ASYMMETRIC ENCRYPTION

1/1



Recommended Book

Steven Levy. Crypto. Penguin books. 2001.

A non-technical account of the history of public-key cryptography and
the colorful characters involved.
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Recall Symmetric Cryptography

e Before Alice and Bob can communicate securely, they need to have
a common secret key Kxp.

e If Alice wishes to also communicate with Charlie then she and
Charlie must also have another common secret key Kac.

e If Alice generates Kag, Kac, they must be communicated to her
partners over private and authenticated channels.
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Public Key Encryption

e Alice has a secret key that is shared with nobody, and an
associated public key that is known to everybody.

e Anyone (Bob, Charlie, ...) can use Alice’s public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database
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Public Key Encryption

e Alice has a secret key that is shared with nobody, and an
associated public key that is known to everybody.

e Anyone (Bob, Charlie, ...) can use Alice’s public key to send her an
encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a
database

e Senders don't need secrets

e There are no shared secrets

4/1



Syntax of PKE

A public-key (or asymmetric) encryption scheme AE = (K, E,D)

consists of three algorithms, where

pk

D =Mor L
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Step 1: Key generation
Alice locally computers (pk, sk) < K and stores sk.

Step 2: Alice enables any prospective sender to get pk.
Step 3: The sender encrypts under pk and Alice decrypts under sk.

We don't require privacy of pk but we do require authenticity: the
sender should be assured pk is really Alice's key and not someone else’s.
One could

e Put public keys in a trusted but public “phone book”, say a
cryptographic DNS.

e Use certificates as we will see later.
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Security of PKE Schemes: Issues

The issues are the same as for symmetric encryption:

e Want general purpose schemes
e Security should not rely on assumptions about usage setting

e Want to prevent leakage of partial information about plaintexts
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Security requirements

Suppose sender computes
CL < Ep(My); -+ 5 Cq < Ep(My)
Adversary A has C,...,Cq

What if A |

Retrieves sk | Bad!
Retrieves M; | Bad!

But also ...
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Security requirements

We want to hide all partial information about the data stream.
Examples of partial information:

e Does My = M,?

e What is first bit of M;?

e What is XOR of first bits of My, My?
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Security requirements

We want to hide all partial information about the data stream.

Examples of partial information:
e Does My = M,?
e What is first bit of M;?
e What is XOR of first bits of My, My?

Something we won't hide: the length of the message

9/1



New lIssue

The adversary needs to be given the public key.
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Intuition for definition of IND

Consider encrypting one of two possible message streams, either
M, ..., M
O’ ey 0

or
1 q
ML, ... MS

Adversary, given ciphertexts and both data streams, has to figure out
which of the two streams was encrypted.
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ind-cpa-adversaries

Let AE = (K, &, D) be an public-key encryption scheme

An ind-cpa adversary A has input pk and an oracle LR

e |t can make a query My, M consisting of any two equal-length

messages

e It can do this many times

e Each time it gets back a ciphertext

e It eventually outputs a bit

pk —

1 1
M07M1

LR
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ind-cpa-adversaries

Let A€ = (K, &, D) be a public-key encryption scheme

Left world Right world
A | Mo, My LR A | My, My LR
k — = 7
pK — C ol CE (M) || PR c | ¢ (v

Intended meaning:
A's output d | | think | am in the
1 Right world
0 Left world

The harder it is for A to guess world it is in, the more “secure” A€ is as

an encryption scheme.
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Let AE = (K, &, D) be a public-key encryption scheme

Game Left 4¢ Game Right 4¢
procedure Initialize procedure Initialize
(pk, sk) < K ; return pk (pk, sk) < K ; return pk
procedure LR( My, M) procedure LR(My, M)
Return C < Epr(Mo) Return C <& (M)

Associated to AE, A are the probabilities

Pr | Leftfe=1]

Pr | Right/}e=1]

that A outputs 1 in each world. The ind-cpa advantage of A is
AdVIiEP*(A) = Pr [Right4e=1] — Pr [Left4e=1]
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Simplification

