
Chapter 3

Pseudorandom Functions

Pseudorandom functions (PRFs) and their cousins, pseudorandom permutations (PRPs), figure as
central tools in the design of protocols, especially those for shared-key cryptography. At one level,
PRFs and PRPs can be used to model blockciphers, and they thereby enable the security analysis
of protocols based on blockciphers. But PRFs and PRPs are also a useful conceptual starting point
in contexts where blockciphers don’t quite fit the bill because of their fixed block-length. So in this
chapter we will introduce PRFs and PRPs and investigate their basic properties.

3.1 Function families

A function family is a map F : K ×D → R. Here K is the set of keys of F and D is the domain
of F and R is the range of F . The set of keys and the range are finite, and all of the sets are
nonempty. The two-input function F takes a key K and an input X to return a point Y we denote
by F (K, X). For any key K ∈ K we define the map FK : D → R by FK(X) = F (K, Y). We call
the function FK an instance of function family F . Thus F specifies a collection of maps, one for
each key. That’s why we call F a function family or family of functions.

Sometimes we write Keys(F) for K, Dom(F) for D, and Range(F) for R. Usually K = {0, 1}k
for some integer k, the key length. Often D = {0, 1}` for some integer ` called the input length,
and R = {0, 1}L for some integers L called the output length. But sometimes the domain or range
could be sets containing strings of varying lengths.

There is some probability distribution on the (finite) set of keys K. Unless otherwise indicated,
this distribution will be the uniform one. We denote by K $←K the operation of selecting a random
string from K and naming it K. We denote by f $← F the operation: K $←K; f ← FK . In other
words, let f be the function FK where K is a randomly chosen key. We are interested in the
input-output behavior of this randomly chosen instance of the family.

A permutation is a bijection (i.e. a one-to-one onto map) whose domain and range are the same
set. That is, a map π: D → D is a permutation if for every y ∈ D there is exactly one x ∈ D such
that π(x) = y. We say that F is a family of permutations if Dom(F) = Range(F) and each FK is
a permutation on this common set.

Example 3.1.1 A blockcipher is a family of permutations. In particular DES is a family of per-
mutations DES: K ×D → R with

K = {0, 1}56 and D = {0, 1}64 and R = {0, 1}64 .

1

2 PSEUDORANDOM FUNCTIONS

Here the key length is k = 56 and the input length and output length are ` = L = 64. Similarly
AES (when “AES” refers to “AES128”) is a family of permutations AES: K ×D → R with

K = {0, 1}128 and D = {0, 1}128 and R = {0, 1}128 .

Here the key length is k = 128 and the input length and output length are ` = L = 128.

3.2 Games

We will use code-based games [1] in definitions and some proofs. We recall some background here.
A game —see Fig. 3.1 for an example— has an Initialize procedure, procedures to respond to
adversary oracle queries, and a Finalize procedure. A game G is executed with an adversary
A as follows. First, Initialize executes and its outputs are the inputs to A. Then, A executes,
its oracle queries being answered by the corresponding procedures of G. When A terminates, its
output becomes the input to the Finalize procedure. The output of the latter, denoted GA, is
called the output of the game, and we let “GA ⇒ y” denote the event that this game output takes
value y. Variables not explicitly initialized or assigned are assumed to have value ⊥, except for
booleans which are assumed initialized to false. Games Gi, Gj are identical until bad if their code
differs only in statements that follow the setting of the boolean flag bad to true. The following is
the Fundamental Lemmas of game-playing:

Lemma 3.2.1 [1] Let Gi, Gj be identical until bad games, and A an adversary. Let BADi (resp.
BADj) denote the event that the execution of Gi (resp. Gj) with A sets bad. Then

Pr
[
GA

i ∧ BADi

]
= Pr

[
GA

j ∧ BADj

]
and Pr

[
GA

i

]
− Pr

[
GA

j

]
≤ Pr [BADj] .

When the Finalize is absent, it is understood to be the identity function.

Finalize(d)
Return d.

In this case the output GA of the game is the same as the output of the adversary.

3.3 Random functions and permutations

A particular game that we will consider frequently is the game RandR described on the right hand
side of Fig. 3.1. Here R is a finite set, for example {0, 1}128. The game provides the adversary
access to an oracle Fn that implements a random function. This means that on any query the
oracle returns a random point from R as response subject to the restriction that if twice queried on
the same point, the response is the same both time. The game maintains the function in the form
of a table T where T [X] holds the value of the function at X. Initially, the table is everywhere
undefined, meaning holds ⊥ in every entry.

One must remember that the term “random function” is misleading. It might lead one to think
that certain functions are “random” and others are not. (For example, maybe the constant function
that always returns 0L on any input is not random, but a function with many different range values
is random.) This is not right. The randomness of the function refers to the way it was chosen,
not to an attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense to talk of the
randomness of an individual function; the term “random function” just means a function chosen
at random.

Bellare and Rogaway 3

Example 3.3.1 Let’s do some simple probabilistic computations to understand random functions.
In all of the following, we refer to RandR where R = {0, 1}L.

1. Fix X ∈ {0, 1}` and Y ∈ {0, 1}L. Let A be

Adversary A
Z ← Fn(X)
Return (Y = Z)

Then:
Pr

[
RandA

R⇒true
]

= 2−L .

Notice that the probability doesn’t depend on `. Nor does it depend on the values of X, Y .

2. Fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}L. Let A be

Adversary A
Z1 ← Fn(X1)
Z2 ← Fn(X2)
Return (Y = Z1 ∧ Y = Z2)

Then:

Pr
[
RandA

R⇒true
]

=

{
2−2L if X1 6= X2

2−L if X1 = X2

3. Fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}L. Let A be

Adversary A
Z1 ← Fn(X1)
Z2 ← Fn(X2)
Return (Y = Z1 ⊕ Z2)

Then:

Pr
[
RandA

R⇒true
]

=


2−L if X1 6= X2

0 if X1 = X2 and Y 6= 0L

1 if X1 = X2 and Y = 0L

4. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input Y ∈ {0, 1}L
returns the first l bits of Y . Fix X1 ∈ {0, 1}` and Y1 ∈ {0, 1}l. Let A be

Adversary A
Z1 ← Fn(X1)
Return (τ(Z1) = Y1)

Then:
Pr

[
RandA

R⇒true
]

= 2−l .

3.3.1 Random permutations

The game PermD shown on the right hand side of Fig. 3.2 provides the adversary access to an
oracle that implements a random permutation over the finite set D. Random permutations are
somewhat harder to work with than random functions, due to the lack of independence between
values on different points. Let’s look at some probabilistic computations involving them.

4 PSEUDORANDOM FUNCTIONS

Example 3.3.2 In all of the following we refer to game PermD where D = {0, 1}`.

1. Fix X, Y ∈ {0, 1}`. Let’s A be

Adversary A
Z ← Fn(X)
Return (Y = Z)

Then
Pr

[
PermA

D⇒true
]

= 2−` .

