In total, the cata-
log of these data centers contained 8,448 Linux AMIs and
1,202 Windows AMIs. Note that we were successfully able
to analyze in depth a total of 5,303 AMIs. In the remaining
cases, a number of technical problems prevented our tool to
successfully complete the analysis. For example, sometimes
an AMI did not start because the corresponding manifest
file was missing, or corrupted. In some cases, the running
image was not responding to SSH, or Remote Desktop con-
nections. In other cases, the Amazon API failed to launch
the machine, or our robot was not able to retrieve valid login
credentials. These problems were particularly common for
Windows machines where, in 45% of the images, the Ama-
zon service was not able to provide us with a valid username
and password to login into the machine. Nevertheless, we
believe that a successful analysis of over 5,000 different im-
ages represents a sample large enough to be representative
of the security and privacy status of publicly available AMIs.

Table 1 shows a number of general statistics we collected
from the AMIs we analyzed. Our audit process took on av-
erage 77 minutes for Windows machines, and 21 minutes for
the Linux images. This large difference is due to two main
reasons: first, Windows machines in the Amazon cloud take
a much longer time to start, and, second, our antivirus test
was configured to analyze the entire Windows file-system,
while only focused the analysis on directories containing ex-
ecutables for the Linux machines.

In the rest of this section, we present and discuss the re-
sults of the individual test suites.

Balduzzi	 et	 al.	 “A	 Security	 Analysis	 of	 Amazon’s	 ElasEc	 	
Compute	 Cloud	 Service	 –	 Long	 Version	 –”,	 2011	

See	 also	 Bugiel	 et	 al.,	 “AmazonIA:	 When	 ElasEcity	 Snaps	 Back”,	 2011	

5,303	 AMIs	 analyzed	 (Linux	 and	 Windows)	

Average #/AMI Windows Linux
Audit duration 77 min 21 min
Installed packages – 416
Running Processes 32 54
Shares 3.9 0
Established sockets 2.75 2.52
Listening sockets 22 6
Users 3.8 24.8
Used disk space 1.07 GB 2.67 GB

Table 1: General Statistics

4.1 Software Vulnerabilities

The goal of this first phase of testing is to confirm the fact
that the software running on each AMIs is often out of date
and, therefore, must be immediately updated by the user
after the image is instantiated.

For this purpose, we decided to run Nessus [30], an au-
tomated vulnerability scanner, on each AMI under test. In
order to improve the accuracy of the results, our testing
system provided Nessus with the image login credentials, so
that the tool was able to perform a more precise local scan.
In addition, to further reduce the false positives, the vulner-
ability scanner was automatically configured to run only the
tests corresponding to the actual software installed on the
machine. Nessus classifies each vulnerability with a sever-
ity level ranging from 0 to 3. Since we were not interested
in analyzing each single vulnerability, but just in assessing
the general security level of the software that was installed,
we only considered vulnerabilities with the highest severity
(e.g., critical vulnerabilities such as remote code execution).

We also looked at the most common vulnerabilities that
affect Windows and Linux AMIs. These results are detailed
in Appendix B.

From our analysis, 98% of Windows AMIs and 58% of
Linux AMIs contain software with critical vulnerabilities.
This observation was not typically restricted to a single ap-
plication but often involved multiple services: an average of
46 for Windows and 11 for Linux images (the overall dis-
tribution is reported in Figure 2). On a broader scale, we
observed that a large number of images come with software
that is more than two years old. Our findings empirically
demonstrate that renting and using an AMI without any
adequate security assessment poses a real security risk for
users. To further prove this point, in Section 4.2, we describe
how one of the machines we were testing was probably com-
promised by an Internet malware in the short time that we
were running our experiments.

4.2 Security Risks

Malware

As part of our tests, we used ClamAV [8], an open source an-
tivirus engine, to analyze the filesystem on the target AMI.
ClamAV contains about 850,000 signatures to identify dif-
ferent types of known malware instances such as viruses,
worms, spyware, and trojans. Since most of the existing
malware targets the Windows operating systems, we ana-
lyzed the complete file-system tree of Windows AMIs, while
we limited the coverage for Linux AMIs to common binary
directories (e.g. /usr/bin, /bin, and /sbin). As a conse-
quence, the scan time took on average of 40 minutes for a

!

