Problem Set 2

Due: Tuesday April 10, 2012.
You may discuss the problem set with classmates, but must write up problem solutions individually. If you discuss a problem with someone, indicate it clearly at the beginning of the problem's solution. I will check that you turned it in and attempted the problems.

Problem 1. Let $E:\{0,1\}^{k} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a block cipher and let algorithm \mathcal{K} return $K \stackrel{\&}{\leftarrow}\{0,1\}^{k}$. Assume messages to be encrypted have length $\ell<n$. Let \mathcal{E} be the following encryption algorithm:

```
algorithm \(\mathcal{E}_{K}(M)\)
    if \(|M| \neq \ell\) then return \(\perp \quad / /\) Only encrypts \(\ell\)-bit messages
    \(R \stackrel{\&}{\leftarrow}\{0,1\}^{n-\ell}\)
    \(C \leftarrow E_{K}(R \| M)\)
    return \(C\)
```

Above, " $x \| y$ " denotes the concatenation of strings x and y.

1. Specify a decryption algorithm \mathcal{D} such that $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is a symmetric encryption scheme providing correct decryption.
2. Give the best attack you can on this scheme. Given an even number q, your attack should take the form of an ind-cpa adversary A that makes q oracle queries and has running time around that for $O(q)$ applications of E. Specify $\mathbf{A d v} \mathbf{v}_{\mathcal{S}}^{\text {ind-cpa }}(A)$ as a function of q, n, ℓ. Letting $n=128$, make a table showing, for values $\ell=1,16,32,64,96$, the smallest value of q for which the advantage is at least $1 / 4$. For the analysis, you may find Lemma A. 1 below useful.
3. Give a reduction of the IND-CPA security of $\mathcal{S E}$ to the PRF security of E. This means you must state a theorem that upper bounds the ind-cpa advantage of a given ind-cpa adversary A as a function of the prf-advantage of a constructed prf-adversary B and (possibly) n, ℓ and the number q of LR-queries made by A. This is analogous to results we have seen in class for CTRC and CBC $\$$ encryption. Prove your theorem using a game sequence.
4. As a result of the above, do you consider the scheme to be secure or insecure? Discuss this for $E=\mathrm{AES}$ and $\ell=1,16,32,64,96$.

Problem 2. Let $E:\{0,1\}^{k} \times\{0,1\}^{l} \rightarrow\{0,1\}^{l}$ be a block cipher. Let D be the set of all strings whose length is a positive multiple of l.

1. Define the hash function $H_{1}:\{0,1\}^{k} \times D \rightarrow\{0,1\}^{l}$ via the CBC construction, as follows:
algorithm $H_{1}(K, M)$
$M[1] M[2] \ldots M[n] \leftarrow M$
$C[0] \leftarrow 0^{l}$
For $i=1, \ldots, n$ do $C[i] \leftarrow E(K, C[i-1] \oplus M[i])$
Return $C[n]$
Show that H_{1} is not collision-resistant.
2. Define the hash function $H_{2}:\{0,1\}^{k} \times D \rightarrow\{0,1\}^{l}$ as follows:
algorithm $H_{2}(K, M)$
$M[1] M[2] \ldots M[n] \leftarrow M$
$C[0] \leftarrow 0^{l}$
For $i=1, \ldots, n$ do $B[i] \leftarrow E(K, C[i-1] \oplus M[i]) ; C[i] \leftarrow E(K, B[i] \oplus M[i])$
Return $C[n]$
Is H_{2} collision-resistant? If you say NO, present an attack. If YES, explain your answer, or, better yet, prove it.

Above, $M[1] M[2] \ldots M[n] \leftarrow M$ means we break M into l-bit blocks, with $M[i]$ denoting the i-th block. For any attack (adversary) you provide, state its time-complexity. (The amount of credit you get depends on how low this is.)