2. Fix X1, X2 ∈ {0, 1}` and Y1, Y2 ∈ {0, 1}L, and assume X1 6= X2. Let A be

Adversary A
Z1 ← Fn(X1)
Z2 ← Fn(X2)
Return (Y1 = Z1 ∧ Y2 = Z2)

Then

Pr
[
PermA

D⇒true
]

=


1

2`(2` − 1)
if Y1 6= Y2

0 if Y1 = Y2

3. Fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}`. Let A be

Adversary A
Z1 ← Fn(X1)
Z2 ← Fn(X2)
Return (Y = Z1 ⊕ Z2)

Then:

Pr
[
PermA

D⇒true
]

=



1
2` − 1

if X1 6= X2 and Y 6= 0`

0 if X1 6= X2 and Y = 0`

0 if X1 = X2 and Y 6= 0`

1 if X1 = X2 and Y = 0`

In the case X1 6= X2 and Y 6= 0` this is computed as follows:

Pr [Fn(X1)⊕ Fn(X2) = Y]

=
∑
Y1

Pr [Fn(X1) = Y1 ∧ Fn(X2) = Y1 ⊕ Y]

=
∑
Y1

1
2` − 1

· 1
2`

= 2` · 1
2` − 1

· 1
2`

=
1

2` − 1
.

Above, the sum is over all Y1 ∈ {0, 1}`. In obtaining the second equality, we used item 2 above
and the assumption that Y 6= 0`.

Bellare and Rogaway 5

3.4 Pseudorandom functions

A pseudorandom function is a family of functions with the property that the input-output behavior
of a random instance of the family is “computationally indistinguishable” from that of a random
function. Someone who has only black-box access to a function, meaning can only feed it inputs
and get outputs, has a hard time telling whether the function in question is a random instance of
the family in question or a random function. The purpose of this section is to arrive at a suitable
formalization of this notion. Later we will look at motivation and applications.

We fix a family of functions F : K×D → R. (You may want to think K = {0, 1}k, D = {0, 1}`
and R = {0, 1}L for some integers k, `, L ≥ 1.) Imagine that you are in a room which contains a
terminal connected to a computer outside your room. You can type something into your terminal
and send it out, and an answer will come back. The allowed questions you can type must be
elements of the domain D, and the answers you get back will be elements of the range R. The
computer outside your room implements a function Fn: D → R, so that whenever you type a
value X you get back Fn(X). However, your only access to Fn is via this interface, so the only
thing you can see is the input-output behavior of Fn.

We consider two different ways in which Fn will be chosen, giving rise to two different “worlds.”
In the “real” world, Fn is a random instance of F , meaning is FK for a random K. In the “random”
world, Fn is a random function with range R.

You are not told which of the two worlds was chosen. The choice of world, and of the correspond-
ing function Fn, is made before you enter the room, meaning before you start typing questions.
Once made, however, these choices are fixed until your “session” is over. Your job is to discover
which world you are in. To do this, the only resource available to you is your link enabling you
to provide values X and get back Fn(X). After trying some number of values of your choice, you
must make a decision regarding which world you are in. The quality of pseudorandom family F
can be thought of as measured by the difficulty of telling, in the above game, whether you are in
the real world or in the random world.

In the formalization, the entity referred to as “you” above is an algorithm called the adversary.
The adversary algorithm A may be randomized. We formalize the ability to query Fn as giving A
an oracle which takes input any string X ∈ D and returns Fn(X). A can only interact with the
function by giving it inputs and examining the outputs for those inputs; it cannot examine the
function directly in any way. Algorithm A can decide which queries to make, perhaps based on
answers received to previous queries. Eventually, it outputs a bit b which is its decision as to which
world it is in. Outputting the bit “1” means that A “thinks” it is in the real world; outputting the
bit “0” means that A thinks it is in the random world.

The worlds are formalized via the game of Fig. 3.1. The following definition associates to any
adversary a number between 0 and 1 that is called its prf-advantage, and is a measure of how
well the adversary is doing at determining which world it is in. Further explanations follow the
definition.

Definition 3.4.1 Let F : K×D → R be a family of functions, and let A be an algorithm that takes
an oracle and returns a bit. We consider two games as described in Fig. 3.1. The prf-advantage of
A is defined as

Advprf
F (A) = Pr

[
RealAF⇒1

]
− Pr

[
RandA

R⇒1
]

It should be noted that the family F is public. The adversary A, and anyone else, knows the
description of the family and is capable, given values K, X, of computing F (K, X).

6 PSEUDORANDOM FUNCTIONS

Game RealF

procedure Initialize
K $← Keys(F)

procedure Fn(x)
Return FK(x)

Game RandR

procedure Fn(x)
If T[x] =⊥ then

T[x] $←R
Return T[x]

Figure 3.1: Games used to define PRFs.

Game RealF picks a random instance FK of family F and then runs adversary A with oracle
Fn = FK . Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The game returns the same bit. Game RandR implements Fn as
a random function with range R. Again, adversary A interacts with the oracle, eventually returning
a bit that is the output of the game. Each game has a certain probability of returning 1. The
probability is taken over the random choices made in the game. Thus, for the first game, the
probability is over the choice of K and any random choices that A might make, for A is allowed to
be a randomized algorithm. In the second game, the probability is over the random choice made
by the game in implementing Fn and any random choices that A makes. These two probabilities
should be evaluated separately; the two games are completely distinct.

To see how well A does at determining which world it is in, we look at the difference in the
probabilities that the two games return 1. If A is doing a good job at telling which world it is in,
it would return 1 more often in the first game than in the second. So the difference is a measure of
how well A is doing. We call this measure the prf-advantage of A. Think of it as the probability
that A “breaks” the scheme F , with “break” interpreted in a specific, technical way based on the
definition.

Different adversaries will have different advantages. There are two reasons why one adversary
may achieve a greater advantage than another. One is that it is more “clever” in the questions it
asks and the way it processes the replies to determine its output. The other is simply that it asks
more questions, or spends more time processing the replies. Indeed, we expect that as an adversary
sees more and more input-output examples of Fn, or spends more computing time, its ability to
tell which world it is in should go up.

The “security” of family F as a pseudorandom function must thus be thought of as depending
on the resources allowed to the attacker. We may want to know, for any given resource limitations,
what is the prf-advantage achieved by the most “clever” adversary amongst all those who are
restricted to the given resource limits.

The choice of resources to consider can vary. One resource of interest is the time-complexity t
of A. Another resource of interest is the number of queries q that A asks of its oracle. Another
resource of interest is the total length µ of all of A’s queries. When we state results, we will pay
attention to such resources, showing how they influence maximal adversarial advantage.

Let us explain more about the resources we have mentioned, giving some important conventions
underlying their measurement. The first resource is the time-complexity of A. To make sense of this
we first need to fix a model of computation. We fix some RAM model, as discussed in Chapter 1.
Think of the model used in your algorithms courses, often implicitly, so that you could measure the
running time. However, we adopt the convention that the time-complexity of A refers not just to
the running time of A, but to the maximum of the running times of the two games in the definition,
plus the size of the code of A. In measuring the running time of the first game, we must count the
time to choose the key K at random, and the time to compute the value FK(x) for any query x

Bellare and Rogaway 7

Game RealF

procedure Initialize
K $← Keys(F)

procedure Fn(x)
Return FK(x)

Game PermD

procedure Initialize
UR← ∅
procedure Fn(x)
If T[x] =⊥ then

T[x] $←D \ UR ; UR← UR ∪ {T[x]}
Return T[x]

Figure 3.2: Games used to define PRP under CPA.

made by A to its oracle. In measuring the running time of the second game, we count the execution
time of Fn over the call made to it by A.

The number of queries made by A captures the number of input-output examples it sees. In
general, not all strings in the domain must have the same length, and hence we also measure the
sum of the lengths of all queries made.

The strength of this definition lies in the fact that it does not specify anything about the kinds
of strategies that can be used by a adversary; it only limits its resources. A adversary can use
whatever means desired to distinguish the function as long as it stays within the specified resource
bounds.