"

#

$

%%

%&

%#

%'

"!

""

"(

")

&!

&&

&#

&'

&$

*%

*&

*#

*'

#%

#&

##

#'

#$

(%

(#

('

($

'(

'$

)&

$!

$&

$$

%!&

%!)

%"#

!

"

#!

#"

$!

$"

%!

&'()'*+,-./012,23.4

&
'(

)'
5
6

74

!

"

#

$

%%

%&

%#

%'

"!

""

"(

")

&!

&&

&#

&'

&$

*%

*&

*#

*'

#%

#&

##

#'

#$

(%

(#

('

($

'(

'$

)&

$!

$&

$$

%!&

%!)

%"#

!

"

#!

#"

$!

$"

%!

&'()'*+,-./012,23.4

&
'(

)'
5
6

74

% ' %& %$ "# &% &' *& *$ ## (% (' '& '$)# $% $' %!&

* %! %("" ") &* *! *(#" #) (* '! '()")) $* %!!

!

"!

#!!

#"!

$!!

$"!

%!!

%"!

&'()'*+,-./012,23.4

&
'(

)'
5
6

74

Figure 2: Distribution AMIs / Vulnerabilites (Win-
dows and Linux)

Windows installation, and less then a minute for a Linux
one.
In our malware analysis, we discovered two infected AMIs,

both Windows-based. The first machine was infected with
a Trojan-Spy malware (variant 50112). This trojan has a
wide range of capabilities, including performing key logging,
monitoring processes on the computer, and stealing data
from files saved on the machine. By manually analyzing
this machine, we found that it was hosting different types of
suspicious content such as Trojan.Firepass, a tool to de-
crypt and recover the passwords stored by Firefox. The sec-
ond infected machine contained variant 173287 of the Tro-
jan.Agent malware. This malware allows a malicious user
to spy on the browsing habits of users, modify Internet Ex-
plorer settings, and download other malicious content.
While we were able to manually confirm the first case,

we were unable to further analyze the second infected ma-
chine. In fact, after we rented it again for a manual analysis
a few hours after the automated test, the infected files did
not existed anymore. Hence, we believe that the AMI was
most probably compromised by an automatically propagat-
ing malware during the time that we were executing our
tests. In fact, the software vulnerability analysis showed
that different services running on the machine suffered from
known, remotely exploitable, vulnerabilities.

Unsolicited connections

Unsolicited outgoing connections from an invoked instance
to an external address may be an indication for a significant
security problem. For example, such connections could be

Linux	 AMIs	

Also:	 Malware	 found	 on	 a	 couple	 AMIs	

Balduzzi	 et	 al.	 analysis	
•  Backdoors	
– AMIs	 include	 SSH	 public	 keys	 within	
authorized_keys	

– Password-‐based	 backdoors	

the evidence of some kind of backdoor, or the sign for a mal-
ware infection. Outgoing connections that are more stealthy
may also be used to gather information about the AMI’s us-
age, and collect IP target addresses that can then be used
to attack the instance through another built-in backdoor.

In our experiments, we observed several images that opened
connections to various web applications within and outside
of Amazon EC2. These connections were apparently check-
ing for the availability of new versions of the installed soft-
ware. Unfortunately, it is almost impossible to distinguish
between a legitimate connection (e.g., a software update)
and a connection that is used for malicious purposes.

Nevertheless, we noticed a number of suspicious connec-
tions on several Linux images: The Linux operating system
comes with a service called syslog [3] for recording various
events generated by the system (e.g., the login and logout
of users, the connection of hardware devices, or incoming
requests toward the web server).

Standard installations record these kinds of events in files
usually stored under the /var/log directory and only users
with administrative privileges are allowed to access the logs
generated by the syslog service. In our tests, we discovered
two AMIs in which the syslog daemon was configured to
send the log messages to a remote host, out of the control of
the user instantiating the image. It is clear that this setup
constitutes a privacy breach, since confidential information,
normally stored locally under a protected directory, were
sent out to a third party machine.

