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Recommended Book

Steven Levy. Crypto. Penguin books. 2001.

A non-technical account of the history of public-key cryptography and
the colorful characters involved.
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Recall Symmetric Cryptography

• Before Alice and Bob can communicate securely, they need to have
a common secret key KAB .

• If Alice wishes to also communicate with Charlie then she and
Charlie must also have another common secret key KAC .

• If Alice generates KAB , KAC , they must be communicated to her
partners over private and authenticated channels.
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Public Key Encryption

• Alice has a secret key that is shared with nobody, and an
associated public key that is known to everybody.

• Anyone (Bob, Charlie, . . .) can use Alice’s public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database

• Senders don’t need secrets

• There are no shared secrets
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Syntax of PKE

A public-key (or asymmetric) encryption scheme AE = (K, E ,D)
consists of three algorithms, where

EM D M or ⊥

sk

K

C C

pk

A
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How it Works

Step 1: Key generation
Alice locally computers (pk, sk)

$←K and stores sk .

Step 2: Alice enables any prospective sender to get pk.

Step 3: The sender encrypts under pk and Alice decrypts under sk.

We don’t require privacy of pk but we do require authenticity: the
sender should be assured pk is really Alice’s key and not someone else’s.
One could

• Put public keys in a trusted but public “phone book”, say a
cryptographic DNS.

• Use certificates as we will see later.
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Security of PKE Schemes: Issues

The issues are the same as for symmetric encryption:

• Want general purpose schemes

• Security should not rely on assumptions about usage setting

• Want to prevent leakage of partial information about plaintexts
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Security requirements

Suppose sender computes

C1
$←Epk(M1) ; · · · ; Cq

$←Epk(Mq)

Adversary A has C1, . . . ,Cq

What if A

Retrieves sk Bad!
Retrieves M1 Bad!

But also ...
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Security requirements

We want to hide all partial information about the data stream.

Examples of partial information:

• Does M1 = M2?

• What is first bit of M1?

• What is XOR of first bits of M1, M2?

Something we won’t hide: the length of the message
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New Issue

The adversary needs to be given the public key.
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Intuition for definition of IND

Consider encrypting one of two possible message streams, either

M1
0 , ...,Mq

0

or
M1

1 , ...,Mq
1

Adversary, given ciphertexts and both data streams, has to figure out
which of the two streams was encrypted.
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ind-cpa-adversaries

Let AE = (K, E ,D) be an public-key encryption scheme

An ind-cpa adversary A has input pk and an oracle LR

• It can make a query M0, M1 consisting of any two equal-length
messages

• It can do this many times

• Each time it gets back a ciphertext

• It eventually outputs a bit

pk −→

d ←−

A

M1
0 , M1

1-

C1�
...

Mq
0 , Mq

1-

Cq�

LR
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ind-cpa-adversaries

Let AE = (K, E ,D) be a public-key encryption scheme

Left world

pk → A M0, M1-
C�

LR
C

$←Epk(M0)

Right world

pk → A M0, M1-
C�

LR
C

$←Epk(M1)

Intended meaning:
A’s output d I think I am in the

1 Right world

0 Left world

The harder it is for A to guess world it is in, the more “secure” AE is as
an encryption scheme.
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The games

Let AE = (K, E ,D) be a public-key encryption scheme

Game LeftAE
procedure Initialize
(pk, sk)

$←K ; return pk

procedure LR(M0, M1)

Return C
$←Epk(M0)

Game RightAE
procedure Initialize
(pk, sk)

$←K ; return pk

procedure LR(M0, M1)

Return C
$←Epk(M1)

Associated to AE , A are the probabilities

Pr
[
LeftAAE⇒1

]
Pr
[
RightAAE⇒1

]
that A outputs 1 in each world. The ind-cpa advantage of A is

Advind-cpa
AE (A) = Pr

[
RightAAE⇒1

]
− Pr

[
LeftAAE⇒1

]
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Simplification

We may assume A makes only one LR query. It can be shown that this
can decrease its advantage by at most the number of LR queries.
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Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = 〈g〉 is a cyclic group. Let’s
let the encryption of x be g x . Then

g x︸︷︷︸
Eg (x)

hard−−→ x

so to recover x , adversary must compute discrete logarithms, and we
know it can’t, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!
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DH Key Exchange

Let G = 〈g〉 be a cyclic group of order m.