What do we mean by a “secure” PRF? Definition 3.4.1 does not have any explicit condition or
statement regarding when F should be considered “secure.” It only associates to any adversary
A attacking F a prf-advantage function. Intuitively, F is “secure” if the value of the advantage
function is “low” for all adversaries whose resources are “practical.”

This is, of course, not formal. However, we wish to keep it this way because it better reflects
reality. In real life, security is not some absolute or boolean attribute; security is a function of the
resources invested by an attacker. All modern cryptographic systems are breakable in principle; it
is just a question of how long it takes.

This is our first example of a cryptographic definition, and it is worth spending time to study
and understand it. We will encounter many more as we go along. Towards this end let us summarize
the main features of the definitional framework as we will see them arise later. First, there are
games, involving an adversary. Then, there is some advantage function associated to an adversary
which returns the probability that the adversary in question “breaks” the scheme. These two
components will be present in all definitions. What varies is the games; this is where we pin down
how we measure security.

3.5 Pseudorandom permutations

A family of functions F : K×D → D is a pseudorandom permutation if the input-output behavior
of a random instance of the family is “computationally indistinguishable” from that of a random
permutation on D.

In this setting, there are two kinds of attacks that one can consider. One, as before, is that
the adversary gets an oracle for the function Fn being tested. However when F is a family of
permutations, one can also consider the case where the adversary gets, in addition, an oracle for
Fn−1. We consider these settings in turn. The first is the setting of chosen-plaintext attacks while
the second is the setting of chosen-ciphertext attacks.

8 PSEUDORANDOM FUNCTIONS

Game RealF

procedure Initialize
K $← Keys(F)

procedure Fn(x)
Return FK(x)

procedure Fn−1(x)
Return F−1

K (x)

Game PermD

procedure Initialize
UR← ∅ ; UD← ∅
procedure Fn(x)
If T[x] =⊥ then

T[x] $←D \ UR
S[T[x]]← x
UR← UR ∪ {T[x]} ; UD← UD ∪ {x}

Return T[x]

procedure Fn−1(y)
If S[y] =⊥ then

S[y] $←D \ UD
T[S[y]]← y
UD← UD ∪ {S[y]} ; UR← UR ∪ {y}

Return S[y]

Figure 3.3: Games used to define PRP under CCA.

3.5.1 PRP under CPA

We fix a family of functions F : K×D → D. (You may want to think K = {0, 1}k and D = {0, 1}`,
since this is the most common case. We do not mandate that F be a family of permutations
although again this is the most common case.) As before, we consider an adversary A that is
placed in a room where it has oracle access to a function Fn chosen in one of two ways.

In the “real” world, Fn is a random instance of F , meaning is FK for a random K. In the “random”
world, Fn is a random permutation on D.

Notice that the real world is the same in the PRF setting, but the random world has changed. As
before the task facing the adversary A is to determine in which world it was placed based on the
input-output behavior of Fn.

Definition 3.5.1 Let F : K × D → D be a family of functions, and let A be an algorithm that
takes an oracle Fn for a function Fn: D → D, and returns a bit. We consider two games as
described in Fig. 3.2. The prp-cpa-advantage of A is defined as

Advprp-cpa
F (A) = Pr

[
RealAF⇒1

]
− Pr

[
PermA

D⇒1
]

The intuition is similar to that for Definition 3.4.1. The difference is that here the “ideal” object
that F is being compared with is no longer a random function, but rather a random permutation.

In game RealF , the probability is over the random choice of key K and also over the coin tosses
of A if the latter happens to be randomized. The game returns the same bit that A returns. In game
PermD, a permutation Fn: D → D is chosen at random, and the result bit of A’s computation with
oracle Fn is returned. The probability is over the choice of Fn and the coins of A if any. As before,
the measure of how well A did at telling the two worlds apart, which we call the prp-cpa-advantage
of A, is the difference between the probabilities that the games return 1.

Conventions regarding resource measures also remain the same as before. Informally, a family
F is a secure PRP under CPA if Advprp-cpa

F (A) is “small” for all adversaries using a “practical”
amount of resources.

Bellare and Rogaway 9

3.5.2 PRP under CCA

We fix a family of permutations F : K × D → D. (You may want to think K = {0, 1}k and
D = {0, 1}`, since this is the most common case. This time, we do mandate that F be a family
of permutations.) As before, we consider an adversary A that is placed in a room, but now it has
oracle access to two functions, Fn and its inverse Fn−1. The manner in which Fn is chosen is the
same as in the CPA case, and once Fn is chosen, Fn−1 is automatically defined, so we do not have
to say how it is chosen.

In the “real” world, Fn is a random instance of F , meaning is FK for a random K. In the “random”
world, Fn is a random permutation on D. In either case, Fn−1 is the inverse of Fn. As before the
task facing the adversary A is to determine in which world it was placed based on the input-output
behavior of its oracles.

Definition 3.5.2 Let F : K × D → D be a family of permutations, and let A be an algorithm
that takes an oracle Fn for a function Fn: D → D, and also an oracle Fn−1 for the function
Fn−1: D → D, and returns a bit. We consider two games as described in Fig. 3.3. The prp-cca-
advantage of A is defined as

Advprp-cca
F (A) = Pr

[
RealAF⇒1

]
− Pr

[
PermA

D⇒1
]

The intuition is similar to that for Definition 3.4.1. The difference is that here the adversary
has more power: not only can it query Fn, but it can directly query Fn−1. Conventions regarding
resource measures also remain the same as before. However, we will be interested in some additional
resource parameters. Specifically, since there are now two oracles, we can count separately the
number of queries, and total length of these queries, for each. As usual, informally, a family F is a
secure PRP under CCA if Advprp-cca

F (A) is “small” for all adversaries using a “practical” amount
of resources.

3.5.3 Relations between the notions

If an adversary does not query Fn−1 the oracle might as well not be there, and the adversary is
effectively mounting a chosen-plaintext attack. Thus we have the following:

Proposition 3.5.3 [PRP-CCA implies PRP-CPA] Let F : K × D → D be a family of per-
mutations and let A be a prp-cpa adversary. Suppose that A runs in time t, asks q queries, and
these queries total µ bits. Then there exists a prp-cca adversary B that runs in time t, asks q
chosen-plaintext queries, these queries totaling µ bits, and asks no chosen-ciphertext queries, such
that

Advprp-cpa
F (A) ≤ Advprp-cca

F (B) .

Though the technical result is easy, it is worth stepping back to explain its interpretation. The
theorem says that if you have an adversary A that breaks F in the PRP-CPA sense, then you have
some other adversary B that breaks F in the PRP-CCA sense. Furthermore, the adversary B will
be just as efficient as the adversary A was. As a consequence, if you think there is no reasonable
adversary B that breaks F in the PRP-CCA sense, then you have no choice but to believe that
there is no reasonable adversary A that breaks F in the PRP-CPA sense. The inexistence of a
reasonable adversary B that breaks F in the PRP-CCA sense means that F is PRP-CCA secure,
while the inexistence of a reasonable adversary A that breaks F in the PRP-CPA sense means
that F is PRP-CPA secure. So PRP-CCA security implies PRP-CPA security, and a statement
like the proposition above is how, precisely, one makes such a statement.

