ASYMMETRIC ENCRYPTION

Recommended Book

Steven Levy. Crypto. Penguin books. 2001.
A non-technical account of the history of public-key cryptography and the colorful characters involved.

Recall Symmetric Cryptography

- Before Alice and Bob can communicate securely, they need to have a common secret key $K_{A B}$.
- If Alice wishes to also communicate with Charlie then she and Charlie must also have another common secret key $K_{A C}$.
- If Alice generates $K_{A B}, K_{A C}$, they must be communicated to her partners over private and authenticated channels.

Public Key Encryption

- Alice has a secret key that is shared with nobody, and an associated public key that is known to everybody.
- Anyone (Bob, Charlie, ...) can use Alice's public key to send her an encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a database

Public Key Encryption

- Alice has a secret key that is shared with nobody, and an associated public key that is known to everybody.
- Anyone (Bob, Charlie, ...) can use Alice's public key to send her an encrypted message which only she can decrypt.

Think of the public key like a phone number that you can look up in a database

- Senders don't need secrets
- There are no shared secrets

Syntax of PKE

A public-key (or asymmetric) encryption scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ consists of three algorithms, where

How it Works

Step 1: Key generation
Alice locally computers $(p k, s k) \stackrel{\S}{\leftarrow} \mathcal{K}$ and stores $s k$.
Step 2: Alice enables any prospective sender to get $p k$.
Step 3: The sender encrypts under $p k$ and Alice decrypts under sk.
We don't require privacy of $p k$ but we do require authenticity: the sender should be assured $p k$ is really Alice's key and not someone else's.
One could

- Put public keys in a trusted but public "phone book", say a cryptographic DNS.
- Use certificates as we will see later.

Security of PKE Schemes: Issues

The issues are the same as for symmetric encryption:

- Want general purpose schemes
- Security should not rely on assumptions about usage setting
- Want to prevent leakage of partial information about plaintexts

Security requirements

Suppose sender computes

$$
C_{1} \stackrel{\S}{\leftarrow} \mathcal{E}_{p k}\left(M_{1}\right) ; \cdots ; C_{q} \stackrel{\S}{\leftarrow} \mathcal{E}_{p k}\left(M_{q}\right)
$$

Adversary A has C_{1}, \ldots, C_{q}

But also ...

Security requirements

We want to hide all partial information about the data stream.
Examples of partial information:

- Does $M_{1}=M_{2}$?
- What is first bit of M_{1} ?
- What is XOR of first bits of M_{1}, M_{2} ?

Security requirements

We want to hide all partial information about the data stream.
Examples of partial information:

- Does $M_{1}=M_{2}$?
- What is first bit of M_{1} ?
- What is XOR of first bits of M_{1}, M_{2} ?

Something we won't hide: the length of the message

New Issue

The adversary needs to be given the public key.

Intuition for definition of IND

Consider encrypting one of two possible message streams, either

$$
M_{0}^{1}, \ldots, M_{0}^{q}
$$

or

$$
M_{1}^{1}, \ldots, M_{1}^{q}
$$

Adversary, given ciphertexts and both data streams, has to figure out which of the two streams was encrypted.

ind-cpa-adversaries

Let $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be an public-key encryption scheme
An ind-cpa adversary A has input $p k$ and an oracle LR

- It can make a query M_{0}, M_{1} consisting of any two equal-length messages
- It can do this many times
- Each time it gets back a ciphertext
- It eventually outputs a bit

ind-cpa-adversaries

Let $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a public-key encryption scheme

Right world

Intended meaning: I think I am in the

A's output d	I think I am in the
1	Right world
0	Left world

The harder it is for A to guess world it is in, the more "secure" $\mathcal{A E}$ is as an encryption scheme.

The games

Let $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be a public-key encryption scheme

$$
\begin{aligned}
& \text { Game Left }_{\mathcal{A E}} \\
& \text { procedure Initialize } \\
& (p k, s k) \stackrel{\&}{\leftarrow} ; \text { return } p k \\
& \text { procedure } \operatorname{LR}\left(M_{0}, M_{1}\right) \\
& \text { Return } C \stackrel{\&}{\leftarrow} \mathcal{E}_{p k}\left(M_{0}\right) \\
& \hline
\end{aligned}
$$

Game Right $_{\mathcal{A} \mathcal{E}}$
procedure Initialize
$(p k, s k) \stackrel{\Phi}{\leftrightarrows}$; return $p k$ procedure $\mathbf{L R}\left(M_{0}, M_{1}\right)$ Return $C \stackrel{\S}{\leftarrow} \mathcal{E}_{p k}\left(M_{1}\right)$

Associated to $\mathcal{A E}, A$ are the probabilities

$$
\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{A E}}^{A} \Rightarrow 1\right] \quad \operatorname{Pr}\left[\operatorname{Right}_{\mathcal{A E}}^{A} \Rightarrow 1\right]
$$

that A outputs 1 in each world. The ind-cpa advantage of A is

$$
\operatorname{Adv}_{\mathcal{A E}}^{\text {ind-cpa }}(A)=\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{A} \mathcal{E}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{A} \mathcal{E}}^{A} \Rightarrow 1\right]
$$

Simplification

We may assume A makes only one LR query. It can be shown that this can decrease its advantage by at most the number of $\mathbf{L R}$ queries.

Building a PKE Scheme

We would like security to result from the hardness of computing discrete logarithms.

Let the receiver's public key be g where $G=\langle g\rangle$ is a cyclic group. Let's let the encryption of x be g^{x}. Then

$$
\underbrace{g^{x}}_{\mathcal{E}_{g}(x)} \xrightarrow{\text { hard }} x
$$

so to recover x, adversary must compute discrete logarithms, and we know it can't, so are we done?

Building a PKE Scheme

We would like security to result from the hardness of computing discrete logarithms.

Let the receiver's public key be g where $G=\langle g\rangle$ is a cyclic group. Let's let the encryption of x be g^{x}. Then

$$
\underbrace{g^{x}}_{\mathcal{E}_{g}(x)} \xrightarrow{\text { hard }} x
$$

so to recover x, adversary must compute discrete logarithms, and we know it can't, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to decrypt too! But decryption needs to be feasible.

Building a PKE Scheme

We would like security to result from the hardness of computing discrete logarithms.