We may assume A makes only one LR query. It can be shown that this
can decrease its advantage by at most the number of LR queries.
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Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = (g) is a cyclic group. Let's
let the encryption of x be g*. Then

hard
XarX

=<~
Eg(x)

so to recover x, adversary must compute discrete logarithms, and we
know it can't, so are we done?
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Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = (g) is a cyclic group. Let's
let the encryption of x be g*. Then

x hard

B ——— X
—~~
Eg(x)

so to recover x, adversary must compute discrete logarithms, and we
know it can't, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.
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Building a PKE Scheme

We would like security to result from the hardness of computing discrete
logarithms.

Let the receiver’s public key be g where G = (g) is a cyclic group. Let's
let the encryption of x be g*. Then

hard
XarX

=<~
Eg(x)

so to recover x, adversary must compute discrete logarithms, and we
know it can't, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to
decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!
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DH Key Exchange

Let G = (g) be a cyclic group of order m.

Alice Bob
X
X 63—2!n7;)( *_'EIX Y y <i’zrn; Y *_'éfy
v

Then
Y =(g")=g¥=(g")y =X

e Alice can compute K = Y*
e Bob can compute K = X¥
e But adversary wanting to compute K is faced with

g, —gv
which is exactly the CDH problem and is computationally hard.

So this enables Alice and Bob to get a common shared key which they

can then use to secure their communications.
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The El Gamal Scheme: Idea

We can turn DH key exchange into a public key encryption scheme via

e Let Alice have public key g* and secret key x
e |f Bob wants to encrypt M for Alice, he

e Picks y and sends g¥ to Alice
e Encrypts M under g = (g*)” and sends ciphertext to Alice.

e But Alice can recompute g = (g¥)* because
e g7 is in the received ciphertext
e x is her secret key

Thus she can decrypt and adversary is still faced with CDH .
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EG Encryption, in Full

Let G = (g) be a cyclic group of order m. The EG PKE scheme
A&pc = (K, E,D) is defined by

Alg K Alg Ex(M) Alg Dy (Y, W)
X<izm y—Zn Y —g” K = YX

X K «— XY k-1
Xc—g RO M— W K
return (X, x) return M

return (Y, W)

We assume the message M € G is a group element.

Correct decryption is assured because
K=X=g¥=Y%

Implementation uses several algorithms we have studied before:
exponentiation, inverse.
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Security of AEgkq

secret key = x € Z,,, where m = |G|
publickey = X =g* € G = (g)

lgorithm Ex (M

agfr; myX( 3/ algorithm DX(Y’ W)

Yy < £m; — & g ’ -
Kexnwek.m| o Ma WK

t M
return (Y, W) rewum

e To find x given X, adversary must solve DL problem

20/1



Security of AEgkq

secret key = x € Z,,, where m = |G|
publickey = X =g* € G = (g)

lgorithm Ex (M

agfr; myX( 3/ algorithm DX(Y’ W)

Yy < £m; — & g ’ -
Kexnwek.m| o Ma WK

t M
return (Y, W) rewum

e To find x given X, adversary must solve DL problem

e To find M given X, (Y, W), adversary must compute K = g*¥,
meaning solve CDH problem
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Security of AEgkq

secret key = x € Z,,, where m = |G|
publickey = X =g* € G = (g)

algorithm Ex (M)
yEZm Y — g
KX W—K-M
return (Y, W)

algorithm D, (Y, W)
K=Y M—W.-K!
return M

e To find x given X, adversary must solve DL problem

e To find M given X, (Y, W), adversary must compute K = g*¥,
meaning solve CDH problem

e But what prevents leakage of partial information about M? Is the
scheme IND-CPA secure?

20/1



Security of AEgq in Z;,

In G = Z},, where p is a prime

e DL, CDH are hard, yet
e There is an attack showing AExqg is NOT IND-CPA secure
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Number theory

Number theory is fun!
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We say that a is a square (or quadratic residue) modulo p if there exists
b such that b> = a (mod p).