Alice Bob

x
$← Zm; X ← g x

X−−−−→
Y←−−−−

y
$← Zm; Y ← g y

Then
Y x = (g y )x = g xy = (g x)y = X y

• Alice can compute K = Y x

• Bob can compute K = X y

• But adversary wanting to compute K is faced with

g x , g y −→ g xy

which is exactly the CDH problem and is computationally hard.

So this enables Alice and Bob to get a common shared key which they
can then use to secure their communications.
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The El Gamal Scheme: Idea

We can turn DH key exchange into a public key encryption scheme via

• Let Alice have public key g x and secret key x

• If Bob wants to encrypt M for Alice, he
• Picks y and sends g y to Alice
• Encrypts M under g xy = (g x)y and sends ciphertext to Alice.

• But Alice can recompute g xy = (g y )x because
• g y is in the received ciphertext
• x is her secret key

Thus she can decrypt and adversary is still faced with CDH .
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EG Encryption, in Full

Let G = 〈g〉 be a cyclic group of order m. The EG PKE scheme
AEEG = (K, E ,D) is defined by

Alg K
x

$← Zm

X ← g x

return (X , x)

Alg EX (M)

y
$← Zm; Y ← g y

K ← X y

W ← K ·M
return (Y , W )

Alg Dx(Y , W )
K = Y x

M ←W · K−1

return M

We assume the message M ∈ G is a group element.

Correct decryption is assured because

K = X y = g xy = Y x

Implementation uses several algorithms we have studied before:
exponentiation, inverse.
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Security of AEEG

secret key = x ∈ Zm, where m = |G |
public key = X = g x ∈ G = 〈g〉

algorithm EX (M)

y
$← Zm; Y ← g y

K ← X y ; W ← K ·M
return (Y , W )

algorithm Dx(Y , W )
K ← Y x ; M ←W · K−1

return M

• To find x given X , adversary must solve DL problem

• To find M given X , (Y , W ), adversary must compute K = g xy ,
meaning solve CDH problem

• But what prevents leakage of partial information about M? Is the
scheme IND-CPA secure?

20 / 1



Security of AEEG

secret key = x ∈ Zm, where m = |G |
public key = X = g x ∈ G = 〈g〉

algorithm EX (M)

y
$← Zm; Y ← g y

K ← X y ; W ← K ·M
return (Y , W )

algorithm Dx(Y , W )
K ← Y x ; M ←W · K−1

return M

• To find x given X , adversary must solve DL problem

• To find M given X , (Y , W ), adversary must compute K = g xy ,
meaning solve CDH problem

• But what prevents leakage of partial information about M? Is the
scheme IND-CPA secure?

20 / 1



Security of AEEG

secret key = x ∈ Zm, where m = |G |
public key = X = g x ∈ G = 〈g〉

algorithm EX (M)

y
$← Zm; Y ← g y

K ← X y ; W ← K ·M
return (Y , W )

algorithm Dx(Y , W )
K ← Y x ; M ←W · K−1

return M

• To find x given X , adversary must solve DL problem

• To find M given X , (Y , W ), adversary must compute K = g xy ,
meaning solve CDH problem

• But what prevents leakage of partial information about M? Is the
scheme IND-CPA secure?

20 / 1



Security of AEEG in Z∗p

In G = Z∗p, where p is a prime

• DL, CDH are hard, yet

• There is an attack showing AEEG is NOT IND-CPA secure
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Number theory

Number theory is fun!
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Squares

We say that a is a square (or quadratic residue) modulo p if there exists
b such that b2 ≡ a (mod p).