Backdoors and Leftover Credentials

The primary mechanism to connect to a Linux machine re-
motely is through the ssh service. When a user rents an
AMI, she is required to provide the public part of the her
ssh key that it is then stored by Amazon in the autho-
rized_keys in the home directory. The first problem with
this process is that a user who is malicious and does not
remove her public key from the image before making it pub-
lic could login into any running instance of the AMI. The
existence of these kinds of potential backdoors is known by
Amazon since the beginning of April 2011 [25].

A second problem is related to the fact that the ssh server
may also permit password-based authentication, thus pro-
viding a similar backdoor functionality if the AMI provider
does not remove her passwords from the machine. In addi-
tion, while leftover ssh keys only allow people with the corre-
sponding private key (normally the AMI image creator), to
obtain access to the instance, passwords provide a larger at-
tack vector: Anybody can extract the password hashes from
an AMI, and try to crack them using a password-cracking
tool (e.g., John the Ripper [13]).

In other words, ssh keys were probably left on the images
by mistake, and without a malicious intent. The same ap-
plies to password, with the difference that passwords can
also be exploited by third parties, transforming a mistake in
a serious security problem.

During our tests, we gathered these leftover credentials,
and performed an analysis to verify if a remote login would
be possible by checking the account information in /etc/passwd
and /etc/shadow, as well as the remote access configuration
of OpenSSH.

The results, summarized in Table 2, show that the prob-
lem of leftover credentials is significant: 21.8% of the scanned
AMIs contain leftover credentials that would allow a third-

East West EU Asia Total
AMIs (%) 34.8 8.4 9.8 6.3 21.8
With Passwd 67 10 22 2 101
With SSH keys 794 53 86 32 965
With Both 71 6 9 4 90
Superuser Priv. 783 57 105 26 971
User Priv. 149 12 12 12 185

Table 2: Left credentials per AMI

party to remotely login into the machine. The table also
reports the type of credentials, and lists how many of these
would grant superuser privileges (either via root, sudo or su
with a password).

4.3 Privacy Risks

The sharing of AMIs not only bears risks for the customers
who rent them, but also for the user who creates and dis-
tributes the image. In fact, if the image contains sensitive in-
formation, this would be available to anybody who is renting
the AMI. For example, an attacker can gather SSH private
keys to break into other machines, or use forgotten Amazon
Web Services (AWS) keys to start instances at the image
provider’s cost. In addition, other data sources such as the
browser and shell histories, or the database of last login at-
tempts can be used to identify and de-anonymize the AMI’s
creator.

Private keys

We developed a number of tests to search the AMIs’ file-
system for typical filenames used to store keys (e.g., id_dsa
and id_rsa for SSH keys, and pk-[0-9A-Z]*.pem and cert-
[0-9A-Z]*.pem for AWS API keys). Our system was able
to identify 67 Amazon API keys, and 56 private SSH keys
that were forgotten. The API keys are not password pro-
tected and, therefore, can immediately be used to start im-
ages on the cloud at the expense of the key’s owner. Even
though it is good security practice to protect SSH keys with
a passphrase, 54 out of 56 keys were not protected. Thus,
these keys are easily reusable by anybody who has access to
them. Although some of the keys may have been generated
specifically to install and configure the AMI, it would not
be a surprising discovery if some users reused their own per-
sonal key, or use the key on the AMI to access other hosts,
or Amazon images.
By consulting the last login attempts (i.e., by lastlog

or last commands), an attacker can easily retrieve IP ad-
dresses that likely belong to other machines owned by the
same person. Our analysis showed that 22% of the analyzed
AMIs contain information in at least one of the last login
databases. The lastb database contains the failed login at-
tempts, and therefore, can also be very helpful in retrieving
user account passwords since passwords that are mistyped or
typed too early often appear as user names in this database.
There were 187 AMIs that contained a total of 66,601 entries
in their lastb databases. Note that host names gathered
from the shell history, the SSH user configuration, and the
SSH server connection logs can also provide useful clues to
an attacker.