10 PSEUDORANDOM FUNCTIONS

3.6 Modeling blockciphers

One of the primary motivations for the notions of pseudorandom functions (PRFs) and pseudo-
random permutations (PRPs) is to model blockciphers and thereby enable the security analysis of
protocols that use blockciphers.

As discussed in the chapter on blockciphers, classically the security of DES or other blockciphers
has been looked at only with regard to key recovery. That is, analysis of a blockcipher F has focused
on the following question: Given some number of input-output examples

(X1, FK(X1)), . . . , (Xq, FK(Xq))

where K is a random, unknown key, how hard is it to find K? The blockcipher is taken as “secure”
if the resources required to recover the key are prohibitive. Yet, as we saw, even a cursory glance at
common blockcipher usages shows that hardness of key recovery is not sufficient for security. We
had discussed wanting a master security property of blockciphers under which natural usages of
blockciphers could be proven secure. We suggest that this master property is that the blockcipher
be a secure PRP, under either CPA or CCA.

We cannot prove that specific blockciphers have this property. The best we can do is assume
they do, and then go on to use them. For quantitative security assessments, we would make specific
conjectures about the advantage functions of various blockciphers. For example we might conjecture
something like:

Advprp-cpa
DES (At,q) ≤ c1 ·

t/TDES

255
+ c2 ·

q

240

for any adversary At,q that runs in time at most t and asks at most q 64-bit oracle queries. Here
TDES is the time to do one DES computation on our fixed RAM model of computation, and c1, c2

are some constants depending only on this model. In other words, we are conjecturing that the best
attacks are either exhaustive key search or linear cryptanalysis. We might be bolder with regard
to AES and conjecture something like

Advprp-cpa
AES (Bt,q) ≤ c1 ·

t/TAES

2128
+ c2 ·

q

2128
.

for any adversary Bt,q that runs in time at most t and asks at most q 128-bit oracle queries. We
could also make similar conjectures regarding the strength of blockciphers as PRPs under CCA
rather than CPA.

More interesting is the PRF security of blockciphers. Here we cannot do better than assume
that

Advprf
DES(At,q) ≤ c1 ·

t/TDES

255
+

q2

264

Advprf
AES(Bt,q) ≤ c1 ·

t/TAES

2128
+

q2

2128
.

for any adversaries At,q, Bt,q running in time at most t and making at most q oracle queries. This is
due to the birthday attack discussed later. The second term in each formula arises simply because
the object under consideration is a family of permutations.

We stress that these are all conjectures. There could exist highly effective attacks that break
DES or AES as a PRF without recovering the key. So far, we do not know of any such attacks, but
the amount of cryptanalytic effort that has focused on this goal is small. Certainly, to assume that
a blockcipher is a PRF is a much stronger assumption than that it is secure against key recovery.

Bellare and Rogaway 11

Nonetheless, the motivation and arguments we have outlined in favor of the PRF assumption stay,
and our view is that if a blockcipher is broken as a PRF then it should be considered insecure, and
a replacement should be sought.

3.7 Example attacks

Let us illustrate the models by providing adversaries that attack different function families in these
models.

Example 3.7.1 We define a family of functions F : {0, 1}k × {0, 1}` → {0, 1}L as follows. We let
k = L` and view a k-bit key K as specifying an L row by ` column matrix of bits. (To be concrete,
assume the first L bits of K specify the first column of the matrix, the next L bits of K specify
the second column of the matrix, and so on.) The input string X = X[1] . . . X[`] is viewed as a
sequence of bits, and the value of F (K, x) is the corresponding matrix vector product. That is

FK(X) =


K[1, 1] K[1, 2] · · · K[1, `]
K[2, 1] K[2, 2] · · · K[2, `]

...
...

K[L, 1] K[L, 2] · · · K[L, `]

 ·


X[1]
X[2]

...
X[l]

 =


Y [1]
Y [2]

...
Y [L]


where

Y [1] = K[1, 1] · x[1]⊕K[1, 2] · x[2]⊕ . . . ⊕K[1, `] · x[`]
Y [2] = K[2, 1] · x[1]⊕K[2, 2] · x[2]⊕ . . . ⊕K[2, `] · x[`]

... =
...

Y [L] = K[L, 1] · x[1]⊕K[L, 2] · x[2]⊕ . . . ⊕K[L, `] · x[`] .

Here the bits in the matrix are the bits in the key, and arithmetic is modulo two. The question
we ask is whether F is a “secure” PRF. We claim that the answer is no. The reason is that one
can design an adversary algorithm A that achieves a high advantage (close to 1) in distinguishing
between the two worlds.

We observe that for any key K we have FK(0`) = 0L. This is a weakness since a random
function of `-bits to L-bits is very unlikely to return 0L on input 0`, and thus this fact can be the
basis of a distinguishing adversary. Let us now show how the adversary works. Remember that
as per our model it is given an oracle Fn for Fn: {0, 1}` → {0, 1}L and will output a bit. Our
adversary A works as follows:

Adversary A
Y ← Fn(0`)
if Y = 0L then return 1 else return 0

This adversary queries its oracle at the point 0`, and denotes by Y the `-bit string that is returned.
If y = 0L it bets that Fn was an instance of the family F , and if y 6= 0L it bets that Fn was a
random function. Let us now see how well this adversary does. Let R = {0, 1}L. We claim that

Pr
[
RealAF⇒1

]
= 1

Pr
[
RandA

R⇒1
]

= 2−L .

12 PSEUDORANDOM FUNCTIONS

Why? Look at Game RealF as defined in Definition 3.4.1. Here Fn = FK for some K. In that case
it is certainly true that Fn(0`) = 0L so by the code we wrote for A the latter will return 1. On
the other hand look at Game RandR as defined in Definition 3.4.1. Here Fn is a random function.
As we saw in Example 3.3.1, the probability that Fn(0`) = 0L will be 2−L, and hence this is the
probability that A will return 1. Now as per Definition 3.4.1 we subtract to get

Advprf
F (A) = Pr

[
RealAF⇒1

]
− Pr

[
RandA

R⇒1
]

= 1− 2−L .

Now let t be the time complexity of F . This is O(` + L) plus the time for one computation of F ,
coming to O(`2L). The number of queries made by A is just one, and the total length of all queries
is l. Our conclusion is that there exists an extremely efficient adversary whose prf-advantage is
very high (almost one). Thus, F is not a secure PRF.

Example 3.7.2 . Suppose we are given a secure PRF F : {0, 1}k ×{0, 1}` → {0, 1}L. We want to
use F to design a PRF G: {0, 1}k×{0, 1}` → {0, 1}2L. The input length of G is the same as that of
F but the output length of G is twice that of F . We suggest the following candidate construction:
for every k-bit key K and every `-bit input x

GK(x) = FK(x) ‖ FK(x) .

Here “ ‖ ” denotes concatenation of strings, and x denotes the bitwise complement of the string x.
We ask whether this is a “good” construction. “Good” means that under the assumption that F
is a secure PRF, G should be too. However, this is not true. Regardless of the quality of F , the
construct G is insecure. Let us demonstrate this.