We let

Jp(a) =


1 if a is a square mod p
0 if a mod p = 0
−1 otherwise

be the Legendre or Jacobi symbol of a modulo p.

Let p = 11. Then

• Is 4 a square modulo p?

YES because 22 ≡ 4 (mod 11)

• Is 5 a square modulo p?
YES because 42 ≡ 5 (mod 11)

• What is J11(5)?
It equals +1

23 / 1



Squares

We say that a is a square (or quadratic residue) modulo p if there exists
b such that b2 ≡ a (mod p).

We let

Jp(a) =


1 if a is a square mod p
0 if a mod p = 0
−1 otherwise

be the Legendre or Jacobi symbol of a modulo p.

Let p = 11. Then

• Is 4 a square modulo p?
YES because 22 ≡ 4 (mod 11)

• Is 5 a square modulo p?

YES because 42 ≡ 5 (mod 11)

• What is J11(5)?
It equals +1

23 / 1



Squares

We say that a is a square (or quadratic residue) modulo p if there exists
b such that b2 ≡ a (mod p).

We let

Jp(a) =


1 if a is a square mod p
0 if a mod p = 0
−1 otherwise

be the Legendre or Jacobi symbol of a modulo p.

Let p = 11. Then

• Is 4 a square modulo p?
YES because 22 ≡ 4 (mod 11)

• Is 5 a square modulo p?
YES because 42 ≡ 5 (mod 11)

• What is J11(5)?

It equals +1

23 / 1



Squares

We say that a is a square (or quadratic residue) modulo p if there exists
b such that b2 ≡ a (mod p).

We let

Jp(a) =


1 if a is a square mod p
0 if a mod p = 0
−1 otherwise

be the Legendre or Jacobi symbol of a modulo p.

Let p = 11. Then

• Is 4 a square modulo p?
YES because 22 ≡ 4 (mod 11)

• Is 5 a square modulo p?
YES because 42 ≡ 5 (mod 11)

• What is J11(5)?
It equals +1

23 / 1



The set of squares

We let

QR(Z∗p) = {a ∈ Z∗p : a is a square mod p}

= {a ∈ Z∗p : ∃b ∈ Z∗p such that b2 ≡ a (mod p)}
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Example

Let p = 11

a 1 2 3 4 5 6 7 8 9 10

a2 mod 11

1 4 9 5 3 3 5 9 4 1

Then
QR(Z∗p) = {1, 3, 4, 5, 9}

a 1 2 3 4 5 6 7 8 9 10

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

Observe

• There are 5 squares and 5 non-squares.

• Every square has exactly 2 square roots.
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Relation to discrete log

Recall that 2 is a generator of Z∗11

a 1 2 3 4 5 6 7 8 9 10

DLogZ∗11,2
(a) 0 1 8 2 4 9 7 3 6 5

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

so
J11(a) = 1 iff DLogZ∗11,2

(a) is even

This makes sense because for any generator g ,

g2j = (g j)2

is always a square!
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Squares and discrete logs

Fact: If p ≥ 3 is a prime and g is a generator of Z∗p then

QR(Z∗p) = {g i : 0 ≤ i ≤ p − 2 and i is even}

Example: If p = 11 and g = 2 then p − 2 = 9 and the squares are

• 20 mod 11 = 1

• 22 mod 11 = 4

• 24 mod 11 = 5

• 26 mod 11 = 9

• 28 mod 11 = 3
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Computing the Legendre symbol

Is there an algorithm that given p and a ∈ Z∗p returns Jp(a), meaning
determines whether or not a is a square mod p?

Sure!

Alg TEST-SQ(p, a)
Let g be a generator of Z∗p
Let i ← DLogZ∗p ,g (a)
if i is even then return 1 else return −1

This is correct, but

• How do we find g?