We let
1 if ais a square mod p
Jo(a) = 0 ifamodp=0
—1 otherwise
be the Legendre or Jacobi symbol of a modulo p.
Let p=11. Then

e Is 4 a square modulo p?
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We say that a is a square (or quadratic residue) modulo p if there exists
b such that b> = a (mod p).

We let
1 if ais a square mod p
Jo(a) = 0 ifamodp=0
—1 otherwise
be the Legendre or Jacobi symbol of a modulo p.
Let p=11. Then

e Is 4 a square modulo p?
YES because 22 = 4 (mod 11)

e Is 5 a square modulo p?
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We say that a is a square (or quadratic residue) modulo p if there exists
b such that b> = a (mod p).

We let
1 if ais a square mod p
Jo(a) = 0 ifamodp=0
—1 otherwise

be the Legendre or Jacobi symbol of a modulo p.

Let p=11. Then

e Is 4 a square modulo p?
YES because 22 = 4 (mod 11)

e Is 5 a square modulo p?
YES because 4> =5 (mod 11)

e What is J11(5)7
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We say that a is a square (or quadratic residue) modulo p if there exists
b such that b> = a (mod p).

We let
1 if ais a square mod p
Jo(a) = 0 ifamodp=0
—1 otherwise

be the Legendre or Jacobi symbol of a modulo p.

Let p=11. Then

e Is 4 a square modulo p?
YES because 22 = 4 (mod 11)

e Is 5 a square modulo p?
YES because 4> =5 (mod 11)

e What is J11(5)7
It equals +1
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The set of squares

We let

QR(Z,) = {a€Z, : aisasquare mod p}
= {ae€Z, : 3be Z, such that b? = a (mod p)}
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Let p=11

al[1]2]3]4]|5][6][7][8]9]10]
a’ mod 11
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Let p=11

al[1]2]3]4]|5]6][7[8]9]10]
a®mod 11 [ 1
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Let p=11

al[1]2]3]4]|5]6][7][8]9]10]
a®mod11 || 1[4
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Let p=11

al[1]2]3]4]|5]6][7][8]9]10]
amod11([1]4]9
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Let p=11

al[1]2]3]4]|5]6][7][8]9]10]
amod11[[1[4]9]5
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Let p=11

al[1]2]3]4]|5][6][7][8]9]10]
amodl11|[1]4]9]5]3
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Let p=11

al[1]2]3]4]|5][6][7][8]9]10]
amodl11|[1]4]9[5[3]3
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Let p=11

al[1]2]3]4]|5][6][7][8]9]10]
amodl11|[1[4]9]5[3[3]5
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Let p=11

al[1]2]3]4]|5][6][7][8]9]10]
amod11([1[4]9[5[3[3[5]9
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Let p=11

a?modl11([1]4]9[5[3[3][5|9]4
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Let p=11

a2modl11|[1]4]9[5[3[3]5]90[4]1

Then
QR(Z}) = {1,3,4,5,9}
alll] 2 |[3|4]|5] 6 7 8 [9] 10
Ju@) |1 -1]1|1]1]-1]-1]-1]1] -1
Observe

e There are 5 squares and 5 non-squares.

e Every square has exactly 2 square roots.
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Relation to discrete log

Recall that 2 is a generator of Z7;

all1] 2 |3/4|5] 6| 7] 8]9]10
DLogZﬁQ(a) 0 1 8 214 9 7 3 6 5
Ju@ 1] —-1j1|1]1|-1|-1|-1]1]-1
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Relation to discrete log

Recall that 2 is a generator of Z7;

all1] 2 |3/4|5] 6| 7] 8]9]10
DLogZﬁQ(a) 0 1 8 214 9 7 3 6 5
Ju@ 1] —-1j1|1]1|-1|-1|-1]1]-1

so
Ju(a) =1 iff DLogz: »(a) is even

This makes sense because for any generator g,
g¥=(g)

is always a square!
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Squares and discrete logs