We want to specify an adversary attacking G. Since an instance of G maps ` bits to 2L bits,
the adversary D will get an oracle for a function Fn that maps ` bits to 2L bits. In the random
world, Fn will be chosen as a random function of ` bits to 2L bits, while in the real world, Fn will
be set to GK where K is a random k-bit key. The adversary must determine in which world it is
placed. Our adversary works as follows:

Adversary A
y1 ← Fn(1`)
y2 ← Fn(0`)
Parse y1 as y1 = y1,1 ‖ y1,2 with |y1,1| = |y1,2| = L
Parse y2 as y2 = y2,1 ‖ y2,2 with |y2,1| = |y2,2| = L
if y1,1 = y2,2 then return 1 else return 0

This adversary queries its oracle at the point 1` to get back y1 and then queries its oracle at the
point 0` to get back y2. Notice that 1` is the bitwise complement of 0`. The adversary checks
whether the first half of y1 equals the second half of y2, and if so bets that it is in the real world.
Let us now see how well this adversary does. Let R = {0, 1}2L. We claim that

Pr
[
RealAG⇒1

]
= 1

Pr
[
RandA

R⇒1
]

= 2−L .

Why? Look at Game RealG as defined in Definition 3.4.1. Here g = GK for some K. In that case
we have

GK(1`) = FK(1`) ‖ FK(0`)

GK(0`) = FK(0`) ‖ FK(1`)

Bellare and Rogaway 13

by definition of the family G. Notice that the first half of GK(1`) is the same as the second half of
GK(0`). So A will return 1. On the other hand look at Game RandR as defined in Definition 3.4.1.
Here Fn is a random function. So the values Fn(1`) and Fn(0`) are both random and independent
2L bit strings. What is the probability that the first half of the first string equals the second half of
the second string? It is exactly the probability that two randomly chosen L-bit strings are equal,
and this is 2−L. So this is the probability that A will return 1. Now as per Definition 3.4.1 we
subtract to get

Advprf
G (A) = Pr

[
RealAG⇒1

]
− Pr

[
RandA

R⇒1
]

= 1− 2−L .

Now let t be the time complexity of A. This is O(` + L) plus the time for two computations of G,
coming to O(` + L) plus the time for four computations of F . The number of queries made by D
is two, and the total length of all queries is 2`. Thus we have exhibited an efficient adversary with
a very high prf-advantage, showing that G is not a secure PRF.

3.8 Security against key recovery

We have mentioned several times that security against key recovery is not sufficient as a notion of
security for a blockcipher. However it is certainly necessary: if key recovery is easy, the blockcipher
should be declared insecure. We have indicated that we want to adopt as notion of security for a
blockcipher the notion of a PRF or a PRP. If this is to be viable, it should be the case that any
function family that is insecure under key recovery is also insecure as a PRF or PRP. In this section
we verify this simple fact. Doing so will enable us to exercise the method of reductions.

We begin by formalizing security against key recovery. We consider an adversary that, based
on input-output examples of an instance FK of family F , tries to find K. Its advantage is defined
as the probability that it succeeds in finding K. The probability is over the random choice of K,
and any random choices of the adversary itself.

We give the adversary oracle access to FK so that it can obtain input-output examples of its
choice. We do not constrain the adversary with regard to the method it uses. This leads to the
following definition.

Definition 3.8.1 Let F : K × D → R be a family of functions, and let B be an algorithm that
takes an oracle Fn for a function Fn: D → R and outputs a string. We consider the game as
described in Fig. 3.4. The kr-advantage of B is defined as

Advkr
F (B) = Pr

[
KRB

F⇒1
]

This definition has been made general enough to capture all types of key-recovery attacks. Any of
the classical attacks such as exhaustive key search, differential cryptanalysis or linear cryptanalysis
correspond to different, specific choices of adversary B. They fall in this framework because all have
the goal of finding the key K based on some number of input-output examples of an instance FK

of the cipher. To illustrate let us see what are the implications of the classical key-recovery attacks
on DES for the value of the key-recovery advantage function of DES. Assuming the exhaustive
key-search attack is always successful based on testing two input-output examples leads to the fact
that there exists an adversary B such that Advkr

DES(B) = 1 and B makes two oracle queries and

14 PSEUDORANDOM FUNCTIONS

Game KRF

procedure Initialize

K $← Keys(F)

procedure Fn(x)
return FK(x)

procedure Finalize(K ′)
return (K = K ′)

Figure 3.4: Game used to define KR.

has running time about 255 times the time TDES for one computation of DES. On the other hand,
linear cryptanalysis implies that there exists an adversary B such that Advkr

DES(B) ≥ 1/2 and B
makes 244 oracle queries and has running time about 244 times the time TDES for one computation
of DES.

For a more concrete example, let us look at the key-recovery advantage of the family of
Example 3.7.1.

Example 3.8.2 Let F : {0, 1}k×{0, 1}l → {0, 1}L be the family of functions from Example 3.7.1.
We saw that its prf-advantage was very high. Let us now compute its kr-advantage. The following
adversary B recovers the key. We let ej be the l-bit binary string having a 1 in position j and zeros
everywhere else. We assume that the manner in which the key K defines the matrix is that the
first L bits of K form the first column of the matrix, the next L bits of K form the second column
of the matrix, and so on.

Adversary B
K ′ ← ε // ε is the empty string
for j = 1, . . . , l do

yj ← Fn(ej)
K ′ ← K ′ ‖ yj

return K ′

The adversary B invokes its oracle to compute the output of the function on input ej . The result,
yj , is exactly the j-th column of the matrix associated to the key K. The matrix entries are
concatenated to yield K ′, which is returned as the key. Since the adversary always finds the key
we have

Advkr
F (B) = 1 .

The time-complexity of this adversary is t = O(l2L) since it makes q = l calls to its oracle and each
computation of Fn takes O(lL) time. The parameters here should still be considered small: l is 64
or 128, which is small for the number of queries. So F is insecure against key-recovery.

Note that the F of the above example is less secure as a PRF than against key-recovery: its
advantage function as a PRF had a value close to 1 for parameter values much smaller than those
above. This leads into our next claim, which says that for any given parameter values, the kr-
advantage of a family cannot be significantly more than its prf or prp-cpa advantage.

Bellare and Rogaway 15

Proposition 3.8.3 Let F : K × D → R be a family of functions, and let B be a key-recovery
adversary against F . Assume B’s running time is at most t and it makes at most q < |D| oracle
queries. Then there exists a PRF adversary A against F such that A has running time at most t
plus the time for one computation of F , makes at most q + 1 oracle queries, and

Advkr
F (B) ≤ Advprf

F (A) +
1
|R|

. (3.1)

Furthermore if D = R then there also exists a PRP CPA adversary A against F such that A has
running time at most t plus the time for one computation of F , makes at most q +1 oracle queries,
and

Advkr
F (B) ≤ Advprp-cpa

F (A) +
1

|D| − q
. (3.2)

The Proposition implies that if a family of functions is a secure PRF or PRP then it is also
secure against all key-recovery attacks. In particular, if a blockcipher is modeled as a PRP or PRF,
we are implicitly assuming it to be secure against key-recovery attacks.

Before proceeding to a formal proof let us discuss the underlying ideas. The problem that
adversary A is trying to solve is to determine whether its given oracle Fn is a random instance of
F or a random function of D to R. A will run B as a subroutine and use B’s output to solve its
own problem.

B is an algorithm that expects to be in a world where it gets an oracle Fn for some random key
K ∈ K, and it tries to find K via queries to its oracle. For simplicity, first assume that B makes no
oracle queries. Now, when A runs B, it produces some key K ′. A can test K ′ by checking whether
F (K ′, x) agrees with Fn(x) for some value x. If so, it bets that Fn was an instance of F , and if
not it bets that Fn was random.