• How do we compute DLogZ∗p ,g (a)?
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Fermat’s Theorem

Fact: If p ≥ 3 is a prime then for any a

Jp(a) ≡ a
p−1

2 (mod p)

Example: Let p = 11.

• Let a = 5. We know that 5 is a square, meaning J11(5) = 1. Now
compute

a
p−1

2 ≡ 55 ≡ (25)(25)(5) ≡ 3 · 3 · 5 ≡ 45 ≡ 1 (mod 11).

• Let a = 6. We know that 6 is not a square, meaning J11(6) = −1.
Now compute

a
p−1

2 ≡ 65 ≡ (36)(36)(6) ≡ 3 · 3 · 6 ≡ 54 ≡ −1 (mod 11).
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Fermat’s Theorem

Fact: If p ≥ 3 is a prime then for any a

Jp(a) ≡ a
p−1

2 (mod p)

This yields a cubic-time algorithm to compute the Legendre symbol,
meaning determine whether or not a given number is a square:

Alg TEST-SQ(p, a)

s ← a
p−1

2 mod p
if s = 1 then return 1 else return −1
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Multiplicity of Legendre symbol

Fact: If p ≥ 3 is a prime then for any a, b

Jp(ab) = Jp(a) · Jp(b)

Example: Let p = 11.

a 1 2 3 4 5 6 7 8 9 10

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

a b ab J11(a) J11(b) J11(ab) J11(a) · J11(b)

5 6 8 1 − 1 − 1 − 1

2 7 3 − 1 − 1 1 1
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Inversion of Legendre symbol

Fact: If p ≥ 3 is a prime then for any a ∈ Z∗p

Jp(a−1) = Jp(a)

Example: p = 11

a 1 2 3 4 5 6 7 8 9 10

J11(a) 1 −1 1 1 1 −1 −1 −1 1 −1

a a−1 J11(a) J11(a−1)

3 4 1 1

7 8 − 1 − 1
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Legendre symbol of EG key

Fact: Let p ≥ 3 be a prime and x , y ∈ Zp−1. Let X = g x and Y = g y

and K = g xy . Then

Jp(K ) =

{
1 if Jp(X ) = 1 or Jp(Y ) = 1
−1 otherwise

In particular one can determine Jp(K ) given Jp(X ) and Jp(Y )

Proof:

Jp(K ) = Jp(g xy ) =

{
1 if xy is even
−1 otherwise

=

{
1 if x is even or y is even
−1 otherwise

=

{
1 if Jp(g x) = 1 or Jp(g y ) = 1
−1 otherwise
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EG modulo a prime

Let p be a prime and g a generator of Z∗p. The EG PKE scheme
AEEG = (K, E ,D) is defined by

Alg K
x

$← Zp−1

X ← g x

return (X , x)

Alg EX (M)

y
$← Zp−1; Y ← g y

K ← X y

W ← K ·M
return (Y , W )

Alg Dx(Y , W )
K = Y x

M ←W · K−1

return M

The weakness: Suppose (Y , W )
$←EX (M). Then we claim that given

• the public key X

• the ciphertext (Y , W )

an adversary can easily compute Jp(M).

This represents a loss of partial information.
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EG modulo a prime

Suppose (Y , W ) is an encryption of M under public key X = g x , where
Y = g y . Then

• W = K ·M
• K = g xy

So

Jp(M) = Jp(W · K−1) = Jp(W ) · Jp(K−1) = Jp(W ) · Jp(K )

= Jp(W ) · s

where s =

{
1 if Jp(X ) = 1 or Jp(Y ) = 1
−1 otherwise.