Let the receiver's public key be g where $G=\langle g\rangle$ is a cyclic group. Let's let the encryption of x be g^{x}. Then

$$
\underbrace{g^{x}}_{\mathcal{E}_{g}(x)} \xrightarrow{\text { hard }} x
$$

so to recover x, adversary must compute discrete logarithms, and we know it can't, so are we done?

Problem: Legitimate receiver needs to compute discrete logarithm to decrypt too! But decryption needs to be feasible.

Above, receiver has no secret key!

DH Key Exchange

Let $G=\langle g\rangle$ be a cyclic group of order m.

$$
\begin{gathered}
\text { Alice } \\
x \stackrel{\leftrightarrow}{\leftarrow} \mathbf{Z}_{m} ; X \leftarrow g^{x} \\
\stackrel{\mathrm{Y}}{\stackrel{\mathrm{Y}}{\leftrightarrows}} y \stackrel{\text { Bob }}{\leftrightarrows} \mathbf{Z}_{m} ; Y \leftarrow g^{y}
\end{gathered}
$$

Then

$$
Y^{x}=\left(g^{y}\right)^{x}=g^{x y}=\left(g^{x}\right)^{y}=X^{y}
$$

- Alice can compute $K=Y^{x}$
- Bob can compute $K=X^{y}$
- But adversary wanting to compute K is faced with

$$
g^{x}, g^{y} \longrightarrow g^{x y}
$$

which is exactly the CDH problem and is computationally hard.
So this enables Alice and Bob to get a common shared key which they can then use to secure their communications.

The El Gamal Scheme: Idea

We can turn DH key exchange into a public key encryption scheme via

- Let Alice have public key g^{x} and secret key x
- If Bob wants to encrypt M for Alice, he
- Picks y and sends g^{y} to Alice
- Encrypts M under $g^{x y}=\left(g^{x}\right)^{y}$ and sends ciphertext to Alice.
- But Alice can recompute $g^{x y}=\left(g^{y}\right)^{x}$ because
- g^{y} is in the received ciphertext
- x is her secret key

Thus she can decrypt and adversary is still faced with CDH .

EG Encryption, in Full

Let $G=\langle g\rangle$ be a cyclic group of order m. The EG PKE scheme $\mathcal{A} \mathcal{E}_{\mathrm{EG}}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

$$
\begin{array}{l|l|l}
\operatorname{Alg} \mathcal{K} & \operatorname{Alg} \mathcal{E}_{X}(M) & \operatorname{Alg} \mathcal{D}_{x}(Y, W) \\
x \stackrel{\$}{\leftarrow} \mathbf{Z}_{m} & y \leftarrow \mathbf{Z}_{m} ; Y \leftarrow g^{y} & K=Y^{x} \\
X \leftarrow g^{x} & K \leftarrow X^{y} & M \leftarrow W \cdot K^{-1} \\
\text { return }(X, x) & W \leftarrow K \cdot M & \text { return }(Y . W)
\end{array}
$$

We assume the message $M \in G$ is a group element.
Correct decryption is assured because

$$
K=X^{y}=g^{x y}=Y^{x}
$$

Implementation uses several algorithms we have studied before: exponentiation, inverse.

Security of $\mathcal{A} \mathcal{E}_{\mathrm{EG}}$

secret key $=x \in \mathbf{Z}_{m}$, where $m=|G|$
public key $=X=g^{x} \in G=\langle g\rangle$

$$
\begin{array}{l|l}
\underset{\lessgtr}{\operatorname{algorithm} \mathcal{E}_{X}(M)} & \text { algorithm } \mathcal{D}_{x}(Y, W) \\
y \leftarrow \mathbf{Z}_{m} ; Y \leftarrow g^{y} & K \leftarrow Y^{x} ; M \leftarrow W \cdot K^{-1} \\
K \leftarrow X^{y} ; W \leftarrow K \cdot M & \text { return } M \\
\text { return }(Y, W) &
\end{array}
$$

- To find x given X, adversary must solve DL problem

Security of $\mathcal{A} \mathcal{E}_{\text {EG }}$

secret key $=x \in \mathbf{Z}_{m}$, where $m=|G|$
public key $=X=g^{x} \in G=\langle g\rangle$

$$
\begin{aligned}
& \text { algorithm } \mathcal{E}_{X}(M) \\
& y \leftarrow \mathbf{Z}_{m} ; Y \leftarrow g^{y} \\
& K \leftarrow X^{y} ; W \leftarrow K \cdot M \\
& \text { return }(Y, W)
\end{aligned}
$$

algorithm $\mathcal{D}_{x}(Y, W)$ $K \leftarrow Y^{x} ; M \leftarrow W \cdot K^{-1}$ return M

- To find x given X, adversary must solve DL problem
- To find M given $X,(Y, W)$, adversary must compute $K=g^{x y}$, meaning solve CDH problem

Security of $\mathcal{A} \mathcal{E}_{\mathrm{EG}}$

secret key $=x \in \mathbf{Z}_{m}$, where $m=|G|$
public key $=X=g^{x} \in G=\langle g\rangle$

$$
\begin{aligned}
& \text { algorithm } \mathcal{E}_{X}(M) \\
& y \stackrel{\Phi}{\leftarrow} \mathbf{Z}_{m} ; Y \leftarrow g^{y} \\
& K \leftarrow X^{y} ; W \leftarrow K \cdot M \\
& \text { return }(Y, W)
\end{aligned}
$$

algorithm $\mathcal{D}_{x}(Y, W)$ $K \leftarrow Y^{x} ; M \leftarrow W \cdot K^{-1}$ return M

- To find x given X, adversary must solve DL problem
- To find M given $X,(Y, W)$, adversary must compute $K=g^{x y}$, meaning solve CDH problem
- But what prevents leakage of partial information about M ? Is the scheme IND-CPA secure?

Security of $\mathcal{A} \mathcal{E}_{\mathrm{EG}}$ in \mathbf{Z}_{p}^{*}

In $G=\mathbf{Z}_{p}^{*}$, where p is a prime

- DL, CDH are hard, yet
- There is an attack showing $\mathcal{A E}_{\mathrm{EG}}$ is NOT IND-CPA secure

Number theory

Number theory is fun!