Browser History

Nine AMIs contained a Firefox history file (two concerning
root and seven concerning a normal user). Note that because

Balduzzi	 et	 al.	 analysis	
•  CredenEals	 for	 other	 systems	
– AWS	 secret	 keys	 (to	 control	 EC2	 services	 of	 an	
account):	 67	 found	

– Passwords	 /	 secret	 keys	 for	 other	 systems:	 56	
found	

Finding Total Image Remote
Amazon RDS 4 0 4
dDNS 1 0 1
SQL 7 6 1
MySql 58 45 13
WebApp 3 2 1
VNC 1 1 0
Total 74 54 20

Table 3: Credentials in history files

of ethical concerns, we did not manually inspect the contents
of the browser history. Rather, we used scripts to check
which domains had been contacted. From the automated
analysis of the history file, we discovered that one machine
was used by a person to log into the portal of a Fortune 500
company. The same user then logged into his/her personal
Google email account. Combining this kind of information,
history files can easily be used to de-anonymize, and reveal
information about the image’s creator.

Shell History

When we tested the AMI using our test suite, we inspected
common shell history files (e.g. ∼/.history, ∼/.bash_history,
∼/.sh_history) that were left on the image when it was
created. We discovered that 612 AMIs (i.e., 11.54% of the
total) contained at least one single history file. We found a
total of 869 files that stored interesting information (471 for
root and 398 for generic users), and that contained 158,354
lines of command history. In these logs, we identified 74 dif-
ferent authentication credentials that were specified in the
command line, and consequently recorded on file (ref. Ta-
ble 3).

For example, the standard MySQL client allows to spec-
ify the password from the command line using the -p flag.
A similar scenario occurs when sensitive information, such
as a password or a credit card number, is transferred to a
web application using an HTTP GET request. GET re-
quests, contrary to POST submissions, are stored on the
web server’s logs. The credentials we discovered belong to
two categories: local and remote.

The credentials in the image group grant an attacker ac-
cess to a service/resource that is hosted on the AMI. In
contrast, remote credentials enable the access to a remote
target. For example, we identified remote credentials that
can be used to modify (and access) the domain name in-
formation of a dynamic DNS account. A malicious user
that obtains a DNS management password can easily change
the DNS configuration, and redirect the traffic of the orig-
inal host to his own machines. In addition, we discovered
four credentials for the Amazon Relational Database Service
(RDS) [32] – a web service to set up, operate, and scale a
relational database in the Amazon cloud. We also found
credentials for local and remote web applications for differ-
ent uses (e.g. Evergreen, GlassFish, and Vertica) and for
a database performance monitoring service. One machine
was configured with VNC, and its password was specified
from the command line. Finally, we were able to collect 13
credentials for MySQL that were used in the authentication
of remote databases.

Recovery of deleted files

In the previous sections, we discussed the types of sensitive
information that may be forgotten by the image provider.
Unfortunately, the simple solution of deleting this informa-
tion before making the image publicly available is not satis-
factory from a security point of view.
In many file systems, when a user deletes a file, the space

occupied by the file is marked as free, but the content of the
file physically remains on the media (e.g. the hard-disk).
The contents of the deleted file are definitely lost only when
this marked space is overwritten by another file. Utilities
such as shred, wipe, sfill, scrub and zerofree make data
recovery difficult either by overwriting the file’s contents be-
fore the file is actually unlinked, or by overwriting all the
corresponding empty blocks in the filesystem (i.e., secure
deletion or wiping). When these security mechanisms are
not used, it is possible to use tools (e.g., extundelete and
Winundelete) to attempt to recover previously deleted files.
In the context of Amazon EC2, in order to publish a cus-

tom image on the Amazon Cloud, a user has to prepare her
image using a predefined procedure called bundling. This
procedure involves three main steps: Create an image from
a loopback device or a mounted filesystem, compress and en-
crypt the image, and finally, split it into manageable parts
so that it can be uploaded to the S3 storage.
The first step of this procedure changes across different