Problem 4. Let E denote AES. Let \mathcal{K} be the key generation algorithm that returns a random 128 -bit AES key K, and let $\mathcal{S E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the symmetric encryption scheme whose encryption and decryption algorithms are as follows:

$$
\begin{array}{l|l}
\text { algorithm } \mathcal{E}_{K}(M) & \text { algorithm } \mathcal{D}_{K}\left(\left(C_{e}, T\right)\right) \\
\quad \text { if }|M| \neq 512 \text { then return } \perp & \text { if }\left|C_{e}\right| \neq 640 \text { then return } \perp \\
M[1] \ldots M[4] \leftarrow M & C_{m}[0] \leftarrow 0^{128} \\
C_{e}[0] \leftarrow\{0,1\}^{128} ; C_{m}[0] \leftarrow 0^{128} & \text { for } i=1, \ldots, 4 \text { do } \\
\text { for } i=1, \ldots, 4 \text { do } & M[i] \leftarrow E_{K}^{-1}\left(C_{e}[i]\right) \oplus C_{e}[i-1] \\
C_{e}[i] \leftarrow E_{K}\left(C_{e}[i-1] \oplus M[i]\right) & C_{m}[i] \leftarrow E_{K}\left(C_{m}[i-1] \oplus M[i]\right) \\
C_{m}[i] \leftarrow E_{K}\left(C_{m}[i-1] \oplus M[i]\right) & \text { if } C_{m}[4] \neq T \text { then return } \perp \\
C_{e} \leftarrow C_{e}[0] C_{e}[1] C_{e}[2] C_{e}[3] C_{e}[4] & \text { return } M \\
T \leftarrow C_{m}[4] & \\
\text { return }\left(C_{e}, T\right) &
\end{array}
$$

Above, $X[i]$ denotes the i-th 128 -bit block of a string whose length is a multiple of 128 , and $M[1] \ldots M[4] \leftarrow M$ means we break M into 128 -bit blocks.

1. For each of the following notions of security, say whether the scheme is SECURE or INSE-

$\frac{\text { main SUFCMA }_{\mathcal{M} \mathcal{A}}}{K \stackrel{\&}{\mathcal{K}} ; S \leftarrow \emptyset}$	$\frac{\text { procedure Verify }(M, T)}{d \leftarrow \mathcal{V}_{K}(M, T)}$
$A^{\text {tag,Verify }}$	If $(d=1 \wedge(M, T) \notin S)$ then win \leftarrow true
Return win	return d
	$\frac{\text { procedure } \operatorname{Tag}(M)}{T \stackrel{\&}{ } \mathcal{T}_{K}(M)}$
	$S \leftarrow S \cup\{(M, T)\}$
	return T

Figure 1: The SUFCMA $_{\mathcal{M A}}$ game.

CURE and justify your answer: INT-PTXT, INT-CTXT, IND-CPA, IND-CCA.
2. Discuss this scheme from the point of view of being an Encrypt-and-MAC construction. Is it? For which choices of Encrypt and MAC? How do you reconcile your findings about its security with what we know about the security of this construction?

Problem 5. Let $\mathcal{S E}=\left(\mathcal{K}_{e}, \mathcal{E}, \mathcal{D}\right)$ be an IND-CPA symmetric encryption scheme, and $\mathcal{M A}=$ $\left(\mathcal{K}_{m}, \mathcal{T}, \mathcal{V}\right)$ a MAC. Let $\overline{\mathcal{S E}}=(\mathcal{K}, \overline{\mathcal{E}}, \overline{\mathcal{D}})$ be the symmetric encryption scheme whose algorithms are as follows:

algorithm \mathcal{K}	algorithm $\overline{\mathcal{E}}\left(K_{1} \\| K_{2}, M\right)$	algorithm $\overline{\mathcal{D}}\left(K_{1} \\| K_{2},(C, T)\right)$
$K_{1} \stackrel{\leftrightarrow}{\leftarrow} \mathcal{K}_{e}$	$C \stackrel{\leftrightarrow}{\leftarrow} \mathcal{E}\left(K_{1}, M\right)$	If $\mathcal{V}\left(K_{2}, C, T\right)=0$ then return \perp
$K_{2} \stackrel{\leftrightarrow}{\leftarrow} \mathcal{K}_{m}$	$T \stackrel{\&}{\leftarrow} \mathcal{T}\left(K_{2}, C\right)$	$M \leftarrow \mathcal{D}\left(K_{1}, C\right)$
Return $K_{1} \\| K_{2}$	Return (C, T)	Return M