Squares

We say that a is a square (or quadratic residue) modulo p if there exists b such that $b^{2} \equiv a(\bmod p)$.

We let

$$
J_{p}(a)=\left\{\begin{aligned}
1 & \text { if } a \text { is a square } \bmod p \\
0 & \text { if } a \bmod p=0 \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

be the Legendre or Jacobi symbol of a modulo p.
Let $p=11$. Then

- Is 4 a square modulo p ?

Squares

We say that a is a square (or quadratic residue) modulo p if there exists b such that $b^{2} \equiv a(\bmod p)$.

We let

$$
J_{p}(a)=\left\{\begin{aligned}
1 & \text { if } a \text { is a square } \bmod p \\
0 & \text { if } a \bmod p=0 \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

be the Legendre or Jacobi symbol of a modulo p.
Let $p=11$. Then

- Is 4 a square modulo p ?

YES because $2^{2} \equiv 4(\bmod 11)$

- Is 5 a square modulo p ?

Squares

We say that a is a square (or quadratic residue) modulo p if there exists b such that $b^{2} \equiv a(\bmod p)$.

We let

$$
J_{p}(a)=\left\{\begin{aligned}
1 & \text { if } a \text { is a square } \bmod p \\
0 & \text { if } a \bmod p=0 \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

be the Legendre or Jacobi symbol of a modulo p.
Let $p=11$. Then

- Is 4 a square modulo p ?

YES because $2^{2} \equiv 4(\bmod 11)$

- Is 5 a square modulo p ?

YES because $4^{2} \equiv 5(\bmod 11)$

- What is $J_{11}(5)$?

Squares

We say that a is a square (or quadratic residue) modulo p if there exists b such that $b^{2} \equiv a(\bmod p)$.

We let

$$
J_{p}(a)=\left\{\begin{aligned}
1 & \text { if } a \text { is a square } \bmod p \\
0 & \text { if } a \bmod p=0 \\
-1 & \text { otherwise }
\end{aligned}\right.
$$

be the Legendre or Jacobi symbol of a modulo p.
Let $p=11$. Then

- Is 4 a square modulo p ?

YES because $2^{2} \equiv 4(\bmod 11)$

- Is 5 a square modulo p ?

YES because $4^{2} \equiv 5(\bmod 11)$

- What is $J_{11}(5)$?

It equals +1

The set of squares

We let

$$
\begin{aligned}
\operatorname{QR}\left(\mathbf{Z}_{p}^{*}\right) & =\left\{a \in \mathbf{Z}_{p}^{*}: a \text { is a square } \bmod p\right\} \\
& =\left\{a \in \mathbf{Z}_{p}^{*}: \exists b \in \mathbf{Z}_{p}^{*} \text { such that } b^{2} \equiv a(\bmod p)\right\}
\end{aligned}
$$

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$										

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1									

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4								

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9							

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9	5						

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9	5	3					

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9	5	3	3				

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9	5	3	3	5			

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9	5	3	3	5	9		

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9	5	3	3	5	9	4	

Example

Let $p=11$

a	1	2	3	4	5	6	7	8	9	10
$a^{2} \bmod 11$	1	4	9	5	3	3	5	9	4	1

Then

$$
\mathrm{QR}\left(\mathbf{Z}_{p}^{*}\right)=\{1,3,4,5,9\}
$$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

Observe

- There are 5 squares and 5 non-squares.
- Every square has exactly 2 square roots.

Relation to discrete log

Recall that 2 is a generator of \mathbf{Z}_{11}^{*}

a	1	2	3	4	5	6	7	8	9	10
$\operatorname{DLog}_{\mathbf{z}_{11}^{*}, 2}(a)$	0	1	8	2	4	9	7	3	6	5
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

Relation to discrete log

Recall that 2 is a generator of \mathbf{Z}_{11}^{*}

a	1	2	3	4	5	6	7	8	9	10
$\operatorname{DLog}_{\mathbf{z}_{11}^{*}, 2}(a)$	0	1	8	2	4	9	7	3	6	5
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

so

$$
J_{11}(a)=1 \quad \text { iff } \quad \operatorname{DLog}_{Z_{11}^{*}, 2}(a) \text { is even }
$$

This makes sense because for any generator g,

$$
g^{2 j}=\left(g^{j}\right)^{2}
$$

is always a square!

Squares and discrete logs

Fact: If $p \geq 3$ is a prime and g is a generator of \mathbf{Z}_{p}^{*} then

$$
\operatorname{QR}\left(\mathbf{Z}_{p}^{*}\right)=\left\{g^{i}: 0 \leq i \leq p-2 \text { and } i \text { is even }\right\}
$$

Example: If $p=11$ and $g=2$ then $p-2=9$ and the squares are

- $2^{0} \bmod 11=1$
- $2^{2} \bmod 11=4$
- $2^{4} \bmod 11=5$
- $2^{6} \bmod 11=9$
- $2^{8} \bmod 11=3$

Computing the Legendre symbol

Is there an algorithm that given p and $a \in \mathbf{Z}_{p}^{*}$ returns $J_{p}(a)$, meaning determines whether or not a is a square $\bmod p$?

Computing the Legendre symbol

Is there an algorithm that given p and $a \in \mathbf{Z}_{p}^{*}$ returns $J_{p}(a)$, meaning determines whether or not a is a square $\bmod p$?

Sure!
$\operatorname{Alg} \operatorname{TEST}-\operatorname{SQ}(p, a)$
Let g be a generator of \mathbf{Z}_{p}^{*}
Let $i \leftarrow \operatorname{DLog}_{Z_{p}^{*}, g}(a)$
if i is even then return 1 else return -1

Computing the Legendre symbol

Is there an algorithm that given p and $a \in \mathbf{Z}_{p}^{*}$ returns $J_{p}(a)$, meaning determines whether or not a is a square $\bmod p$?

Sure!
Alg TEST-SQ (p, a)
Let g be a generator of \mathbf{Z}_{p}^{*}
Let $i \leftarrow \operatorname{DLog}_{Z_{p}^{*}, g}(a)$
if i is even then return 1 else return -1
This is correct, but

- How do we find g ?
- How do we compute $\operatorname{DLog}_{\mathbf{z}_{p}^{*}, g}(a)$?