Fact: If p > 3 is a prime and g is a generator of Z, then

QR(Z;)={g' : 0<i<p-—2andiiseven}

Example: If p =11 and g =2 then p — 2 =9 and the squares are

e mod1l =1
e 22mod1l =14
e 2*mod11 =5
e 2°mod 11 =9

28 mod 11 =3
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Computing the Legendre symbol

Is there an algorithm that given p and a € Zj; returns Jp(a), meaning
determines whether or not a is a square mod p?
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Computing the Legendre symbol

Is there an algorithm that given p and a € Zj; returns Jp(a), meaning
determines whether or not a is a square mod p?

Surel!

Alg TEST-SQ(p, a)

Let g be a generator of Z}

Let i — DLogZ?”g(a)

if 7 is even then return 1 else return —1
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Computing the Legendre symbol

Is there an algorithm that given p and a € Zj; returns Jp(a), meaning
determines whether or not a is a square mod p?

Surel!

Alg TEST-SQ(p, a)
Let g be a generator of Z}
Let i — DLogZ?”g(a)
if 7 is even then return 1 else return —1
This is correct, but
e How do we find g?
e How do we compute DLogz: ,(a)?
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Fermat's Theorem

Fact: If p > 3 is a prime then for any a

p—1

Jo(a)=az (mod p)

Example: Let p =11.

e Let a=>5. We know that 5 is a square, meaning J;1(5) = 1. Now
compute

a7 =5°=(25)(25)(5)=3-3-5=45=1 (mod 11).

e Let a =6. We know that 6 is not a square, meaning J;11(6) = —1.
Now compute
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Fermat's Theorem

Fact: If p > 3 is a prime then for any a

p—1

J(a)=az (mod p)
This yields a cubic-time algorithm to compute the Legendre symbol,
meaning determine whether or not a given number is a square:

Alg TEST-SQ(p, a)
-1
s— a2 mod p
if s =1 then return 1 else return —1
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Multiplicity of Legendre symbol

Fact: If p > 3 is a prime then for any a, b

Jo(ab) = Jo(a) - Jp(b)

Example: Let p = 11.

al[1[ 2 [3[4[5]6 [ 7 8 ]9]10
Jn@ [T =111 -1][-1]-1|1]-1

a ‘ b ‘ ab ‘ J11(a) ‘ Jll(b) ‘ J11(ab) ‘ _/11(3) . Jll(b)
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Inversion of Legendre symbol

Fact: If p > 3 is a prime then for any a € Z},

Jp(a™h) = Jp(a)

Example: p =11

alll] 2 |3|/4|/5|6 | 7|8

10

Ju(@f|1|-1|1j1}]1|-1|-1|-1
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Legendre symbol of EG key

Fact: Let p>3 beaprimeand x,y € Z, ;1. Let X =g¥and Y = g”
and K = g. Then

1T ifp(X)=1orJp(Y)=1
Jp(K) = { —1 otherwise

In particular one can determine J,(K) given J,(X) and J,(Y)
Proof:

1 if xy is even
—1 otherwise

k) = e ={

1 if x is even or y is even
—1 otherwise

1 if(g¥)=1orJp(g¥)=1
—1 otherwise
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EG modulo a prime

Let p be a prime and g a generator of Zj,. The EG PKE scheme
AErc = (K, E,D) is defined by

Alg K Alg Ex (M) Alg Dy (Y, W)
x &2y yEZ, Y —gr | K=Y

X — g~ K — XY M—W.K1
return (X, x) | W — K-M return M

return (Y, W)

The weakness: Suppose (Y, W) < Ex(M). Then we claim that given
e the public key X
e the ciphertext (Y, W)

an adversary can easily compute J,(M).

