Padding Oracle Attacks

We discuss in this addendum padding oracle attacks, which are a limited form of CCA attacks that have proven incredibly damaging in practical settings. At a high level, the problem is as follows. Encryption schemes are almost always defined via a Pad-then-Encrypt methodology. First, a plaintext is padding according to some padding rules captured by a padding function Pad. Then an encryption scheme $\mathcal{S E}$ is applied to the result. During decryption, one first applies the decryption algorithm of $\mathcal{S E}$ is used, and then the resulting string is checked to see if it is consistent with the padding rules of Pad. If not, a special symbol is returned (here \perp) and the ciphertext is rejected.

In practice, implementors often have made it so that padding errors are reported in a manner distinguishable from other types of decryption errors. That means that an attacker can send a (chosen) ciphertext to a party with the secret key, and observe whether that ciphertext had valid padding or not. Here we develop attacks based on this observation. We focus on CBC $\$$ mode since this seems the most vulnerable to such padding oracle attacks (POAs).

0.1 Pad-then-Encrypt

Let $D=\left(\{0,1\}^{n}\right)^{+}$be the set of all strings of length a multiple of n. Let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a symmetric encryption algorithm with message space D. Examples are CBC $\$$ and CTR $\$$. A padding function Pad: $\{0,1\}^{*} \rightarrow D$ determines how to unambiguously map arbitrary bit strings to a string in D. We assume an inverse function Unpad: $D \rightarrow\left(\{0,1\}^{*} \cup\{\perp\}\right)$. Both must be efficiently computable. Then the Pad-then-Encrypt scheme $\mathcal{P} \mathcal{T} \mathcal{E}=(\mathcal{K}, \mathcal{P} \mathcal{T} \mathcal{E} . \mathcal{E}, \mathcal{P} \mathcal{T} \mathcal{E} . \mathcal{D})$ associated to $\mathcal{S E}$ and Pad has the same key generation algorithm as $\mathcal{S E}$ and the following encryption and decryption algorithms.

$$
\begin{aligned}
& \frac{\operatorname{Alg} \mathcal{P} \mathcal{T E} \mathcal{E}_{K}(M)}{X \leftarrow \operatorname{Pad}(M)} \\
& \operatorname{Ret} \mathcal{E}_{K}(X)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Alg} \mathcal{P} \mathcal{T E} \cdot \mathcal{D}_{K}(C) \\
& X \leftarrow \mathcal{D}_{K}(C) \\
& \text { If } X=\perp \text { then Return } \perp \\
& \text { Ret } \operatorname{Unpad}(X)
\end{aligned}
$$

For schemes like $\mathrm{CBC} \$$ for which \mathcal{D} never returns \perp, we have that $\mathcal{P} \mathcal{T} \mathcal{E} . \mathcal{D}$ returning \perp indicates a padding error. Assume that our target message space only includes messages that are a multiple of 8 bits (1 byte), that n is a multiple of 8 , and that $n \leq 255 \cdot 8$. For any number $p \in[0 . .255]$ let $\langle p\rangle_{8}$ represent the 8 -bit string containing some canonical encoding of the number p. Let $\rangle Y\left\langle_{8}\right.$ represent the number encoded (under the same encoding) in the 8-bit string Y. Let $X^{\prime} \| Y \leftarrow \operatorname{LastByte}(X)$ be the function that parses X as $X^{\prime} \| Y$ with $|Y|=8$. A slightly simplified version of the padding mechanism used by TLS is the following:

```
Game POA
procedure Initialize
K\stackrel{&}{&}\mathcal{K};\mp@subsup{M}{}{*}\stackrel{&}{&}{0,1\mp@subsup{}}{}{n}
Return }\mp@subsup{\mathcal{E}}{K}{}(\mp@subsup{M}{}{*}
procedure CheckPad(C)
M\leftarrow\mathcal{D}
If M\not=\perp then Return 1
Return 0
procedure Finalize(M)
Return (M* = M)
```

Figure 1: POA attack game.
$\underline{\operatorname{Alg} \operatorname{Pad}(M)}$
$p \leftarrow(n+(|M| \bmod n)) / 8$
If $p=0$ then $p=n / 8$
$Y \leftarrow\langle p\rangle_{8}$
Ret $M\|Y\| Y\|\cdots\| Y$

```
Alg \(\operatorname{Unpad}(X)\)
```

Alg $\operatorname{Unpad}(X)$
$X_{1} \| Y_{1} \leftarrow \operatorname{LastByte}(X)$
$X_{1} \| Y_{1} \leftarrow \operatorname{LastByte}(X)$
$p \leftarrow\rangle Y_{1}\left\langle_{8}\right.$
$p \leftarrow\rangle Y_{1}\left\langle_{8}\right.$
If $p>n / 8$ then Return \perp
If $p>n / 8$ then Return \perp
If $p=1$ then Return X_{1}
If $p=1$ then Return X_{1}
For $i=2$ to p do
For $i=2$ to p do
$X_{i} \| Y_{i} \leftarrow \operatorname{LastByte}\left(X_{i-1}\right)$
$X_{i} \| Y_{i} \leftarrow \operatorname{LastByte}\left(X_{i-1}\right)$
If $Y_{i} \neq Y_{1}$ then Return \perp
If $Y_{i} \neq Y_{1}$ then Return \perp
Ret X_{p}

```
Ret \(X_{p}\)
```

where the number of Y 's repeated in the string returned by Pad is exactly p.
For the remainder we let $\mathcal{P} \mathcal{T} \mathcal{E}$ denote the Pad-then-CBC $\$$ construction. This uses the just-given padding functions and CBC $\$$ mode.