Fermat's Theorem

Fact: If $p \geq 3$ is a prime then for any a

$$
J_{p}(a) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

Example: Let $p=11$.

- Let $a=5$. We know that 5 is a square, meaning $J_{11}(5)=1$. Now compute

$$
a^{\frac{p-1}{2}} \equiv 5^{5} \equiv(25)(25)(5) \equiv 3 \cdot 3 \cdot 5 \equiv 45 \equiv 1 \quad(\bmod 11)
$$

- Let $a=6$. We know that 6 is not a square, meaning $J_{11}(6)=-1$. Now compute

$$
a^{\frac{p-1}{2}} \equiv 6^{5} \equiv(36)(36)(6) \equiv 3 \cdot 3 \cdot 6 \equiv 54 \equiv-1 \quad(\bmod 11)
$$

Fermat's Theorem

Fact: If $p \geq 3$ is a prime then for any a

$$
J_{p}(a) \equiv a^{\frac{p-1}{2}} \quad(\bmod p)
$$

This yields a cubic-time algorithm to compute the Legendre symbol, meaning determine whether or not a given number is a square:
$\operatorname{Alg} \operatorname{TEST}-\mathrm{SQ}(p, a)$
$s \leftarrow a^{\frac{p-1}{2}} \bmod p$
if $s=1$ then return 1 else return -1

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a			1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$			1	-1	1	1	1	-1	-1	-1	1	-1
$a \mid$		$a b$		$J_{11}(a)$		J_{1}		J_{11}		J_{11}		$11(b)$

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

	a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1	

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a			1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$			1	-1	1	1	1	-1	-1	-1	1	-1
a	b	$a b$		$J_{11}(a)$		$J_{11}($		$J_{11}($		$J_{11}(a)$		$J_{11}(b)$
5	6											

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

5	6	8		$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$
$J_{11}(a) \cdot J_{11}(b)$						

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a			1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$			1	-1	1	1	1	-1	-1	-1	1	-1
a	b	$a b$		$J_{11}(a)$		$J_{11}($		J_{11}		$J_{11}($		(b)
5	6	8		1								

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

| | b | $a b$ | $J_{11}(a)$ | $J_{11}(b)$ | $J_{11}(a b)$ | $J_{11}(a) \cdot J_{11}(b)$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 6 | 8 | 1 | -1 | | |

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

	a	1	2	3	4	5	6	7	8	9
10										
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

| | | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | b | $a b$ | $J_{11}(a)$ | $J_{11}(b)$ | $J_{11}(a b)$ | $J_{11}(a) \cdot J_{11}(b)$ |
| | 6 | 8 | 1 | -1 | -1 | |

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	b	$a b$	$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$	$J_{11}(a) \cdot J_{11}(b)$
5	6	8	1	-1	-1	-1

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	b	$a b$	$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$	$J_{11}(a) \cdot J_{11}(b)$
5	6	8	1	-1	-1	-1
2						

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	b	$a b$	$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$	$J_{11}(a) \cdot J_{11}(b)$
5	6	8	1	-1	-1	-1
2	7					

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	b	$a b$	$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$	$J_{11}(a) \cdot J_{11}(b)$
5	6	8	1	-1	-1	-1
2	7	3				

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	b	$a b$	$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$	$J_{11}(a) \cdot J_{11}(b)$	
5	6	8	1	-1	-1	-1	
2	7	3	-1				

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	b	$a b$	$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$	$J_{11}(a) \cdot J_{11}(b)$
5	6	8	1	-1	-1	-1
2	7	3	-1	-1		

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	b	$a b$	$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$	$J_{11}(a) \cdot J_{11}(b)$
5	6	8	1	-1	-1	-1
2	7	3	-1	-1	1	

Multiplicity of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any a, b

$$
J_{p}(a b)=J_{p}(a) \cdot J_{p}(b)
$$

Example: Let $p=11$.

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	b	$a b$	$J_{11}(a)$	$J_{11}(b)$	$J_{11}(a b)$	$J_{11}(a) \cdot J_{11}(b)$
5	6	8	1	-1	-1	-1
2	7	3	-1	-1	1	1

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1
		$a \mid a^{-1}$		$J_{11}(a)$		$J_{11}\left(a^{-1}\right)$				

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

$$
\begin{array}{l|l|l|l|}
a & a^{-1} & J_{11}(a) & J_{11}\left(a^{-1}\right) \\
\hline \hline 3 &
\end{array}
$$

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

$$
\begin{array}{c|c|c|c|}
a & a^{-1} & J_{11}(a) & J_{11}\left(a^{-1}\right) \\
\hline \hline 3 & 4 &
\end{array}
$$

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	a^{-1}	$J_{11}(a)$	$J_{11}\left(a^{-1}\right)$
3	4	1	

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	a^{-1}	$J_{11}(a)$	$J_{11}\left(a^{-1}\right)$
3	4	1	1

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	a^{-1}	$J_{11}(a)$	$J_{11}\left(a^{-1}\right)$
3	4	1	1
7			

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	a^{-1}	$J_{11}(a)$	$J_{11}\left(a^{-1}\right)$
3	4	1	1
7	8		

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	a^{-1}	$J_{11}(a)$	$J_{11}\left(a^{-1}\right)$
3	4	1	1
7	8	-1	

Inversion of Legendre symbol

Fact: If $p \geq 3$ is a prime then for any $a \in \mathbf{Z}_{p}^{*}$

$$
J_{p}\left(a^{-1}\right)=J_{p}(a)
$$

Example: $p=11$

a	1	2	3	4	5	6	7	8	9	10
$J_{11}(a)$	1	-1	1	1	1	-1	-1	-1	1	-1

a	a^{-1}	$J_{11}(a)$	$J_{11}\left(a^{-1}\right)$
3	4	1	1
7	8	-1	-1

Legendre symbol of EG key

Fact: Let $p \geq 3$ be a prime and $x, y \in \mathbf{Z}_{p-1}$. Let $X=g^{x}$ and $Y=g^{y}$ and $K=g^{x y}$. Then

$$
J_{p}(K)= \begin{cases}1 & \text { if } J_{p}(X)=1 \text { or } J_{p}(Y)=1 \\ -1 & \text { otherwise }\end{cases}
$$