bundling methods adopted by the user (ref. Table 4). For
example, the ec2-bundle-image method is used to bundle
an image that was prepared in a loopback file. In this case,
the tool transfers the data to the image using a block level
operation (e.g. similar to the dd utility). In contrast, if the
user wishes to bundle a running system, she can choose the
ec2-bundle-vol tool that creates the image by recursively
copying files from the live filesystem (e.g., using rsync). In
this case, the bundle system works at the file level.
Any filesystem image created with a block-level tool will

also contain blocks marked as free, and thus may contain
parts of deleted files. As a result, out of the four bundling
methods provided by Amazon, three are prone to a file un-
deletion attack.
To show that our concerns have practical security impli-

cations, we randomly selected 1,100 Linux AMIs in four dif-
ferent regions (US East/West, Europe and Asia). We then
used the extundelete data recovery utility [5] to analyze
the filesystem, and recover the contents of all deleted files.
In our experiment, we were able to recover files for 98% of
the AMIs (from a minimum of 6 to a maximum of more
than 40,000 files per AMI). In total, we were able to retrieve
28.3GB of data (i.e., an average of 24MB per AMI).
We collected statistics on the type (Table 5) of the un-

deleted files by remotely running the file command. Note
that in order to protect the privacy of Amazon users, we
did not access the contents of the recovered data, and we
also did not transfer this data out of the vulnerable AMI.
The table shows a breakdown of the types of sensitive data
we were able to retrieve (e.g., PDFs, Office documents, pri-
vate keys). Again, note that the Amazon AWS keys are not
password-protected. That is, an attacker that gains access
to these keys is then able to instantiate Amazon resources
(e.g. S3 and AWS services) at the victim’s expense (i.e., the
costs are charged to the victim’s credit card).
In our analysis, we verified if the same problem exists for

Windows AMIs. We analyzed some images using the Win-

Balduzzi	 et	 al.	 analysis	
•  Deleted	 files	
– One	 AMI	 creaEon	 method	 does	 block-‐level	
copying	

Method Level Vulnerable
ec2-bundle-vol File-System No
ec2-bundle-image Block Yes
From AMI snapshot Block Yes
From VMWare Block Yes

Table 4: Tested Bundle Methods

Type #
Home files (/home, /root) 33,011
Images (min. 800x600) 1,085
Microsoft Office documents 336
Amazon AWS certificates and access keys 293
SSH private keys 232
PGP/GPG private keys 151
PDF documents 141
Password file (/etc/shadow) 106

Table 5: Recovered data from deleted files

Undelete tool [31], and were able to recover deleted files in
all cases. Interestingly, we were also able to undeleted 8,996
files from an official image that was published by Amazon
AWS itself.

5 Machine Fingerprinting
In the previous sections, we presented a number of experi-
ments we conducted to assess the security and privacy issues
involved in the release and use of public AMIs. The results
of our experiments showed that a large number of factors
must be considered when making sure that a virtual ma-
chine image can be operated securely (e.g., services must be
patched and information must be sanitized).

A number of the issues we described in the previous sec-
tions could potentially be exploited by an attacker (or a ma-
licious image provider) to obtain unauthorized remote access
to any running machine that adopted a certain vulnerable
AMI. However, finding the right target is not necessarily an
easy task.

For example, suppose that a malicious provider distributes
an image containing his own ssh key, so that he can later lo-
gin into the virtual machines as root. Unfortunately, unless
he also adds some kind of mechanism to “call back home”
and notify him of the IP address of every new instance, he
would have to brute force all the Amazon IP space to try
to find a running machine on which he can use his creden-
tials. To avoid this problem, in this section we explore the
feasibility of automatically

In order to explore the feasibility, from an attacker point
of view, of automatically matching a running instance back
to the corresponding AMI, we started our experiment by
querying different public IP registries (ARIN, RIPE, and
LAPNIC) to obtained a list of all IPs belonging to the Ama-
zon EC2 service for the regions US East/West, Europe and
Asia. The result was a set of sub-networks that comprises
653,401 distinct IPs that are potentially associated with run-
ning images.