So we can compute Jp(M) via

Alg FIND-J(X , Y , W )
if Jp(X ) = 1 or Jp(Y ) = 1 then s ← 1 else s ← −1
return Jp(W ) · s
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EG modulo a prime

Let p be a prime and g a generator of Z∗p. The EG PKE scheme
AEEG = (K, E ,D) is defined by

Alg K
x

$← Zp−1

X ← g x

return (X , x)

Alg EX (M)

y
$← Zp−1; Y ← g y

K ← X y

W ← K ·M
return (Y , W )

Alg Dx(Y , W )
K = Y x

M ←W · K−1

return M

The weakness: There is an algorithm FIND-J

X

E (Y , W )
M

Jp(M)FIND-J
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IND-CPA attack

Given public key X

• Produce two messages M0, M1

• Receive encryption (Y , W ) of Mb

• Figure out b

How? Use:

X

Jp(Mb)

E (Y , W )
Mb

FIND-J
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IND-CPA attack

Given public key X

• Let M0, M1 be such that Jp(M0) = −1 and Jp(M1) = 1

• Receive encryption (Y , W ) of Mb

X

Jp(Mb)

E (Y , W )
Mb

FIND-J

• if FIND-J(X , Y , W ) = 1 then return 1 else return 0
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IND-CPA attack on EG

Let AEEG = (K, E ,D) be the EG PKE scheme over Z∗p where p is a
prime.

Left world

A
M0, M1-

C�

LR
C

$←Epk(M0)

Right world

A
M0, M1-

C�

LR
C

$←Epk(M1)

adversary A(X )
M1 ← 1 ; M0 ← g
(Y , W )

$← LR(M0, M1)
if FIND-J(X , Y , W ) = 1 then return 1 else return 0

Then

Advind-cpa
AEEG,A = Pr

[
RightAAEEG

⇒ 1
]
− Pr

[
LeftAAEEG

⇒ 1
]

= 1− 0 = 1
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IND-CPA security of EG

We have seen that EG is not IND-CPA over groups G = Z∗p for prime p.

However it is IND-CPA secure over any group G where the DDH
problem is hard.

This is not a contradiction because if p is prime then the DDH problem
in Z∗p is easy even though DL, CDH seem to be hard.

We can in particular securely implement EG over

• Appropriate prime-order subgroups of Z∗p for a prime p

• Elliptic curve groups of prime order
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Message encoding in AEEG

The AEEG asymmetric encryption scheme assumes that messages can
be encoded as elements of the underlying group G . But

• Messages may be of large and varying lengths, but we want the
group to be fixed beforehand and as small as possible

• For some groups this encoding is hard even if the messages are
short
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Speed

Asymmetric cryptography is orders of magnitude slower than symmetric
cryptography

An exponentiation in a 160-bit elliptic curve group costs about the same
as 3000-4000 hashes or block cipher operations
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Hybrid encryption

Build an asymmetric encryption scheme by combining symmetric and
asymmetric techniques:

• Symmetrically encrypt data under a key K

• Asymmetrically encrypt K

Benefits:

• Speed

• No encoding problems
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EG again

Let G = 〈g〉 be a cyclic group of order m and let sk = x and
pk = X = g x be AEEG keys.

Alg EX (M)

y
$← Zp−1; Y ← g y

K ← X y

W ← K ·M
return (Y , W )

In EG, the “symmetric key” is K and it “symmetrically” encrypts M as
W = K ·M.
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An alternative to AEEG

Let the “symmetric key” be K = H(g y ‖ g xy ) rather than merely g xy ,
where H: {0, 1}∗ → {0, 1}k is a hash function.

Instead of K ·M, let W be an encryption of M under K with some
known-secure symmetric scheme such as AES-CBC. In this case k = 128
above.
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DHIES [ABR]

Let G = 〈g〉 be a cyclic group of order m, H: {0, 1}∗ → {0, 1}k a hash
function, and SE = (KS, ES,DS) a symmetric encryption scheme with
k-bit keys. Then DHIES is (K, E ,D) where

Alg K
x

$← Zm

X ← g x

return (X , x)

Alg EX (M)

y
$← Zm ; Y ← g y

Z ← X y

K ← H(Y ‖ Z )

Cs
$←ESK (M)

return (Y , Cs)

Alg Dx(Y , Cs)
Z ← Y x

K ← H(Y ‖ Z )

M
$←DSK (Cs)

return M
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ECIES

ECIES is DHIES when G is an elliptic curve group.