In particular one can determine $J_{p}(K)$ given $J_{p}(X)$ and $J_{p}(Y)$
Proof:

$$
\begin{aligned}
J_{p}(K) & =J_{p}\left(g^{x y}\right)= \begin{cases}1 & \text { if } x y \text { is even } \\
-1 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } x \text { is even or } y \text { is even } \\
-1 & \text { otherwise }\end{cases} \\
& = \begin{cases}1 & \text { if } J_{p}\left(g^{x}\right)=1 \text { or } J_{p}\left(g^{y}\right)=1 \\
-1 & \text { otherwise }\end{cases}
\end{aligned}
$$

EG modulo a prime

Let p be a prime and g a generator of \mathbf{Z}_{p}^{*}. The EG PKE scheme $\mathcal{A} \mathcal{E}_{\mathrm{EG}}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by

Alg \mathcal{K}
$x \stackrel{\varsigma}{\leftarrow} \mathbf{Z}_{p-1}$
$X \leftarrow g^{x}$
return (X, x)
$\boldsymbol{A} \lg \mathcal{E}_{X}(M)$
$y \stackrel{ }{\hookleftarrow} \mathbf{Z}_{p-1} ; Y \leftarrow g^{y}$
$K \leftarrow X^{y}$
$W \leftarrow K \cdot M$
return (Y, W)
$\operatorname{Alg} \mathcal{D}_{x}(Y, W)$
$K=Y^{X}$
$M \leftarrow W \cdot K^{-1}$
return M

The weakness: Suppose $(Y, W) \stackrel{\S}{\leftarrow} \mathcal{E}_{X}(M)$. Then we claim that given

- the public key X
- the ciphertext (Y, W)
an adversary can easily compute $J_{p}(M)$.
This represents a loss of partial information.

EG modulo a prime

Suppose (Y, W) is an encryption of M under public key $X=g^{x}$, where $Y=g^{y}$. Then

- $W=K \cdot M$
- $K=g^{x y}$

So

$$
\begin{aligned}
J_{p}(M) & =J_{p}\left(W \cdot K^{-1}\right)=J_{p}(W) \cdot J_{p}\left(K^{-1}\right)=J_{p}(W) \cdot J_{p}(K) \\
& =J_{p}(W) \cdot s
\end{aligned}
$$

where $s= \begin{cases}1 & \text { if } J_{p}(X)=1 \text { or } J_{p}(Y)=1\end{cases}$
where $s= \begin{cases}1 & \text { otherwise. }\end{cases}$
So we can compute $J_{p}(M)$ via
Alg FIND-J (X, Y, W)
if $J_{p}(X)=1$ or $J_{p}(Y)=1$ then $s \leftarrow 1$ else $s \leftarrow-1$
return $J_{p}(W) \cdot s$

EG modulo a prime

Let p be a prime and g a generator of \mathbf{Z}_{p}^{*}. The EG PKE scheme $\mathcal{A E} \mathcal{E}_{\mathrm{EG}}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is defined by
$\operatorname{Alg} \mathcal{K}$
$x \underset{\leftrightarrows}{\&} \mathbf{Z}_{p-1}$
$X \leftarrow g^{x}$
return (X, x)
$\operatorname{Alg} \mathcal{E}_{X}(M)$
$y \leftarrow \mathbf{Z}_{p-1}^{\varsigma} ; Y \leftarrow g^{y}$
$K \leftarrow X^{y}$
$W \leftarrow K \cdot M$
return (Y, W)

Alg $\mathcal{D}_{x}(Y, W)$
$K=Y^{X}$
$M \leftarrow W \cdot K^{-1}$
return M

The weakness: There is an algorithm FIND-J

IND-CPA attack

Given public key X

- Produce two messages M_{0}, M_{1}
- Receive encryption (Y, W) of M_{b}
- Figure out b

IND-CPA attack

Given public key X

- Produce two messages M_{0}, M_{1}
- Receive encryption (Y, W) of M_{b}
- Figure out b

How? Use:

IND-CPA attack

Given public key X

- Let M_{0}, M_{1} be such that $J_{p}\left(M_{0}\right)=-1$ and $J_{p}\left(M_{1}\right)=1$
- Receive encryption (Y, W) of M_{b}

- if $\operatorname{FIND}-J(X, Y, W)=1$ then return 1 else return 0

IND-CPA attack on EG

Let $\mathcal{A} \mathcal{E}_{\mathrm{EG}}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ be the EG PKE scheme over \mathbf{Z}_{p}^{*} where p is a prime.

$$
\begin{aligned}
& \text { Left world } \\
& A \underset{\longleftrightarrow}{\stackrel{M_{0}, M_{1}}{C}} \begin{array}{c}
\text { LR } \\
C \stackrel{\S}{\longleftarrow} \mathcal{E}_{p k}\left(M_{0}\right)
\end{array} \\
& \text { Right world } \\
& A \quad \xrightarrow{M_{0}, M_{1}} \xrightarrow{C} \stackrel{\text { LR }}{\leftrightarrows} \mathcal{E}_{p k}\left(M_{1}\right)
\end{aligned}
$$

adversary $A(X)$
$M_{1} \leftarrow 1 ; M_{0} \leftarrow g$
$(Y, W) \stackrel{\varsigma}{\leftarrow} \mathbf{R}\left(M_{0}, M_{1}\right)$
if $\operatorname{FIND}-\mathrm{J}(X, Y, W)=1$ then return 1 else return 0
Then

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{A} \mathcal{E}_{\mathrm{EG}}, \boldsymbol{A}}^{\text {ind-cpa }} & =\operatorname{Pr}\left[\operatorname{Right}_{\mathcal{A} \mathcal{E}_{\mathrm{EG}}}^{A} \Rightarrow 1\right]-\operatorname{Pr}\left[\operatorname{Left}_{\mathcal{A} \mathcal{E}_{\mathrm{EG}}}^{A} \Rightarrow 1\right] \\
& =1-0=1
\end{aligned}
$$

IND-CPA security of EG

We have seen that EG is not IND-CPA over groups $G=\mathbf{Z}_{p}^{*}$ for prime p. However it is IND-CPA secure over any group G where the DDH problem is hard.