If B does make oracle queries, we must ask how A can run B at all. The oracle that B wants
is not available. However, B is a piece of code, communicating with its oracle via a prescribed
interface. If you start running B, at some point it will output an oracle query, say by writing this
to some prescribed memory location, and stop. It awaits an answer, to be provided in another
prescribed memory location. When that appears, it continues its execution. When it is done
making oracle queries, it will return its output. Now when A runs B, it will itself supply the
answers to B’s oracle queries. When B stops, having made some query, A will fill in the reply in
the prescribed memory location, and let B continue its execution. B does not know the difference
between this “simulated” oracle and the real oracle except in so far as it can glean this from the
values returned.

The value that B expects in reply to query x is FK(x) where K is a random key from K.
However, A returns to it as the answer to query x the value Fn(x), where Fn is A’s oracle. When
A is in the real world, Fn(x) is an instance of F and so B is functioning as it would in its usual
environment, and will return the key K with a probability equal to its kr-advantage. However
when A is in the random world, Fn is a random function, and B is getting back values that bear
little relation to the ones it is expecting. That does not matter. B is a piece of code that will run
to completion and produce some output. When we are in the random world, we have no idea what
properties this output will have. But it is some key in K, and A will test it as indicated above. It
will fail the test with high probability as long as the test point x was not one that B queried, and
A will make sure the latter is true via its choice of x. Let us now proceed to the actual proof.

Proof of Proposition 3.8.3: We prove the first equation and then briefly indicate how to alter
the proof to prove the second equation.

16 PSEUDORANDOM FUNCTIONS

As per Definition 3.4.1, adversary A will be provided an oracle Fn for a function Fn: D → R, and
will try to determine in which World it is. To do so, it will run adversary B as a subroutine. We
provide the description followed by an explanation and analysis.

Adversary A
i← 0
Run adversary B, replying to its oracle queries as follows
When B makes an oracle query x do

i← i + 1 ; xi ← x
yi ← Fn(xi)
Return yi to B as the answer

Until B stops and outputs a key K ′

Let x be some point in D − {x1, . . . , xq}
y ← Fn(x)
if F (K ′, x) = y then return 1 else return 0

As indicated in the discussion preceding the proof, A is running B and itself providing answers
to B’s oracle queries via the oracle Fn. When B has run to completion it returns some K ′ ∈ K,
which A tests by checking whether F (K ′, x) agrees with Fn(x). Here x is a value different from
any that B queried, and it is to ensure that such a value can be found that we require q < |D| in
the statement of the Proposition. Now we claim that

Pr
[
RealAF⇒1

]
≥ Advkr

F (B) (3.3)

Pr
[
RandA

R⇒1
]

=
1
|R|

. (3.4)

We will justify these claims shortly, but first let us use them to conclude. Subtracting, as per
Definition 3.4.1, we get

Advprf
F (A) = Pr

[
RealAF⇒1

]
− Pr

[
RandA

R⇒1
]

≥ Advkr
F (B)− 1

|R|

as desired. It remains to justify Equations (3.3) and (3.4).

Equation (3.3) is true because in RealF the oracle Fn is a random instance of F , which is the oracle
that B expects, and thus B functions as it does in KRB

F . If B is successful, meaning the key K ′ it
outputs equals K, then certainly A returns 1. (It is possible that A might return 1 even though B
was not successful. This would happen if K ′ 6= K but F (K ′, x) = F (K, x). It is for this reason that
Equation (3.3) is in inequality rather than an equality.) Equation (3.4) is true because in RandR

the function Fn is random, and since x was never queried by B, the value Fn(x) is unpredictable
to B. Imagine that Fn(x) is chosen only when x is queried to Fn. At that point, K ′, and thus
F (K ′, x), is already defined. So Fn(x) has a 1/|R| chance of hitting this fixed point. Note this is
true regardless of how hard B tries to make F (K ′, x) be the same as Fn(x).

For the proof of Equation (3.2), the adversary A is the same. For the analysis we see that

Pr
[
RealAF⇒1

]
≥ Advkr

F (B)

Pr
[
RandA

R⇒1
]
≤ 1
|D| − q

.

Bellare and Rogaway 17

Subtracting yields Equation (3.2). The first equation above is true for the same reason as before.
The second equation is true because in World 0 the map Fn is now a random permutation of D to
D. So Fn(x) assumes, with equal probability, any value in D except y1, . . . , yq, meaning there are
at least |D| − q things it could be. (Remember R = D in this case.)

The following example illustrates that the converse of the above claim is far from true. The kr-
advantage of a family can be significantly smaller than its prf or prp-cpa advantage, meaning that
a family might be very secure against key recovery yet very insecure as a prf or prp, and thus not
useful for protocol design.

Example 3.8.4 Define the blockcipher E: {0, 1}k × {0, 1}` → {0, 1}` by EK(x) = x for all k-bit
keys K and all `-bit inputs x. We claim that it is very secure against key-recovery but very insecure
as a PRP under CPA. More precisely, we claim that for any adversary B,

Advkr
E (B) = 2−k ,

regardless of the running time and number of queries made by B. On the other hand there is an
adversary A, making only one oracle query and having a very small running time, such that

Advprp-cpa
E (A) ≥ 1− 2−` .

In other words, given an oracle for EK , you may make as many queries as you want, and spend
as much time as you like, before outputting your guess as to the value of K, yet your chance
of getting it right is only 2−k. On the other hand, using only a single query to a given oracle
Fn: {0, 1}` → {0, 1}`, and very little time, you can tell almost with certainty whether Fn is an
instance of E or is a random function of ` bits to ` bits. Why are these claims true? Since EK does
not depend on K, an adversary with oracle EK gets no information about K by querying it, and
hence its guess as to the value of K can be correct only with probability 2−k. On the other hand,
an adversary can test whether Fn(0`) = 0`, and by returning 1 if and only if this is true, attain a
prp-advantage of 1− 2−`.

3.9 The birthday attack

Suppose E: {0, 1}k×{0, 1}` → {0, 1}` is a family of permutations, meaning a blockcipher. If we are
given an oracle Fn: {0, 1}` → {0, 1}` which is either an instance of E or a random function, there
is a simple test to determine which of these it is. Query the oracle at distinct points x1, x2, . . . , xq,
and get back values y1, y2, . . . , yq. You know that if Fn were a permutation, the values y1, y2, . . . , yq

must be distinct. If Fn was a random function, they may or may not be distinct. So, if they are
distinct, bet on a permutation.

Surprisingly, this is pretty good adversary, as we will argue below. Roughly, it takes q =
√

2`

queries to get an advantage that is quite close to 1. The reason is the birthday paradox. If you are
not familiar with this, you may want to look at the appendix on the birthday problem and then
come back to the following.

This tells us that an instance of a blockcipher can be distinguished from a random function
based on seeing a number of input-output examples which is approximately 2`/2. This has important
consequences for the security of blockcipher based protocols.