Operation Cost
encryption 2 160-bit exp

decryption 1 160-bit exp

ciphertext expansion 160-bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)
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RSA Math

Recall that ϕ(N) = |Z∗N |.

Claim: Suppose e, d ∈ Z∗ϕ(N) satisfy ed ≡ 1 (mod ϕ(N)). Then for any
x ∈ Z∗N we have

(xe)d ≡ x (mod N)

Proof:

(xe)d ≡ xed mod ϕ(N) ≡ x1 ≡ x

modulo N
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The RSA function

A modulus N and encryption exponent e define the RSA function
f : Z∗N → Z∗N defined by

f (x) = xe mod N

for all x ∈ Z∗N .

A value d ∈ Z ∗ϕ(N) satisfying ed ≡ 1 (mod ϕ(N)) is called a decryption
exponent.

Claim: The RSA function f : Z∗N → Z∗N is a permutation with inverse
f −1 : Z∗N → Z∗N given by

f −1(y) = yd mod N

Proof: For all x ∈ Z∗N we have

f −1(f (x)) ≡ (xe)d ≡ x (mod N)

by previous claim.
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Example

Let N = 15. So

Z∗N = {1, 2, 4, 7, 8, 11, 13, 14}

ϕ(N) =

8

Z∗ϕ(N) = {1, 3, 5, 7}

Let e = 3 and d = 3. Then

ed ≡ 9 ≡ 1 (mod 8)

Let

f (x) = x3 mod 15

g(y) = y3 mod 15

x f (x) g(f (x))

1 1

1

2

8 2

4

4 4

7

13 7

8

2 8

11

11 11

13

7 13

14

14 14
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RSA usage

• pk = N, e; sk = N, d

• Epk(x) = xe mod N = f (x)

• Dsk(y) = yd mod N = f −1(y)

Security will rely on it being hard to compute f −1 without knowing d .

RSA is a trapdoor, one-way permutation:

• Easy to invert given trapdoor d

• Hard to invert given only N, e
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RSA generators

An RSA generator with security parameter k is an algorithm Krsa that
returns N, p, q, e, d satisfying

• p, q are distinct odd primes

• N = pq and is called the (RSA) modulus

• |N| = k , meaning 2k−1 ≤ N ≤ 2k

• e ∈ Z∗ϕ(N) is called the encryption exponent

• d ∈ Z∗ϕ(N) is called the decryption exponent

• ed ≡ 1 (mod ϕ(N))
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Plan

• Building RSA generators

• Basic RSA security

• Encryption with RSA
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Some more math

Fact: If p, q are distinct primes and N = pq then
ϕ(N) = (p − 1)(q − 1).

Proof:

ϕ(N) = |{1, . . . ,N − 1}| − |{ip : 1 ≤ i ≤ q − 1}| − |{iq : 1 ≤ i ≤ p − 1}|

= (N − 1)− (q − 1)− (p − 1)

= N − p − q + 1

= pq − p − q + 1

= (p − 1)(q − 1)

Example:

• 15 = 3 · 5
• Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}
• ϕ(15) = 8 = (3− 1)(5− 1)
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Recall

Given ϕ(N) and e ∈ Z∗ϕ(N), we can compute d ∈ Z∗ϕ(N) satisfying

ed ≡ 1 (mod ϕ(N)) via

d ← MOD-INV(e, ϕ(N)).