This is not a contradiction because if p is prime then the DDH problem in \mathbf{Z}_{p}^{*} is easy even though DL, CDH seem to be hard.
We can in particular securely implement EG over

- Appropriate prime-order subgroups of \mathbf{Z}_{p}^{*} for a prime p
- Elliptic curve groups of prime order

Message encoding in $\mathcal{A} \mathcal{E}_{\text {EG }}$

The $\mathcal{A} \mathcal{E}_{\text {EG }}$ asymmetric encryption scheme assumes that messages can be encoded as elements of the underlying group G. But

- Messages may be of large and varying lengths, but we want the group to be fixed beforehand and as small as possible
- For some groups this encoding is hard even if the messages are short

Speed

Asymmetric cryptography is orders of magnitude slower than symmetric cryptography

An exponentiation in a 160-bit elliptic curve group costs about the same as 3000-4000 hashes or block cipher operations

Hybrid encryption

Build an asymmetric encryption scheme by combining symmetric and asymmetric techniques:

- Symmetrically encrypt data under a key K
- Asymmetrically encrypt K

Benefits:

- Speed
- No encoding problems

EG again

Let $G=\langle g\rangle$ be a cyclic group of order m and let $s k=x$ and $p k=X=g^{x}$ be $\mathcal{A \mathcal { E } _ { E G }}$ keys.
$\operatorname{Alg} \mathcal{E}_{X}(M)$
$y \stackrel{\varsigma}{\leftarrow} \mathbf{Z}_{p-1} ; Y \leftarrow g^{y}$
$K \leftarrow X^{y}$
$W \leftarrow K \cdot M$
return (Y, W)
In EG, the "symmetric key" is K and it "symmetrically" encrypts M as $W=K \cdot M$.

An alternative to $\mathcal{A} \mathcal{E}_{\mathrm{EG}}$

Let the "symmetric key" be $K=H\left(g^{y} \| g^{x y}\right)$ rather than merely $g^{x y}$, where $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ is a hash function.

Instead of $K \cdot M$, let W be an encryption of M under K with some known-secure symmetric scheme such as AES-CBC. In this case $k=128$ above.

DHIES [ABR]

Let $G=\langle g\rangle$ be a cyclic group of order $m, H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ a hash function, and $\mathcal{S E}=(\mathcal{K} \mathcal{S}, \mathcal{E S}, \mathcal{D S})$ a symmetric encryption scheme with k-bit keys. Then DHIES is $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ where

Alg \mathcal{K}
$x \stackrel{{ }^{s}}{\leftarrow} \mathbf{Z}_{m}$
$X \leftarrow g^{x}$
return (X, x)
$\boldsymbol{A} \boldsymbol{\operatorname { l g }} \mathcal{E}_{X}(M)$
$y \stackrel{\varsigma}{\leftarrow} \mathbf{Z}_{m} ; Y \leftarrow g^{y}$
$Z \leftarrow X^{y}$
$K \leftarrow H(Y \| Z)$
$C_{s} \stackrel{\varsigma}{\leftarrow} \mathcal{E}_{K}(M)$
return $\left(Y, C_{s}\right)$
$\operatorname{Alg} \mathcal{D}_{x}\left(Y, C_{s}\right)$
$Z \leftarrow Y^{x}$
$K \leftarrow H(Y \| Z)$
$M \stackrel{ }{\hookleftarrow} \mathcal{D} \mathcal{S}_{K}\left(C_{s}\right)$
return M

ECIES

ECIES is DHIES when G is an elliptic curve group.

Operation	Cost
encryption	2160 -bit exp
decryption	1160 -bit exp
ciphertext expansion	160 -bits

ciphertext expansion $=($ length of ciphertext $)$ - (length of plaintext)

RSA Math

Recall that $\varphi(N)=\left|\mathbf{Z}_{N}^{*}\right|$.
Claim: Suppose $e, d \in \mathbf{Z}_{\varphi(N)}^{*}$ satisfy $e d \equiv 1(\bmod \varphi(N))$. Then for any $x \in \mathbf{Z}_{N}^{*}$ we have

$$
\left(x^{e}\right)^{d} \equiv x(\bmod N)
$$

Proof:

$$
\left(x^{e}\right)^{d} \equiv x^{e d} \bmod \varphi(N) \equiv x^{1} \equiv x
$$

modulo N

The RSA function

A modulus N and encryption exponent e define the RSA function $f: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ defined by

$$
f(x)=x^{e} \bmod N
$$

for all $x \in \mathbf{Z}_{N}^{*}$.
A value $d \in Z_{\varphi(N)}^{*}$ satisfying ed $\equiv 1(\bmod \varphi(N))$ is called a decryption exponent.

Claim: The RSA function $f: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ is a permutation with inverse $f^{-1}: \mathbf{Z}_{N}^{*} \rightarrow \mathbf{Z}_{N}^{*}$ given by

$$
f^{-1}(y)=y^{d} \bmod N
$$

Proof: For all $x \in \mathbf{Z}_{N}^{*}$ we have

$$
f^{-1}(f(x)) \equiv\left(x^{e}\right)^{d} \equiv x(\bmod N)
$$

by previous claim.

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	
2	8	
4		
7		
8		
11		
13		
14		

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	
2	8	
4	4	
7		
8		
11		
13		
14		

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	
2	8	
4	4	
7	13	
8		
11		
13		
14		

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	
2	8	
4	4	
7	13	
8	2	
11		
13		
14		

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	
2	8	
4	4	
7	13	
8	2	
11	11	
13		
14		

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	
2	8	
4	4	
7	13	
8	2	
11	11	
13	7	
14		

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	
2	8	
4	4	
7	13	
8	2	
11	11	
13	7	
14	14	

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	1
2	8	
4	4	
7	13	
8	2	
11	11	
13	7	
14	14	

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	1
2	8	2
4	4	
7	13	
8	2	
11	11	
13	7	
14	14	

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	1
2	8	2
4	4	4
7	13	
8	2	
11	11	
13	7	
14	14	

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	1
2	8	2
4	4	4
7	13	7
8	2	
11	11	
13	7	
14	14	

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	1
2	8	2
4	4	4
7	13	7
8	2	8
11	11	
13	7	
14	14	

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	1
2	8	2
4	4	4
7	13	7
8	2	8
11	11	11
13	7	
14	14	