For each IP, we queried the status of thirty commonly used
ports (i.e., using the NMap tool), and compared the results
with the information extracted from the AMI analysis. We
only queried a limited number of ports because our aim was
to be as non-intrusive as possible. (i.e., see Section 6 for
a detailed discussion of ethical considerations, precautions,

Candidates
Approach Instances 1 10 50
SSH 130,580 2,149 8,869 11,762
Services 203,563 7,017 30,345 63,512
Web 125,554 5,548 31,651 54,918

Table 6: Discovered Instances

and collaboration with Amazon). For the same reason, we
configured NMap to only send a few packets per second to
prevent any flooding, or denial of service effect.
Our scan detected 233,228 running instances. This num-

ber may not reflect the exact number of instances there were
indeed running. That is, there may have been virtual ma-
chines that might have been blocking all ports.
We adopted three different approaches to match and map

a running instance to a set of possible AMIs. The three
methods are based on the comparison of the SSH keys, ver-
sions of network services, and web-application signatures.
Table 6 depicts the results obtained by applying the three

techniques. The first column shows the number of running
instances to which a certain technique could be applied (e.g.,
the number of instances where we were able to grab the SSH
banner). The last two columns report the number of running
machines for which a certain matching approach was able to
reduce the set of candidate AMIs to either 10 or 50 per
matched instance. Since 50 possibilities is a number that
is small enough to be easily brute-forced manually, we can
conclude that it is possible to identify the AMI used in more
than half of the running machines.

SSH matching Every SSH server has a host key that is
used to identify itself. The public part of this key is used
to verify the authenticity of the server. Therefore, this key
is disclosed to the clients. In the EC2, the host key of an
image needs to be regenerated upon instantiation of an AMI
for two reasons: First, a host key that is shared among sev-
eral machines makes these servers vulnerable to man-in-the-
middle attacks (i.e., especially when the private host key is
freely accessible). Second, an unaltered host key can serve
as an identifier for the AMI, and may thus convey sensitive
information about the software that is used in the instance.
This key regeneration operation is normally performed by

the cloud-init script provided by Amazon. The script
should normally be invoked at startup when the image is
first booted. However, if the image provider either forgets
or intentionally decides not to add the script to his AMI,
this important initialization procedure is not performed. In
such cases, it is very easy for an attacker to match the SSH
keys extracted from the AMIs with the ones obtained from
a simple NMap scan. As reported in Table 6, we were able
to precisely identify over 2,100 AMI instances by using this
method.

Service matching In the cases where the ssh-based iden-
tification failed, we attempted to compare the banners cap-
tured by NMap with the information extracted from the ser-
vices installed on the AMIs. In particular, we compared the
service name, the service version, and (optionally) the ad-
ditional information fields returned by the thirty common
ports we scanned in our experiment.
The service-matching approach is not as precise as the ssh-

based identification. Hence, it may produce false positives if

Response	
“They	 told	 me	 it’s	 not	 their	 concern,	 they	 just	 provide	 	
compuEng	 power,”	 Balduzzi	 says.	 “It’s	 like	 if	 you	 upload	 naked	 	
pictures	 to	 Facebook.	 It’s	 not	 a	 good	 pracEce,	 but	 it’s	 not	 	
Facebook’s	 problem.”	

h9p://www.forbes.com/sites/andygreenberg/2011/11/08/	
researchers-‐find-‐amazon-‐cloud-‐servers-‐teeming-‐with-‐backdoors-‐and-‐other-‐peoples-‐data/	

•  Amazon	 noEfied	 customers	 with	 vulnerable	 AMIs	
•  Made	 private	 AMIs	 of	 non-‐responsive	 customers	
•  New	 tutorials	 for	 bundling	 systems	
•  Working	 on	 undelete	 issues…	

Lessons	

•  New	 sosware	 management	 pracEces	 needed	
with	 VM	 snapshots	

•  Discussion:	
– New	 tool	 support?	 	
– How	 much	 worse	 is	 this	 than	 non-‐cloud	 server	
deployments?	

•  We	 have	 about	 ~1600	 AMIs	 downloaded	
ourselves.	 Research	 project	 ideas?	