Proposition 3.9.1 Let E: {0, 1}k × {0, 1}` → {0, 1}` be a family of permutations. Suppose q
satisfies 2 ≤ q ≤ 2(`+1)/2. Then there is an adversary A, making q oracle queries and having
running time about that to do q computations of E, such that

Advprf
E (A) ≥ 0.3 · q(q − 1)

2`
. (3.5)

18 PSEUDORANDOM FUNCTIONS

Proof of Proposition 3.9.1: Adversary A is given an oracle Fn: {0, 1}` → {0, 1}` and works
like this:

Adversary A
for i = 1, . . . , q do

Let xi be the i-th `-bit string in lexicographic order
yi ← Fn(xi)

if y1, . . . , yq are all distinct then return 1, else return 0

Let us now justify Equation (3.5). Letting N = 2`, we claim that

Pr
[
RealAE⇒1

]
= 1 (3.6)

Pr
[
RandA

E⇒1
]

= 1− C(N, q) . (3.7)

Here C(N, q), as defined in the appendix on the birthday problem, is the probability that some bin
gets two or more balls in the experiment of randomly throwing q balls into N bins. We will justify
these claims shortly, but first let us use them to conclude. Subtracting, we get

Advprf
E (A) = Pr

[
RealAE⇒1

]
− Pr

[
RandA

E⇒1
]

= 1− [1− C(N, q)]

= C(N, q)

≥ 0.3 · q(q − 1)
2`

.

The last line is by Theorem A.1 in the appendix on the birthday problem. It remains to justify
Equations (3.6) and (3.7).

Equation (3.6) is clear because in the real world, Fn = EK for some key K, and since E is a family
of permutations, Fn is a permutation, and thus y1, . . . , yq are all distinct. Now, suppose A is in
the random world, so that Fn is a random function of ` bits to ` bits. What is the probability
that y1, . . . , yq are all distinct? Since Fn is a random function and x1, . . . , xq are distinct, y1, . . . , yq

are random, independently distributed values in {0, 1}`. Thus we are looking at the birthday
problem. We are throwing q balls into N = 2` bins and asking what is the probability of there
being no collisions, meaning no bin contains two or more balls. This is 1 − C(N, q), justifying
Equation (3.7).

3.10 The PRP/PRF switching lemma

When we analyse blockcipher-based constructions, we find a curious dichotomy: PRPs are what
most naturally model blockciphers, but analyses are often considerably simpler and more natural
assuming the blockcipher is a PRF. To bridge the gap, we relate the prp-security of a blockcipher to
its prf-security. The following says, roughly, these two measures are always close—they don’t differ
by more than the amount given by the birthday attack. Thus a particular family of permutations E
may have prf-advantage that exceeds its prp-advantage, but not by more than 0.5 q2/2n.

Bellare and Rogaway 19

Lemma 3.10.1 [PRP/PRF Switching Lemma] Let E: K × {0, 1}n → {0, 1}n be a function
family. Let R = {0, 1}n. Let A be an adversary that asks at most q oracle queries. Then∣∣∣Pr

[
RandA

R⇒1
]
− Pr

[
PermA

R⇒1
]∣∣∣ ≤ q(q − 1)

2n+1
. (3.8)

As a consequence, we have that∣∣∣Advprf
E (A)−Advprp

E (A)
∣∣∣ ≤ q(q − 1)

2n+1
. (3.9)

The proof introduces a technique that we shall use repeatedly: a game-playing argument. We
are trying to compare what happens when an adversary A interacts with one kind of object—a
random permutation oracle—to what happens when the adversary interacts with a different kind
of object—a random function oracle. So we set up each of these two interactions as a kind of game,
writing out the game in pseudocode. The two games are written in a way that highlights when
they have differing behaviors. In particular, any time that the behavior in the two games differ,
we set a flag bad. The probability that the flag bad gets set in one of the two games is then used
to bound the difference between the probability that the adversary outputs 1 in one game and the
the probability that the adversary outputs 1 in the other game.

Proof: Let’s begin with Equation (3.8), as Equation (3.9) follows from that. We need to establish
that

−q(q − 1)
2n+1

≤ Pr
[
RandA

R⇒1
]
− Pr

[
PermA

R⇒1
]
≤ q(q − 1)

2n+1

Let’s show the right-hand inequality, since the left-hand inequality works in exactly the same way.
So we are trying to establish that

Pr[Aρ⇒1]− Pr[Aπ⇒1] ≤ q(q − 1)
2n+1

. (3.10)

We can assume that A never asks an oracle query that is not an n-bit string. You can assume that
such an invalid oracle query would generate an error message. The same error message would be
generated on any invalid query, regardless of A’s oracle, so asking invalid queries is pointless for A.

We can also assume that A never repeats an oracle query: if it asks a question X it won’t later ask
the same question X. It’s not interesting for A to repeat a question, because it’s going to get the
same answer as before, independent of the type of oracle to which A is speaking to. More precisely,
with a little bit of bookkeeping the adversary can remember what was its answer to each oracle
query it already asked, and it doesn’t have to repeat an oracle query because the adversary can
just as well look up the prior answer.

Let’s look at Games G0 and G1 of Fig. 3.5. Notice that the adversary never sees the flag bad. The
flag bad will play a central part in our analysis, but it is not something that the adversary A can
get hold of. It’s only for our bookkeeping.

Suppose that the adversary asks a query X. By our assumptions about A, the string X is an n-bit
string that the adversary has not yet asked about. In line 10, we choose a random n-bit string Y .
Lines 11,12, next, are the most interesting. If the point Y that we just chose is already in the
range of the function we are defining then we set a flag bad. In such a case, if we are playing game
G0, then we now make a fresh choice of Y , this time from the co-range of the function. If we are
playing game G1 then we stick with our original choice of Y . Either way, we return Y , effectively
growing the domain of our function.

20 PSEUDORANDOM FUNCTIONS

procedure Initialize // G0 , G1

UR← ∅
procedure Fn(x)
10 Y $←R
11 if Y ∈ UR then

12 bad← true; Y $←R \ UR

13 UR← UR ∪ {Y }
14 return Y

Figure 3.5: Games used in the proof of the Switching Lemma. Game G0 includes the boxed code
while game G1 does not.

Now let’s think about what A sees as it plays Game G1. Whatever query X is asked, we just
return a random n-bit string Y . So game G1 perfectly simulates a random function. Remember
that the adversary isn’t allowed to repeat a query, so what the adversary would get if it had a
random function oracle is a random n-bit string in response to each query—just what we are giving
it. Hence

Pr[RandA
R⇒1] = Pr[G1⇒1] (3.11)

Now if we’re in game G0 then what the adversary gets in response to each query X is a random
point Y that has not already been returned to A. Thus

Pr[PermA
R⇒1] = Pr[GA

0⇒1] . (3.12)

But game G0, G1 are identical until bad and hence the Fundamental Lemma of game playing implies
that

Pr[GA
0⇒1]− Pr[GA

1⇒1] ≤ Pr[GA
1 sets bad] . (3.13)

To bound Pr[GA
1 sets bad] is simple. Line 11 is executed q times. The first time it is executed UR

contains 0 points; the second time it is executed UR contains 1 point; the third time it is executed
Range(π) contains at most 2 points; and so forth. Each time line 11 is executed we have just selected
a random value Y that is independent of the contents of UR. By the sum bound, the probability
that a Y will ever be in UR at line 11 is therefore at most 0/2n + 1/2n + 2/2n + · · ·+ (q − 1)/2n =
(1 + 2 + · · ·+ (q − 1))/2n = q(q − 1)/2n+1. This completes the proof of Equation (3.10). To go on
and show that Advprf

E (A)−Advprp
E (A) ≤ q(q − 1)/2n+1 note that

Advprf
E (A)−Advprp

E (A) = Pr
[
RealAF⇒1

]
−Pr

[
RandA

R⇒1
]
−

(
Pr

[
RealAF⇒1

]
−Pr

[
PermA

R⇒1
])

= Pr
[
PermA

R⇒1
]
− Pr

[
RandA

R⇒1
]

≤ q(q − 1)/2n+1

This completes the proof.