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	1
2	8	2
4	4	4
7	13	7
8	2	8
11	11	11
13	7	13
14	14	

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

Example

Let $N=15$. So

$$
\begin{aligned}
\mathbf{Z}_{N}^{*} & =\{1,2,4,7,8,11,13,14\} \\
\varphi(N) & =8 \\
\mathbf{Z}_{\varphi(N)}^{*} & =\{1,3,5,7\}
\end{aligned}
$$

Let $e=3$ and $d=3$. Then $e d \equiv 9 \equiv 1 \quad(\bmod 8)$

Let

x	$f(x)$	$g(f(x))$
1	1	1
2	8	2
4	4	4
7	13	7
8	2	8
11	11	11
13	7	13
14	14	14

$$
\begin{aligned}
& f(x)=x^{3} \bmod 15 \\
& g(y)=y^{3} \bmod 15
\end{aligned}
$$

RSA usage

- $p k=N, e ; s k=N, d$
- $\mathcal{E}_{p k}(x)=x^{e} \bmod N=f(x)$
- $\mathcal{D}_{s k}(y)=y^{d} \bmod N=f^{-1}(y)$

Security will rely on it being hard to compute f^{-1} without knowing d.
RSA is a trapdoor, one-way permutation:

- Easy to invert given trapdoor d
- Hard to invert given only N, e

RSA generators

An RSA generator with security parameter k is an algorithm $\mathcal{K}_{r s a}$ that returns N, p, q, e, d satisfying

- p, q are distinct odd primes
- $N=p q$ and is called the (RSA) modulus
- $|N|=k$, meaning $2^{k-1} \leq N \leq 2^{k}$
- $e \in \mathbf{Z}_{\varphi(N)}^{*}$ is called the encryption exponent
- $d \in \mathbf{Z}_{\varphi(N)}^{*}$ is called the decryption exponent
- $e d \equiv 1(\bmod \varphi(N))$

Plan

- Building RSA generators
- Basic RSA security
- Encryption with RSA

Some more math

Fact: If p, q are distinct primes and $N=p q$ then $\varphi(N)=(p-1)(q-1)$.

Proof:

$$
\begin{aligned}
\varphi(N) & =|\{1, \ldots, N-1\}|-|\{i p: 1 \leq i \leq q-1\}|-|\{i q: 1 \leq i \leq p-1\}| \\
& =(N-1)-(q-1)-(p-1) \\
& =N-p-q+1 \\
& =p q-p-q+1 \\
& =(p-1)(q-1)
\end{aligned}
$$

Example:

- $15=3 \cdot 5$
- $\mathbf{Z}_{15}^{*}=\{1,2,4,7,8,11,13,14\}$
- $\varphi(15)=8=(3-1)(5-1)$

Recall

Given $\varphi(N)$ and $e \in \mathbf{Z}_{\varphi(N)}^{*}$, we can compute $d \in \mathbf{Z}_{\varphi(N)}^{*}$ satisfying $e d \equiv 1(\bmod \varphi(N))$ via

$$
d \leftarrow \operatorname{MOD}-\operatorname{INV}(e, \varphi(N))
$$

We have algorithms to efficiently test whether a number is prime, and a random number has a pretty good chance of being a prime.

Building RSA generators

Say we wish to have $e=3$ (for efficiency). The generator $\mathcal{K}_{\text {rsa }}^{3}$ with (even) security parameter k :
repeat

$$
p, q \leftarrow\left\{2^{k / 2-1}, \ldots, 2^{k / 2}-1\right\} ; N \leftarrow p q ; M \leftarrow(p-1)(q-1)
$$

until
$N \geq 2^{k-1}$ and p, q are prime and $\operatorname{gcd}(e, M)=1$
$d \leftarrow \operatorname{MOD}-\operatorname{INV}(e, M)$
return N, p, q, e, d

One-wayness of RSA

The following should be hard:
Given: N, e, y where $y=f(x)=x^{e} \bmod N$
Find: x
Formalism picks x at random and generates N, e via an RSA generator.

ow-adversaries

wins if $x=f^{-1}(y)$, meaning $x^{e} \equiv y(\bmod N)$.

One-wayness of RSA, formally

Let $K_{\text {rsa }}$ be a RSA generator and I an adversary.
Game OW $K_{\text {rsa }}$
procedure Initialize
$(N, p, q, e, d) \stackrel{\varsigma}{\leftarrow} K_{\text {rsa }}$
$x \stackrel{ }{\leftarrow} \mathbf{Z}_{N}^{*} ; y \leftarrow x^{e} \bmod N$
return N, e, y

The ow-advantage of I is

$$
\operatorname{Adv}_{K_{\text {rsa }}}^{\mathrm{ow}}(I)=\operatorname{Pr}\left[\mathrm{OW}_{K_{\text {rsa }}}^{\prime} \Rightarrow \text { true }\right]
$$

Inverting RSA

Inverting RSA : given N, e, y find x such that $x^{e} \equiv y(\bmod N)$

Inverting RSA

Inverting RSA : given N, e, y find x such that $x^{e} \equiv y(\bmod N)$ 4 EASY because $f^{-1}(y)=y^{d} \bmod N$

Know d

Inverting RSA

Inverting RSA : given N, e, y find x such that $x^{e} \equiv y(\bmod N)$ 4 EASY
Know d

because $f^{-1}(y)=y^{d} \bmod N$
because $d=e^{-1} \bmod \varphi(N)$
Know $\varphi(N)$

Inverting RSA

Inverting RSA : given N, e, y find x such that $x^{e} \equiv y(\bmod N)$

EASY

Know d

Know $\varphi(N)$

Know p, q
because $f^{-1}(y)=y^{d} \bmod N$

$$
\text { because } d=e^{-1} \bmod \varphi(N)
$$

$$
\text { because } \varphi(N)=(p-1)(q-1)
$$

Inverting RSA

Inverting RSA : given N, e, y find x such that $x^{e} \equiv y(\bmod N)$

Know d
-

EASY

Know $\varphi(N)$

EASY
because $\varphi(N)=(p-1)(q-1)$
Know p, q

Know N

Factoring Problem

Given: N where $N=p q$ and p, q are prime
Find: p, q
If we can factor we can invert RSA. We do not know whether the converse is true, meaning whether or not one can invert RSA without factoring.

