Link layer security

CS642: Computer Security

Professor Ristenpart

http://www.cs.wisc.edu/~rist/

rist at cs dot wisc dot edu

Getting started on network security

Internet protocol stack

Man-in-the-middle

Address resolution protocol and ARP spoofing

802.11

Jamming and MITM prevention

Internet

Local area network (LAN)

Ethernet

802.11

Internet

TCP/IP

BGP (border gateway protocol)

DNS (domain name system)

(1) Malicious hosts

- (1) Malicious hosts
- (2) Subverted routers or links

- (1) Malicious hosts
- (2) Subverted routers or links
- (3) Malicious ISPs or backbone

Internet protocol stack

Application	HTTP, FTP, SMTP, SSH, etc.	
Transport	TCP, UDP	
Network	IP, ICMP, IGMP	
Link	802x (802.11, Ethernet)	

Internet protocol stack

Ethernet

Carrier Sense, Multiple Access with Collision Detection (CSMA/CD)

Take turns using broadcast channel (the wire)

Detect collisions, jam, and random backoff

Security issues?

Ethernet

Media access control (MAC) addresses 48 bits

Type = what is data payload (0x0800 = IPv4, 0x0806 = ARP, 0x86DD = IPv6)

32 bit Cyclic Redundancy Check (CRC) checksum

802.2 LLC frame format slightly different, but similar ideas

MAC addresses

Two types: universally or locally administered

3 byte	3 byte
2 control bits & OID	NIC identifier

- 2 LSBs of first byte are control bits:
 - 1st LSB: multicast/unicast
 - 2nd LSB: universal/local flag
- Hardware (ethernet card/WiFi card) initialized with MAC address
- But:
 - Most ethernet cards allow one to change address

MAC spoofing

 Many LANs, WiFis use MAC-based access controls

Changing Your MAC Address/Mac OS X

```
< Changing Your MAC Address
```

Under Mac OS X, the MAC address can be altered in a fashion similar to the Linux and FreeBSD methods:

```
ifconfig en0 lladdr 02:01:02:03:04:05
```

or

```
ifconfig en0 ether 02:01:02:03:04:05
```

This must be done as the superuser and only works for the computer's ethernet card. Instructions on spoofing

Courtesy of wikibooks
http://en.wikibooks.org/wiki/Changing Your MAC Address/Mac OS X

MAC spoofing

Aaron Swartz, a fellow at Harvard University's Center for Ethics and an open source programmer involved with creating the RSS 1.0 specification and more generally in the open culture movement, has been arrested and charged with wire fraud, computer fraud, unlawfully obtaining information from a protected computer, and recklessly damaging a protected computer after he entered a computer lab at MIT in Cambridge, Massachusetts and downloaded two-thirds of the material on JSTOR, an academic journal repository.

http://en.wikinews.org/wiki/ Aaron_Swartz_arrested_and_charged_for_do wnloading_JSTOR_articles

Supposedly used MAC spoofing to get onto MIT network

Medical Records Worth More To Hackers Than Credit Cards

samzenpus posted 2 hours ago | from the pills-please dept.

HughPickens.com writes

Reuters reports that your medical information, including names, birth dates, policy numbers, diagnosis codes and billing information, is worth 10 times more than your credit card number on the black market. Fraudsters use this data to create fake IDs to buy medical

Scientists Seen As Competent But Not Trusted By Americans

samzenpus posted 4 hours ago | from the hug-a-scientist-today dept.

cold fjord writes

The Woodrow Wilson School reports, "If scientists want the public to trust their research suggestions, they may want to appear a bit

275

Internet protocol stack

IPv4

ENet	IP		ENet
hdr	hdr	data	tlr

Ethernet frame containing IP datagram

4-bit	4-bit	8-bit	16-bit		
version	hdr len	type of service	total length (in bytes)		
16-bit			3-bit	13-bit	
identification			flags fragmentation offset		
8-1	oit	8-bit	16-bit		
time to I	ive (TTL)	protocol	header checksum		
32-bit					
source IP address					
32-bit					
destination IP address					
options (optional)					

Address resolution protocol

IP routing:

Figure out where to send an IP packet based on destination address.