1. SUF-CMA is a strengthening of the notion UF-CMA given in class; it is shown in Fig. 1. The suf-cma advantage of adversary A is

$$
\begin{equation*}
\operatorname{Adv}_{\mathcal{M A}}^{\text {suf-cma }}(A)=\operatorname{Pr}\left[\operatorname{SUFCMA}_{\mathcal{M} \mathcal{A}}^{A} \Rightarrow \text { true }\right] \tag{1}
\end{equation*}
$$

Explain, in words, the difference between SUF-CMA and UF-CMA. We saw in class that a message authentication scheme based on a secure PRF is secure in the sense of UF-CMA. Does the argument extend to SUF-CMA? Explain why or why not.
2. Show that $\overline{\mathcal{S E}}$ is IND-CCA by establishing the following.

Theorem: Let A be an ind-cca-adversary against $\overline{\mathcal{S E}}$ that makes at most $q_{e} \mathbf{L R}$ queries and at most q_{d} Dec queries. Then there is an ind-cpa-adversary $A_{\mathcal{S E}}$ and a uf-cma-adversary $A_{\mathcal{M A}}$ such that

$$
\begin{equation*}
\operatorname{Adv}_{\overline{\mathcal{S}}}^{\text {ind-cca }}(A) \leq \operatorname{Adv}_{\mathcal{S E}}^{\text {ind-cpa }}\left(A_{\mathcal{S E}}\right)+2 \cdot \mathbf{A d v}_{\mathcal{M} \mathcal{A}}^{\text {suf-cma }}\left(A_{\mathcal{M} \mathcal{A}}\right) \tag{2}
\end{equation*}
$$

Furthermore the number of $\mathbf{L R}$ queries made by $A_{\mathcal{S E}}$ is at most q_{e}, the number of $\mathbf{T a g}$ queries made by $A_{\mathcal{M A}}$ is at most q_{e}, the number of Verify oracle queries made by $A_{\mathcal{M A}}$ is at most q_{d}, and both constructed adversaries have running time that of A plus minor overhead.

```
main \(G_{0}, G_{1}\)
\(K_{1} \stackrel{\S}{\leftarrow} \mathcal{K}_{e} ; K_{2} \stackrel{\uplus}{\leftarrow} \mathcal{K}_{m} ; b \stackrel{\&}{\leftarrow}\{0,1\} ; S \leftarrow \emptyset\)
\(b^{\prime} \stackrel{\&}{ } A^{\text {LR,Dec }}\)
Return ( \(b=b^{\prime}\) )
procedure LR \(\left(M_{0}, M_{1}\right)\)
\(C \stackrel{\&}{\leftarrow} \mathcal{E}\left(K_{1}, M_{b}\right) ; T \stackrel{\&}{\leftarrow} \mathcal{T}\left(K_{2}, C\right) ; S \leftarrow S \cup\{(C, T)\} ;\) Return \((C, T)\)
procedure \(\operatorname{Dec}((C, T))\)
If \((C, T) \in S\) then return \(\perp\)
\(M \leftarrow \perp\)
If \(\mathcal{V}\left(K_{2}, C, T\right)=1\) then
    bad \(\leftarrow\) true; \(M \leftarrow \mathcal{D}\left(K_{1}, C\right)\)
Return M
```

Figure 2: Game G_{1} includes the boxed code and game G_{0} does not.

Your proof should use a game sequence that includes the games G_{0}, G_{1} of Fig. 2.

A Generalized birthday lemma

Let N, r be positive integers and let S be a set of size N. Suppose we pick y_{1}, \ldots, y_{r} at random from S and also pick z_{1}, \ldots, z_{r} at random from S. Let $D(N, r)$ be the probability that there exist i, j such that $y_{i}=z_{j}$.

Lemma A. 1 Let N, r be positive integers. Then

$$
D(N, r) \geq \frac{C(N, 2 r)}{2}
$$