This represents a loss of partial information.
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EG modulo a prime

Suppose (Y, W) is an encryption of M under public key X = g*, where
Y =g”. Then

e W=K-M

o« K=g¥
So

(M) = Jp(W- K_l) = J(W)- JP(K_I) = Jp(W) - Jp(K)
= Jp(W)-s

1 if Jpy(X)=1or Jy(Y) =1

where s = )
{ —1 otherwise.

So we can compute J,(M) via

Alg FIND-J(X, Y, W)
if Jo(X)=1or Jp(Y)=1then s« 1lelses— —1
return Jp(W) - s
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EG modulo a prime

Let p be a prime and g a generator of Z;,. The EG PKE scheme
AErc = (K, E,D) is defined by

Alg Ex(M)

Alg K Alg D, (Y, W
X<iz _y(izp_l;Y<—gy Kg:Y)S )
Xego KX M W. K1
— g .
return (X, x) W—K-M return M

return (Y, W)

The weakness: There is an algorithm FIND-J

X >

FIND-J — Jy(M)

& — (Y, W)—>»
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IND-CPA attack

Given public key X
e Produce two messages My, M,
e Receive encryption (Y, W) of M,
e Figure out b
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IND-CPA attack

Given public key X
e Produce two messages My, M,
e Receive encryption (Y, W) of M,
e Figure out b

How? Use:

FIND-J — = Jp(Mp)

E | (Y, W)»

>
\/
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IND-CPA attack

Given public key X
e Let My, My be such that J,(Mp) = —1 and Jp(M;) =1
e Receive encryption (Y, W) of M,

X >

FIND-J — Jp(Mp)

& — (Y, W)—>

e if FIND-J(X, Y, W) =1 then return 1 else return 0
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IND-CPA attack on EG

Let Afgg = (K, &, D) be the EG PKE scheme over Z}, where p is a

prime.
Left world Right world
A M07 Ml s LR A Mo, M]_ LR
C | C—Ex(Mo) C C < Epy(Mh)

adversary A(X)

M]_ —1 ' Mo — 8

(Y, W) <& LR(Mo, My)

if FIND-J(X, Y, W) =1 then return 1 else return 0

Then
AV = Pr(Rightde,, = 1] = Pr [Lefthe,, = 1
- 1-0=1

39/1



IND-CPA security of EG

We have seen that EG is not IND-CPA over groups G = Z for prime p.

However it is IND-CPA secure over any group G where the DDH
problem is hard.

This is not a contradiction because if p is prime then the DDH problem
in Z7, is easy even though DL, CDH seem to be hard.

We can in particular securely implement EG over
* Appropriate prime-order subgroups of Zj for a prime p

e Elliptic curve groups of prime order
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Message encoding in AExq

The AEgq asymmetric encryption scheme assumes that messages can
be encoded as elements of the underlying group G. But

e Messages may be of large and varying lengths, but we want the
group to be fixed beforehand and as small as possible

e For some groups this encoding is hard even if the messages are
short
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Asymmetric cryptography is orders of magnitude slower than symmetric
cryptography

An exponentiation in a 160-bit elliptic curve group costs about the same
as 3000-4000 hashes or block cipher operations
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Hybrid encryption

Build an asymmetric encryption scheme by combining symmetric and
asymmetric techniques:

e Symmetrically encrypt data under a key K
e Asymmetrically encrypt K

Benefits:

e Speed

¢ No encoding problems
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Let G = (g) be a cyclic group of order m and let sk = x and
pk = X = g* be AEgq keys.

Alg Ex (M)

y ei—l!p__l; Y — g

K «— XY

W—K-M

return (Y, W)

In EG, the “symmetric key” is K and it “symmetrically” encrypts M as
W=K-M.
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An alternative to AErg

Let the “symmetric key” be K = H(g” || g’¥) rather than merely g*,
where H: {0,1}* — {0,1}¥ is a hash function.