We have algorithms to efficiently test whether a number is prime, and a
random number has a pretty good chance of being a prime.
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Building RSA generators

Say we wish to have e = 3 (for efficiency). The generator K3
rsa with

(even) security parameter k :

repeat
p, q

$←{2k/2−1, . . . , 2k/2 − 1}; N ← pq; M ← (p − 1)(q − 1)
until

N ≥ 2k−1 and p, q are prime and gcd(e, M) = 1
d ← MOD-INV(e, M)
return N, p, q, e, d
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One-wayness of RSA

The following should be hard:

Given: N, e, y where y = f (x) = xe mod N

Find: x

Formalism picks x at random and generates N, e via an RSA generator.
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ow-adversaries

N, e −→

y −→
I −→ x

wins if x = f −1(y), meaning xe ≡ y (mod N).
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One-wayness of RSA, formally

Let Krsa be a RSA generator and I an adversary.

Game OWKrsa

procedure Initialize
(N, p, q, e, d)

$← Krsa

x
$← Z∗N ; y ← xe mod N

return N, e, y

procedure Finalize(x ′)
return (x = x ′)

The ow-advantage of I is

Advow
Krsa

(I ) = Pr
[
OWI

Krsa
⇒ true

]

59 / 1



Inverting RSA

Inverting RSA : given N, e, y find x such that xe ≡ y (mod N)
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Factoring Problem

Given: N where N = pq and p, q are prime

Find: p, q

If we can factor we can invert RSA. We do not know whether the
converse is true, meaning whether or not one can invert RSA without
factoring.
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A factoring algorithm

Alg FACTOR(N) // N = pq where p, q are primes

for i = 2, . . . ,
⌈√

N
⌉

do
if N mod i = 0 then

p ← i ; q ← N/i ; return p, q

This algorithm works but takes time

O(
√

N) = O(e0.5 ln N)

which is prohibitive.
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Factoring algorithms

Algorithm Time taken to factor N

Naive O(e0.5 ln N)

Quadratic Sieve (QS) O(ec(ln N)1/2(ln ln N)1/2
)

Number Field Sieve (NFS) O(e1.92(ln N)1/3(ln ln N)2/3
)
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Factoring records

Number bit-length Factorization alg MIPS years
RSA-400 400 1993 QS 830

RSA-428 428 1994 QS 5000

RSA-431 431 1996 NFS 1000

RSA-465 465 1999 NFS 2000

RSA-515 515 1999 NFS 8000

RSA-576 576 2003 NFS
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How big is big enough?

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus

80-bit security: Factoring takes 280 time.

Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.
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RSA: what to remember

The RSA function f (x) = xe mod N is a trapdoor one way
permutation:

• Easy forward: given N, e, x it is easy to compute f (x)

• Easy back with trapdoor: Given N, d and y = f (x) it is easy to
compute x = f −1(y) = yd mod N

• Hard back without trapdoor: Given N, e and y = f (x) it is hard to
compute x = f −1(y)
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Plain-RSA encryption

The plain RSA asymmetric encryption scheme AE = (K, E ,D)
associated to RSA generator Krsa is

Alg K
(N, p, q, e, d)

$← Krsa

pk ← (N, e)
sk ← (N, d)
return (pk, sk)

Alg Epk(M)
C ← Me mod N
return C

Alg Dsk(C )
M ← Cd mod N
return M

The “easy-back with trapdoor” property implies

Dsk(Epk(M)) = M

for all M ∈ Z∗N .
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Plain-RSA encryption security

Alg K
(N, p, q, e, d)

$← Krsa

pk ← (N, e)
sk ← (N, d)
return (pk, sk)

Alg Epk(M)
C ← Me mod N
return C

Alg Dsk(C )
M ← Cd mod N
return M

Getting sk from pk involves factoring N.
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Plain-RSA encryption security

Alg K
(N, p, q, e, d)

$← Krsa

pk ← (N, e)
sk ← (N, d)
return (pk, sk)

Alg Epk(M)
C ← Me mod N
return C

Alg Dsk(C )
M ← Cd mod N
return M

Alg E is deterministic so we can detect repeats and the scheme is not
IND-CPA secure.
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A message recovery attack