0.2 A Notion of Padding Oracle Security

We define a game $\mathrm{POA}_{\mathcal{S E}}$ in Fig. 1 to formalize POAs. In line with our example of CBC\$, the game assumes that $\{0,1\}^{n}$ is a subset of the domain of $\mathcal{S E}$. The game requires an adversary to recover a message M^{*} chosen uniformly given only its encryption and access to an oracle that tells the adversary whether decryption is successful or not. A POA adversary expects input a ciphertext, can query CheckPad a number of times (adaptively), and outputs a string in $\{0,1\}^{n}$. We define POA advantage by

$$
\operatorname{Adv}_{\mathcal{S E}}^{\mathrm{poa}}(A)=\operatorname{Pr}\left[\mathrm{POA}_{\mathcal{S E}}^{A} \Rightarrow \text { true }\right]
$$

0.3 POA against Pad-then-CBC\$

We prove the following claim.
Claim 0.3.1 Let $\mathcal{P} \mathcal{T} \mathcal{E}$ be the Pad-then-CBC $\$$ encryption scheme as defined above. Then there exists a POA adversary A such that

$$
\mathbf{A d v}_{\mathcal{P} \mathcal{I E}}^{\text {poa }}(A)=1
$$

and A makes $512+256 \cdot 15$ queries to its CheckPad.

```
adversary \(A\left(C^{*}\right)\)
\(\overline{\text { Parse } C^{*}}\) as \(n\)-bit strings \(C^{*}[0], C^{*}[1], C^{*}[2]\)
Parse \(C^{*}[0]\) as 8 -bit strings \(C_{16}^{*}, \ldots, C_{1}^{*}\)
\(X_{1} \leftarrow\) FindFirstByte \(\left(C_{1}^{*}, C^{*}[1]\right)\)
For \(\mathrm{j}=2\) to 16 do
    \(X_{j} \leftarrow \operatorname{FindOtherByte}\left(j, C_{16}^{*}, \ldots, C_{1}^{*}, C^{*}[1], X_{j-1}, \ldots, X_{1}\right)\)
Return \(X_{16}\|\cdots\| X_{1}\)
subroutine FindFirstByte \(\left(C_{1}^{*}, C^{*}[1]\right)\)
For \(i=0\) to 255 do
    \(R \stackrel{\&}{\leftarrow}\{0,1\}^{n-8}\)
    \(R^{\prime} \leftarrow R \oplus 1^{n-8}\)
    \(C[0] \leftarrow R \|\langle i\rangle_{8}\)
    \(C^{\prime}[0] \leftarrow R^{\prime} \|\langle i\rangle_{8}\)
    \(d \leftarrow \operatorname{CheckPad}\left(C[0] \| C^{*}[1]\right)\)
    \(d^{\prime} \leftarrow \operatorname{CheckPad}\left(C^{\prime}[0] \| C^{*}[1]\right)\)
    If \(\left(d=1 \wedge d^{\prime}=1\right)\) then
        Ret \(C_{1}^{*} \oplus\langle i\rangle_{8} \oplus\langle 1\rangle_{8}\)
subroutine FindOtherByte \(\left(j, C_{16}^{*}, \ldots, C_{1}^{*}, C^{*}[1], X_{j-1}, \ldots, X_{1}\right)\)
For \(i=0\) to 255 do
    \(R \stackrel{\&}{\leftarrow}\{0,1\}^{n-8 j}\)
    \(C[0] \leftarrow R\left\|\langle i\rangle_{8}\right\|\left(X_{j-1} \oplus\langle j\rangle_{8}+C_{j-1}^{*}\right)\|\cdots\|\left(X_{1} \oplus\langle j\rangle_{8} \oplus C_{1}^{*}\right)\)
    \(d \leftarrow \mathbf{C h e c k P a d}\left(C[0] \| C^{*}[1]\right)\)
    If \((d=1)\) then
        Ret \(C_{j}^{*} \oplus\langle i\rangle_{8} \oplus\langle j\rangle_{8}\)
```

Figure 2: POA adversary against Pad-then-CBC\$.

Here we give a POA adversary against $\mathcal{P T E}$ when $\mathcal{S E}$ is $\mathrm{CBC} \$$ and $n=16 \cdot 8$ (as in the case of AES). See Fig. 2. Adversary A attempts to recover one byte at a time from the ciphertext by making cleverly constructed ciphertexts that are queried to the CheckPad oracle. The goal is to use the padding rules of Unpad in order to infer what the byte is.