Instead of K - M, let W be an encryption of M under K with some
known-secure symmetric scheme such as AES-CBC. In this case k = 128
above.
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DHIES [ABR]

Let G = (g) be a cyclic group of order m, H: {0,1}* — {0,1}* a hash
function, and S€ = (KS,ES, DS) a symmetric encryption scheme with
k-bit keys. Then DHIES is (K, £, D) where

Alg C

x & Z,

X — g~
return (X, x)

Alg £x(M)

Yy Zmi Y g
Z— X

K — H(Y | 2)
Cs & ESK(M)
return (Y, G)

Alg D, (Y, C)
Z —Y~*
K— H(Y| 2)
M & DSy (C)
return M
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ECIES

ECIES is DHIES when G is an elliptic curve group.

Operation Cost

encryption 2 160-bit exp

decryption 1 160-bit exp
ciphertext expansion 160-bits

ciphertext expansion = (length of ciphertext) - (length of plaintext)
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RSA Math

Recall that p(N) = |Z}|.

Claim: Suppose e, d € Z:‘D(N) satisfy ed =1 (mod ¢(N)). Then for any
x € Z}, we have

x€) = x (mod N)

—

Proof:

(Xe)d = yed mod »(N) =l =x

modulo N
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The RSA function

A modulus N and encryption exponent e define the RSA function
f:Zy — Z}, defined by

f(x) =x° mod N

for all x € Z3,.

A value d € Z ), satisfying ed =1 (mod (N)) is called a decryption
exponent.

Claim: The RSA function f : Z}, — Z}, is a permutation with inverse
f=1:2Z5 — Z3 given by

fXy)=y? mod N
Proof: For all x € Z}, we have
f~H(f(x)) = (x¢)9 = x (mod N)

by previous claim.
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Let N = 15. So

v = {1,2,4,7,8,11,13,14}
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Let N = 15. So
Zy = {1,2,4,7,811,13,14}
e(N) = 8
sovy = 113,57}
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Let e=3 and d = 3. Then ’1‘ (1)\g(())\
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4
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8
f(x) = x3 mod 15 11
3 13
gly) = y’ mod15
v 14
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RSA usage

e pk=N,e; sk=N,d
o Epk(x) =x¢ mod N = f(x)
e Dy(y) =y? mod N=f"1(y)

Security will rely on it being hard to compute f~! without knowing d.

RSA is a trapdoor, one-way permutation:
e Easy to invert given trapdoor d

e Hard to invert given only N, e
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RSA generators

An RSA generator with security parameter k is an algorithm /C,s, that
returns N, p, g, e, d satisfying

e p, q are distinct odd primes

e N = pq and is called the (RSA) modulus
|N| = k, meaning k=1 < N < 2k

ee€ Z;(N) is called the encryption exponent

de Z:;(N) is called the decryption exponent
ed =1 (mod p(N))
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e Building RSA generators
e Basic RSA security
e Encryption with RSA
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Some more math

Fact: If p, g are distinct primes and N = pg then
e(N) = (p—1)(g—1).

Proof:

o(N)=|{1,... . N=1} - |{ip:1<i<qg—1}—-|{ig:1<i<p—1}
=(N-1)~-(¢g-1)~(p-1)
=N-p-q+1
=pg—p—q+1
=(p-1)(g-1)
Example:
[ ] 15:3-5
° 2{5:{132747778,11,13, 14}
o p(15)=8=(3-1)(5-1)
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Recall

Given p(N) and e € Z;(N), we can compute d € Z:‘;(N) satisfying
ed =1 (mod ¢p(N)) via

d « MOD-INV (e, o(N)).

We have algorithms to efficiently test whether a number is prime, and a
random number has a pretty good chance of being a prime.
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Building RSA generators

Say we wish to have e = 3 (for efficiency). The generator K3, with

(even) security parameter k:

repeat
p,q{2K21 22 — 1} N — pg; M — (p—1)(g — 1)
until
N > 2k=1 and p, g are prime and gcd(e, M) =1
d — MOD-INV (e, M)
return N, p,q, e, d
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One-wayness of RSA

The following should be hard:
Given: N, e,y where y = f(x) = x¢ mod N
Find: x

Formalism picks x at random and generates N, e via an RSA generator.
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ow-adversaries

wins if x = f~1(y), meaning x¢ =y (mod N).
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One-wayness of RSA, formally

Let K.s; be a RSA generator and / an adversary.