The PRP/PRF switching lemma is one of the central tools for understanding block-cipher based
protocols, and the game-playing method will be one of our central techniques for doing proofs.

Bellare and Rogaway 21

3.11 Historical notes

The concept of pseudorandom functions is due to Goldreich, Goldwasser and Micali [3], while that
of pseudorandom permutation is due to Luby and Rackoff [4]. These works are however in the
complexity-theoretic or “asymptotic” setting, where one considers an infinite sequence of families
rather than just one family, and defines security by saying that polynomial-time adversaries have
“negligible” advantage. In contrast our approach is motivated by the desire to model blockciphers
and is called the “concrete security” approach. It originates with [2]. Definitions 3.4.1 and 3.5.1
are from [2], as are Propositions 3.9.1 and 3.10.1.

3.12 Problems

Problem 1 Let E: {0, 1}k × {0, 1}n → {0, 1}n be a secure PRP. Consider the family of permuta-
tions E′: {0, 1}k × {0, 1}2n → {0, 1}2n defined by for all x, x′ ∈ {0, 1}n by

E′
K(x ‖ x′) = EK(x) ‖ EK(x ⊕ x′) .

Show that E′ is not a secure PRP.

Problem 2 Consider the following blockcipher E : {0, 1}3 × {0, 1}2 → {0, 1}2:

key 0 1 2 3

0 0 1 2 3
1 3 0 1 2
2 2 3 0 1
3 1 2 3 0
4 0 3 2 1
5 1 0 3 2
6 2 1 0 3
7 3 2 1 0

(The eight possible keys are the eight rows, and each row shows where the points to which 0, 1,
2, and 3 map.) Compute the maximal prp-advantage an adversary can get (a) with one query,
(b) with four queries, and (c) with two queries.

Problem 3 Present a secure construction for the problem of Example 3.7.2. That is, given a PRF
F : {0, 1}k × {0, 1}n → {0, 1}n, construct a PRF G: {0, 1}k × {0, 1}n → {0, 1}2n which is a secure
PRF as long as F is secure.

Problem 4 Design a blockcipher E : {0, 1}k × {0, 1}128 → {0, 1}128 that is secure (up to a
large number of queries) against non-adaptive adversaries, but is completely insecure (even for
two queries) against an adaptive adversary. (A non-adaptive adversary readies all her questions
M1, . . . ,Mq, in advance, getting back EK(M1), ..., EK(Mq). An adaptive adversary is the sort we
have dealt with throughout: each query may depend on prior answers.)

Problem 5 Let a[i] denote the i-th bit of a binary string i, where 1 ≤ i ≤ |a|. The inner product
of n-bit binary strings a, b is

〈 a, b 〉 = a[1]b[1] ⊕ a[2]b[2] ⊕ · · · ⊕ a[n]b[n] .

22 PSEUDORANDOM FUNCTIONS

Game G

procedure Initialize

K $← Keys(F)

procedure f(x)
Return FK(x)

procedure g(x)
Return FK(x)

Game H

procedure Initialize

K1
$← Keys(F) ; K2

$← Keys(F)

procedure f(x)
Return FK1(x)

procedure g(x)
Return FK2(x)

Figure 3.6: Game used to in Problem 7.

A family of functions F : {0, 1}k × {0, 1}` → {0, 1}L is said to be inner-product preserving if for
every K ∈ {0, 1}k and every distinct x1, x2 ∈ {0, 1}` − {0`} we have

〈 F (K, x1), F (K, x2) 〉 = 〈 x1, x2 〉 .

Prove that if F is inner-product preserving then there exists an adversary A, making at most two
oracle queries and having running time 2 · TF + O(`), where TF denotes the time to perform one
computation of F , such that

Advprf
F (A) ≥ 1

2
·
(

1 +
1
2L

)
.

Explain in a sentence why this shows that if F is inner-product preserving then F is not a secure
PRF.

Problem 6 Let E: {0, 1}k × {0, 1}` → {0, 1}` be a blockcipher. The two-fold cascade of E is the
blockcipher E(2): {0, 1}2k × {0, 1}` → {0, 1}` defined by

E
(2)
K1 ‖ K2

(x) = EK1(EK2(x))

for all K1,K2 ∈ {0, 1}k and all x ∈ {0, 1}`. Prove that if E is a secure PRP then so is E(2).

Problem 7 Let A be a adversary that makes at most q total queries to its two oracles, f and g,
where f, g : {0, 1}n → {0, 1}n. Assume that A never asks the same query X to both of its oracles.
Define

Adv(A) = Pr[GA = 1]− Pr[HA = 1]

where games G, H are defined in Fig. 3.6. Prove a good upper bound for Adv(A), say Adv(A) ≤
q2/2n.

Problem 8 Let F : {0, 1}k×{0, 1}` → {0, 1}` be a family of functions and r ≥ 1 an integer. The r-
round Feistel cipher associated to F is the family of permutations F (r): {0, 1}rk×{0, 1}2` → {0, 1}2`

defined as follows for any K1, . . . ,Kr ∈ {0, 1}k and input x ∈ {0, 1}2`:

Function F (r)(K1 ‖ · · · ‖Kr, x)
Parse x as L0 ‖R0 with |L0| = |R0| = `
For i = 1, . . . , r do

Bellare and Rogaway 23

Li ← Ri−1 ; Ri ← F (Ki, Ri−1) ⊕ Li−1

EndFor
Return Lr ‖Rr

(a) Prove that there exists an adversary A, making at most two oracle queries and having running
time about that to do two computations of F , such that

Advprf

F (2)(A) ≥ 1− 2−` .

(b) Prove that there exists an adversary A, making at most two queries to its first oracle and one
to its second oracle, and having running time about that to do three computations of F or
F−1, such that

Advprp-cca
F (3) (A) ≥ 1− 3 · 2−` .

Problem 9 Let E: K × {0, 1}n → {0, 1}n be a function family and let A be an adversary that
asks at most q queries. In trying to construct a proof that |Advprp

E (A) −Advprf
E (A)| ≤ q2/2n+1,

Michael and Peter put forward an argument a fragment of which is as follows:

Consider an adversary A that asks at most q oracle queries to an oracle Fn for a function
from R to R, where R = {0, 1}n. Let C (for “collision”) be the event that A asks some
two distinct queries X and X ′ and the oracle returns the same answer. Then clearly

Pr[PermA
R⇒1] = Pr[RandA

R⇒1 | C].

Show that Michael and Peter have it all wrong: prove that the quantities above are not necessarily
equal. Do this by selecting a number n and constructing an adversary A for which the left and
right sides of the equation above are unequal.

24 PSEUDORANDOM FUNCTIONS

Bibliography

[1] M. Bellare and P. Rogaway. The Security of Triple Encryption and a Framework for
Code-Based Game-Playing Proofs. Advances in Cryptology – EUROCRYPT ’06, Lecture
Notes in Computer Science Vol. , ed., Springer-Verlag, 2006

[2] M. Bellare, J. Kilian and P. Rogaway. The security of the cipher block chaining message
authentication code. Journal of Computer and System Sciences , Vol. 61, No. 3, Dec 2000,
pp. 362–399.

[3] O. Goldreich, S. Goldwasser and S. Micali. How to construct random functions. Jour-
nal of the ACM, Vol. 33, No. 4, 1986, pp. 210–217.

[4] M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudoran-
dom functions. SIAM J. Comput, Vol. 17, No. 2, April 1988.

25