We will justify that

$$
\operatorname{Adv}_{\mathcal{P} \mathcal{T E}}^{\text {poa }}(A)=\operatorname{Pr}\left[\mathcal{P} \mathcal{T} \mathcal{E}_{\mathcal{P} \mathcal{I E}}^{A} \Rightarrow \text { true }\right]=1
$$

Let

$$
\begin{aligned}
M^{*} & =M_{16}^{*}\|\cdots\| M_{1}^{*}, \\
Z^{*}[0] & =Z_{16}^{*}\|\cdots\| Z_{1}^{*}=E_{K}^{-1}\left(C^{*}[1]\right), \\
C[0] & =C_{16}\|\cdots\| C_{1} \\
Y_{k} & =Z_{k}^{*} \oplus C_{k} \quad \text { for } 1 \leq k \leq 16, \\
C^{\prime}[0] & =C_{16}^{\prime}\|\cdots\| C_{1}^{\prime} \text { and } \\
Y_{k}^{\prime} & =Z_{k}^{*} \oplus C_{k}^{\prime} \quad \text { for } 1 \leq k \leq 16 .
\end{aligned}
$$

We use subscripts to index the byte-offset within a block. Thus, the first definition labels the 161 byte strings of the challenge message A is attempting to find; the second labels the 161 -byte strings
of $E_{K}^{-1}\left(C^{*}[1]\right)$; the third labels the 16 1-byte strings that make up each of the $256 \cdot 16$ blocks $C[0]$ used in the CheckPad queries; and the fourth labels the values generated during a CheckPad query after running $\mathcal{D}_{K}\left(C[0] C^{*}[1]\right)$, but before applying Unpad. The last two definitions there label the values generated during CheckPad on the $C^{\prime}[0] C^{*}[1]$ used in FindFirstByte.

We split the analysis into first showing that FindFirstByte always returns the correct value $X_{1}=M_{1}^{*}$. Then we will show that when $X_{1}=M_{1}^{*}$ the subroutine FindOtherByte always succeeds.

The routine FindFirstByte in each iteration prepares two ciphertexts $C[0] \| C^{*}[1]$ and $C^{\prime}[0] \| C^{*}[1]$ such that the first $n-8$ bits of $C[0]$ and $C^{\prime}[0]$ are different, but the last 8 bits are the same (an encoding of the iteration counter i). It calls CheckPad twice, one for each ciphertext. We have that $d=d^{\prime}=1$ iff $Y_{1}=Y_{1}^{\prime}=\langle 1\rangle_{8}$. Note that $Y_{1}=Y_{1}^{\prime}$ because the first byte of $C[0]$ and $C^{\prime}[0]$ is always the same and $C^{*}[1]$ is used in both queries. Morever, since we try all values of i, it must be that for one iteration we have that $Y_{1}=\langle 1\rangle_{8}$. To see why other values for Y_{1} could not lead to $d=d^{\prime}=1$, consider if $Y_{1} \neq\langle 1\rangle_{8}$. Then necessarily $d^{\prime}=0$, since our choice of the first $n-8$ bits of $C[0]$ and $C^{\prime}[0]$ ensures then that $Y_{2}^{\prime} \neq Y_{2}$. In turn, Unpad will return \perp if $Y_{1} \neq\langle 1\rangle_{8}$ and $Y_{1} \neq Y_{2}^{\prime}$.

Now consider the first run of FindOtherByte, with $X_{1}=M_{1}^{*}$. Then

$$
\text { FindOtherByte }\left(2, C_{16}^{*}, \ldots, C_{1}^{*}, C^{*}[1], X_{1}\right)
$$

sets $C[0]$ to be a random $n-16$ bit string followed by an 8 -bit encoding of i followed by

$$
X_{1} \oplus\langle 2\rangle_{8} \oplus C_{1}^{*}=M_{1}^{*} \oplus\langle 2\rangle_{8} \oplus C_{1}^{*}=Z_{1}^{*} \oplus\langle 2\rangle_{8} .
$$

During decryption, then, in the CheckPad oracle, we have that

$$
Y_{1}=\left(Z_{1}^{*} \oplus\langle 2\rangle_{8}\right) \oplus Z_{1}^{*}=\langle 2\rangle_{8}
$$

which means that Unpad will read a first byte that encodes 2 . This means that Unpad will return true exactly if the second value $Y_{2}=\langle 2\rangle_{8}$. This occurs only when

$$
\langle 2\rangle_{8}=\langle i\rangle_{8} \oplus Z_{2}^{*}=\langle i\rangle_{8} \oplus M_{2}^{*} \oplus C_{2}^{*} .
$$

Thus here Unpad only returns one in the case that $M_{2}^{*}=C_{2}^{*} \oplus\langle i\rangle_{8} \oplus\langle 2\rangle_{8}$, which is exactly what is returned by FindOtherByte. Moreover, since FindOtherByte tries all 256 values of i it is guaranteed to find the exact byte M_{2}^{*}. A simple inductive argument justifies that the rest of the values X_{3}, \ldots, X_{16} are likewise correct.