Suppose sender encrypts M and M + 1 under public key N, 3. Adversary
has

C1 = M3 mod N and C2 = (M + 1)3 mod N

Then modulo N we have

C2 + 2C1 − 1

C2 − C1 + 2
=

(M + 1)3 + 2M3 − 1

(M + 1)3 −M3 + 2

=
(M3 + 3M2 + 3M + 1) + 2M3 − 1

(M3 + 3M2 + 3M + 1)−M3 + 2

=
3M3 + 3M2 + 3M

3M2 + 3M + 3
=

M(3M2 + 3M + 3)

3M2 + 3M + 3
= M

so adversary an recover M.
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The SRSA scheme

Encrypt M unde pk = N, e via:

• x
$← Z∗N ; Ca ← xe mod N;

• K ← H(x)

• Let Cs be a symmetric encryption of M under K

• Ciphertext is (Ca, Cs)

Decrypt (Ca, CS) under sk = N, d via:

• x ← Cd
a mod N

• K ← H(x)

• Decrypt Cs under K to get M
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The SRSA scheme

Let SE = (KS, ES,DS) be a symmetric encryption scheme with k-bit
keys, and H: {0, 1}∗ → {0, 1}k a hash function.

Example: SE could be AES CBC encryption in which case k = 128.

The SRSA asymmetric encryption scheme AE = (K, E ,D) associated to
RSA generator Krsa is

Alg K
(N, p, q, e, d)

$← Krsa

pk ← (N, e)
sk ← (N, d)
return (pk, sk)

Alg EN,e(M)

x
$← Z∗N

K ← H(x)
Ca ← xe mod N
Cs

$←ESK (M)
return (Ca, Cs)

Alg EN,d(Ca, Cs)
x ← Cd

a mod N
K ← H(x)
M ← DSK (Cs)
return M
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PKCS #1

Receiver keys: pk = (N, e) and sk = (N, d) where n = |N|8 = 128

Alg EN,e(M) // m = |M|8 ≤ n− 11

Pad
$← ({0, 1}8 − {00})n−m−3

x ← 00||02||Pad ||00||M
C ← xe mod N
return C

Alg DN,d(C ) // C ∈ Z∗N
x ← C d mod N
aa||bb||w ← x
if aa 6= 00 or bb 6= 02 or 00 /∈ w then

return ⊥
Pad ||00||M ← w where 00 /∈ Pad
return M

x = 00 02 Pad 00 M
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Attack on PKCS #1 [Bl98]

A
if DN,d(y) 6= ⊥ return 1

return 0

y1

b1

y2

b2

...

yq

bq

DN,d(y)

DN,d(C )

N, e

Target C

The attack A succeeds in decrypting C after making q ≈ 1 million
clever queries to the box.
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Attack on PKCS #1 and response

This is a (limited) chosen-ciphertext attack in which the oracle does not
fully decrypt but indicates whether or not the decryption is valid.

The attack can be mounted on SSL.

Use of an IND-CCA scheme would prevent the attack.
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OAEP [BR94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
Hash functions:G : {0, 1}128 → {0, 1}894 and H: {0, 1}894 → {0, 1}128

Algorithm EN,e(M) // |M| ≤ 765

r
$←{0, 1}128; p ← 765− |M|

128 894

r

ts

0128 ‖M ‖ 10p

H

G

x ← s||t
C ← xe mod N
return C

Algorithm DN,d(C ) // C ∈ Z∗N
x ← C d mod N
s||t ← x

128 894

t

r

s

H

G

a ‖M ‖ 10p

if a = 0128 then return M
else return ⊥
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RSA OAEP usage

Protocols:

• SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1

• SSH ver 1.0, 2.0

• . . .

Standards:

• RSA PKCS #1 versions 1.5, 2.0

• IEEE P1363

• NESSIE (Europe)

• CRYPTREC (Japan)

• . . .
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