Link layer and IP must cooperate to get things sent

32-bit IP address

ARP RARP

48-bit MAC address

ARP/RARP enables this cooperation by mapping IPs to MACs

Address resolution protocol

frame type = 0x0806 (ARP) or 0x8035 (RARP)

enet dest is all 1's, 0xFFFFFFFFF for broadcast

hw type, prot(ocol) type specify what types of addresses we're looking up op specifies whether this is an ARP request, ARP reply, RARP request, RARP reply

ARP caches

- Hosts maintain cache of ARP data
 - just a table mapping between IPs and MACs

```
rist@wifi-212:~/work/teaching/642-fall-2011/slides$ arp
usage: arp [-n] [-i interface] hostname
       arp [-n] [-i interface] -a
       arp -d hostname [pub] [ifscope interface]
       arp -d [-i interface] -a
       arp -s hostname ether_addr [temp] [reject] [blackhole] [pub [only]] [ifsc
ope interfacel
       arp -S hostname ether_addr [temp] [reject] [blackhole] [pub [only]] [ifsc
ope interfacel
       arp -f filename
rist@wifi-212:~/work/teaching/642-fall-2011/slides$ arp -a
? (172.16.219.1) at 0:50:56:c0:0:1 on vmnet1 ifscope permanent [ethernet]
? (172.16.219.255) at (incomplete) on vmnet1 ifscope [ethernet]
? (192.168.1.1) at 98:fc:11:91:73:92 on en1 ifscope [ethernet]
? (192.168.1.255) at (incomplete) on en1 ifscope [ethernet]
? (192.168.38.255) at (incomplete) on vmnet8 ifscope [ethernet]
rist@wifi-212:~/work/teaching/642-fall-2011/slides$
```

ARP has no authentication

- Easy to sniff packets on (non-switched) ethernet
- What else can we do?

Easy Denial of Service (DoS): Send ARP reply associating gateway 192.168.1.1 with a non-used MAC address

ARP has no authentication

- Easy to sniff packets on (non-switched) ethernet
- What else can we do?

Active Man-in-the-Middle:

ARP reply to MAC2 192.168.1.1 -> MAC3

ARP reply to MAC1 192.168.1.2 -> MAC3

Now traffic "routed" through malicious box

ARP and switched networks

Switches do not broadcast, but transfer traffic through appropriate ports.

Maintain a table of port <-> MAC bindings

Inhibits traffic sniffing

ARP poisoning MitM inhibited (one MAC address per port)

Some switches allow MAC flooding attacks

Detection and prevention

- ARPWATCH
 - logs ARP mapping changes
 - emails admin if something suspicious comes up
- Switched networks with real authentication
 - Check MACs against AAA system (authentication, authorization, accounting) such as RADIUS / Diameter

802.11

STA = station

BSS = basic service set

DS = distribution service

ESS = extended service set

SSID (service set identifier) identifies the 802.11 network

802.11

STA = station

BSS = basic service set

DS = distribution service

ESS = extended service set

SSID (service set identifier) identifies the 802.11 network

Infrastructure mode (top) versus
Ad-hoc (bottom)

http://technet.microsoft.com/en-us/library/cc757419(WS.10).aspx

802.11

802.11 security issues

Wired versus wireless

December 17, 2009

Insurgents Hack U.S. Drones

\$26 Software Is Used to Breach Key Weapons in Iraq; Iranian Backing Suspected

http://online.wsj.com/article/SB126102247889095011.html?mod=googlenews_wsj

Interesting report on drone usage by US: http://livingunderdrones.org/

Parrot ARdrone

802.11 security issues

Wired versus wireless

Wireless can (try to) compensate via cryptography

- WEP = epic failure
- WPA = better, but not great
- WPA2 = better yet, but not perfect