Game OWy_,

procedure Initialize procedure Finalize(x')
(N7 p,q,é€, d) i Krsa return (X = X,)
xiZTV; y <« x¢ mod N

return N, e,y

The ow-advantage of [ is

Adersa( ) =Pr [OVVkSa = true
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Inverting RSA

Inverting RSA  : given N, e,y find x such that x¢ =y (mod N)

60/1



Inverting RSA

Inverting RSA : given N, e,y find x such that x¢ =y (mod N)

T EASY because f~1(y) = y¢ mod N
Know d
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Inverting RSA  : given N, e,y find x such that x¢ =y (mod N)
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Inverting RSA

Inverting RSA @ given N, e,y find x such that x¢ =y (mod N)

T EASY because f~1(y) = y¢ mod N

Know d

T EASY because d = e~! mod ¢(N)
Know ¢(N)

T EASY because p(N) = (p—1)(g — 1)
Know p, g

K

Know N
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Factoring Problem

Given: N where N = pg and p, g are prime
Find: p,q

If we can factor we can invert RSA. We do not know whether the
converse is true, meaning whether or not one can invert RSA without
factoring.
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A factoring algorithm

Alg FACTOR(N) // N = pg where p, q are primes
fori=2,..., [m1 do
if N mod /=0 then
p<—i;q«< N/i; return p, q

This algorithm works but takes time
O(VN) = 0(e%*""")

which is prohibitive.
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Factoring algorithms

Algorithm

Time taken to factor N

Naive

O(eO.S In N)

Quadratic Sieve (QS)

O(ec('” N)/2(InIn N)1/2)

Number Field Sieve (NFS)

0(61.92(|n N)/3(InIn N)2/3)
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Factoring records

Number | bit-length | Factorization | alg | MIPS years
RSA-400 400 1993 QS 830
RSA-428 428 1994 QS 5000
RSA-431 431 1996 NFS 1000
RSA-465 465 1999 NFS 2000
RSA-515 515 1999 NFS 8000
RSA-576 576 2003 NFS

64/1



How big is big enough?

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus
80-bit security: Factoring takes 280 time.
Factorization of RSA-1024 seems out of reach at present.

Estimates vary, and for more security, longer moduli are recommended.
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RSA: what to remember

The RSA function f(x) = x¢ mod N is a trapdoor one way
permutation:
o Easy forward: given N, e, x it is easy to compute f(x)
e Easy back with trapdoor: Given N, d and y = f(x) it is easy to
compute x = f(y) = y¢ mod N
e Hard back without trapdoor: Given N, e and y = f(x) it is hard to
compute x = f~1(y)

66/1



Plain-RSA encryption

The plain RSA asymmetric encryption scheme AE = (K, &, D)
associated to RSA generator K., is

Alg K

(Nopaed <K Alg (M) Alg Dg(C)
kPaQ;V 2| C— M mod N| M— CY mod N

pk ‘_(( e)) return C return M

S. <

return (pk, sk)
The “easy-back with trapdoor” property implies
Dy (Epk(M)) = M

for all M € Z3,.
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Plain-RSA encryption security

Alg K
$ p
(II\{Ip,q}Ve d)<—Krsa C— M mod N| M— C? mod N
gk ‘_(( e)) return C return M
-

return (pk sk)

Getting sk from pk involves factoring N.
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Plain-RSA encryption security

Alg K

(Nopaed) <K Alg Ep(M) Alg Dy (C)
k7p7q;va rsa | C«— M® mod N M(—Cd mod N

pk (_((N v;; return C return M

sk — (N,

return (pk, sk)