We'll see more on this in crypto section

Images from http://technet.microsoft.com/en-us/library/cc757419(WS.10).aspx

aircrack-ng

http://www.aircrack-ng.org/img/aircrack-ng_movie_1.png

802.11 security issues

WPA-personal

- Pre-shared key mode
- User types in a password to gain access

Default settings

- IP address: 192.168.1.1 (WRT54G-TM and WRT54G-RG: 192.168.0.1)
- Web interface username: "admin" for most routers, no user name or "root" on some
- Password: "admin"

802.11 security issues

RADIUS (Remote Authentication Dial In User Service) authentication server

Client-server protocol over UDP

WPA-personal

- Pre-shared key mode
- User types in a password to gain access

WPA-enterprise

- Extended Authentication Protocol (EAP)
- Centralized Authentication, Authorization, and Accounting (AAA)

- 1) Authenticate users/devices before granting access to network
- 2) Authorize users/devices to access certain network services
- 3) Account for usage of services

Many security issues identified

Basic idea:

- Attacker pretends to be an AP to intercept traffic or collect data

802.11 association

Probe request

SSID: "linksys", BSSID: MAC1

Auth request MAC1

Auth response

Associate request MAC1

Associate response

Basic idea:

- Attacker pretends to be an AP to intercept traffic or collect data

Two APs for same network

Probe request

MAC1

SSID: "linksys", BSSID: MAC1 SSID: "linksys", BSSID: MAC2

Choose one of MAC1, MAC2

Auth request MAC2

MAC2

Basic idea:

- Attacker pretends to be an AP to intercept traffic or collect data

Basic attack: rogue AP

Probe request

SSID: "linksys", BSSID: MAC1

SSID: "linksys", BSSID: MAC2

Choose one of MAC1, MAC2

Auth request MAC2

MAC1

MAC2

. .

Basic idea:

- Attacker pretends to be an AP to intercept traffic or collect data

Evil twin: spoof MAC1

Probe request

SSID: "linksys", BSSID: MAC1

SSID: "linksys", BSSID: MAC1

Choose one of MAC1, MAC2

Attacker can send forged disassociate message to victim to get it to look for new connection

Victim might send out probe requests for particular SSIDs, giving attacker info

Auth request MAC2

Conceptually similar to ARP poisoning

 $\Delta \Delta C1$

MAC1

Push-button configuration (PBC)

shared secret shared secret

Push-button configuration (PBC)

But this is on wireless, so all messages are seen by all parties Attacker can jam messages, overpower legitimate messages

Can we prevent MitM?

Gollakata et al., Secure In-Band Wireless Pairing, Security 2011

Basic observations:

- Assume all parties in range of each other (all honest broadcasts seen)
- Signals cannot be negated
- Jamming can be made detectable

Can we prevent MitM?

Gollakata et al., Secure In-Band Wireless Pairing, Security 2011

Tamper-evident Announcement:

Figure 1: The format of a tamper-evident announcement (TEA).

Synchronization: long random data to make overpowering detectable

Payload: key exchange data (public key, etc.)

On-Off slots:

Encode cryptographic hash of payload in a manipulation-detectable way

Intractable to find two payloads such that Hash(payload1) = Hash(payload2)

Can we prevent MitM?

Gollakata et al., Secure In-Band Wireless Pairing, Security 2011

On-Off slots:

Encode cryptographic hash of payload in a manipulation-detectable way

Encode in a way that balances number of 0's and 1's

Attacker can only turn 0's to 1's

send packet with random data
Transmitting a 0:
send nothing

Transmitting a 1:

Receiver detects if channel in use, concludes a 1
Otherwise concludes a 0
Checks that # of 1's = # of 0's
Checks hash of payload

To change payload, attacker must change hash value, but can't

Discussion

What attacks aren't prevented?

PBC relies on what physical assumptions?

How easy are such jamming based attacks?