Alg £ is deterministic so we can detect repeats and the scheme is not
IND-CPA secure.
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A message recovery attack

Suppose sender encrypts M and M + 1 under public key N,3. Adversary
has

Ci=M3 mod Nand G = (M+1)3 mod N
Then modulo N we have

G+2G -1
G-G+2
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A message recovery attack

Suppose sender encrypts M and M + 1 under public key N,3. Adversary
has

Ci=M3 mod Nand G = (M+1)3 mod N
Then modulo N we have

G+2G-1  (M+1P+2M3 -1
G-CG+2  (M+1)p3-M342

(M3 +3M? +3M +1) +2M3 — 1
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3M3 +3M? +3M  M(3M? +3M + 3)
3M2+3M+3 ~ 3M2+4+3M+3

=M

so adversary an recover M.
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The SRSA scheme

Encrypt M unde pk = N, e via:
° x<iZ>,"V; C, — x¢ mod N,
e K — H(x)
e Let Cs be a symmetric encryption of M under K
e Ciphertext is (G,, Cs)
Decrypt (C,, Cs) under sk = N, d via:
o x — Cdmod N
o K — H(x)
e Decrypt Cs under K to get M
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The SRSA scheme

Let S€ = (KS,ES,DS) be a symmetric encryption scheme with k-bit
keys, and H: {0,1}* — {0,1}* a hash function.

Example: S€ could be AES CBC encryption in which case kK = 128.

The SRSA asymmetric encryption scheme AE = (K, &, D) associated to
RSA generator K5 is

Alg K Alg & o(M) Alg £ 4(Co, )

(N7paq7ead)<iKrsa XAZTV X<—C§I mod N

pk «— (N, e) K — H(x) K — H(x)

sk — (N, d) C; — x*mod N M — DSk (Cs)

return (pk, sk) G, & ESKk(M) return M
return (G, G;)
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PKCS #1

Receiver keys: pk = (N, e) and sk = (N, d) where n = |N|g = 128

Alg Dy q4(C) // Cey
AIgSN’e(M) //m:\M|g§n—11 x<—CdmodN
Pad < ({0,1}® — {00})"— ™3 aal|bb||w — x
x < 00]|02|| Pad||00||M if aa 7 00 or bb # 02 or 00 ¢ w then
C+— x*mod N return |
return C Pad||00||M «— w where 00 ¢ Pad
return M

x=[00]02] Pad [ 00 | M |
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Attack on PKCS #1 [BI98]

Ne—=| = | — A | Dy

Target C— < 51 | if Dyg(y) # L return 1l
return 0

DN,d(C) -

The attack A succeeds in decrypting C after making g ~ 1 million
clever queries to the box.
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Attack on PKCS #1 and response

This is a (limited) chosen-ciphertext attack in which the oracle does not
fully decrypt but indicates whether or not the decryption is valid.

The attack can be mounted on SSL.

Use of an IND-CCA scheme would prevent the attack.

74/1



OAEP [BR94]

Receiver keys: pk = (N, e) and sk = (N, d) where |N| = 1024
Hash functions:G: {0,1}!?8 — {0,1}8% and H: {0,1}8%* — {0,1}1?8

Algorithm Ey (M) // M| <765 | Algorithm Dy 4(C) // CeZy
r<{0,1}'%; p — 765 — |M| x — C%mod N
128 894 sfft — x
‘ ; ‘ ‘ 0128 ™| 10"‘ 128 894
s J Lt |
(©
-
(H)
\ @
&/
s t
o | a| M][10° |
x «— s||t
C+—x*mod N if a = 0'*® then return M
return C else return L
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RSA OAEP usage

Protocols:
e SSL ver. 2.0,3.0 / TLS ver. 1.0, 1.1
e SSH ver 1.0, 2.0

Standards:
e RSA PKCS #1 versions 1.5, 2.0
IEEE P1363
NESSIE (Europe)
CRYPTREC (Japan)
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