A factoring algorithm

$\operatorname{Alg} \operatorname{FACTOR}(N) \quad / / N=p q$ where p, q are primes for $i=2, \ldots,\lceil\sqrt{N}\rceil$ do
if $N \bmod i=0$ then

$$
p \leftarrow i ; q \leftarrow N / i ; \text { return } p, q
$$

This algorithm works but takes time

$$
\mathcal{O}(\sqrt{N})=\mathcal{O}\left(e^{0.5 \ln N}\right)
$$

which is prohibitive.

Factoring algorithms

Algorithm	Time taken to factor N
Naive	$O\left(e^{0.5 \ln N}\right)$
Quadratic Sieve (QS)	$O\left(e^{c(\ln N)^{1 / 2}(\ln \ln N)^{1 / 2}}\right)$
Number Field Sieve (NFS)	$O\left(e^{1.92(\ln N)^{1 / 3}(\ln \ln N)^{2 / 3}}\right)$

Factoring records

Number	bit-length	Factorization	alg	MIPS years
RSA-400	400	1993	QS	830
RSA-428	428	1994	QS	5000
RSA-431	431	1996	NFS	1000
RSA-465	465	1999	NFS	2000
RSA-515	515	1999	NFS	8000
RSA-576	576	2003	NFS	

How big is big enough?

Current wisdom: For 80-bit security, use a 1024 bit RSA modulus 80-bit security: Factoring takes 2^{80} time.

Factorization of RSA-1024 seems out of reach at present.
Estimates vary, and for more security, longer moduli are recommended.

RSA: what to remember

The RSA function $f(x)=x^{e}$ mod N is a trapdoor one way permutation:

- Easy forward: given N, e, x it is easy to compute $f(x)$
- Easy back with trapdoor: Given N, d and $y=f(x)$ it is easy to compute $x=f^{-1}(y)=y^{d} \bmod N$
- Hard back without trapdoor: Given N, e and $y=f(x)$ it is hard to compute $x=f^{-1}(y)$

Plain-RSA encryption

The plain RSA asymmetric encryption scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator $K_{\text {rsa }}$ is
Alg \mathcal{K}
$(N, p, q, e, d) \stackrel{\varsigma}{\leftarrow} K_{\text {rsa }}$
$p k \leftarrow(N, e)$
$s k \leftarrow(N, d)$
return ($p k, s k$)

$$
\begin{aligned}
& \operatorname{Alg} \mathcal{D}_{\text {sk }}(C) \\
& M \leftarrow C^{d} \bmod N \\
& \text { return } M
\end{aligned}
$$

The "easy-back with trapdoor" property implies

$$
\mathcal{D}_{s k}\left(\mathcal{E}_{p k}(M)\right)=M
$$

for all $M \in \mathbf{Z}_{N}^{*}$.

Plain-RSA encryption security

$\operatorname{Alg} \mathcal{K}$		
$(N, p, q, e, d) \leftarrow K_{\text {rsa }}$	$\operatorname{Alg} \mathcal{E}_{p k}(M)$	$\operatorname{Alg} \mathcal{D}_{\text {sk }}(C)$
$p k \leftarrow(N, e)$	return $C \bmod N$	$M \leftarrow C^{d} \bmod N$
$s k \leftarrow(N, d)$		return M
return $(p k, s k)$		

Getting sk from pk involves factoring N.

Plain-RSA encryption security

$$
\begin{aligned}
& \operatorname{Alg} \mathcal{K} \\
& (N, p, q, e, d) \leftarrow K_{r s a} \\
& p k \leftarrow(N, e) \\
& s k \leftarrow(N, d) \\
& \text { return }(p k, s k)
\end{aligned}
$$

$\operatorname{Alg} \mathcal{E}$ is deterministic so we can detect repeats and the scheme is not IND-CPA secure.

A message recovery attack

Suppose sender encrypts M and $M+1$ under public key $N, 3$. Adversary has

$$
C_{1}=M^{3} \bmod N \text { and } C_{2}=(M+1)^{3} \bmod N
$$

Then modulo N we have

$$
\frac{C_{2}+2 C_{1}-1}{C_{2}-C_{1}+2}=
$$

A message recovery attack

Suppose sender encrypts M and $M+1$ under public key $N, 3$. Adversary has

$$
C_{1}=M^{3} \bmod N \text { and } C_{2}=(M+1)^{3} \bmod N
$$

Then modulo N we have

$$
\frac{C_{2}+2 C_{1}-1}{C_{2}-C_{1}+2}=\frac{(M+1)^{3}+2 M^{3}-1}{(M+1)^{3}-M^{3}+2}
$$

$$
=
$$

A message recovery attack

Suppose sender encrypts M and $M+1$ under public key $N, 3$. Adversary has

$$
C_{1}=M^{3} \bmod N \text { and } C_{2}=(M+1)^{3} \bmod N
$$

Then modulo N we have

$$
\begin{aligned}
\frac{C_{2}+2 C_{1}-1}{C_{2}-C_{1}+2} & =\frac{(M+1)^{3}+2 M^{3}-1}{(M+1)^{3}-M^{3}+2} \\
& =\frac{\left(M^{3}+3 M^{2}+3 M+1\right)+2 M^{3}-1}{\left(M^{3}+3 M^{2}+3 M+1\right)-M^{3}+2} \\
& =
\end{aligned}
$$

A message recovery attack

Suppose sender encrypts M and $M+1$ under public key $N, 3$. Adversary has

$$
C_{1}=M^{3} \bmod N \text { and } C_{2}=(M+1)^{3} \bmod N
$$

Then modulo N we have

$$
\begin{aligned}
\frac{C_{2}+2 C_{1}-1}{C_{2}-C_{1}+2} & =\frac{(M+1)^{3}+2 M^{3}-1}{(M+1)^{3}-M^{3}+2} \\
& =\frac{\left(M^{3}+3 M^{2}+3 M+1\right)+2 M^{3}-1}{\left(M^{3}+3 M^{2}+3 M+1\right)-M^{3}+2} \\
& =\frac{3 M^{3}+3 M^{2}+3 M}{3 M^{2}+3 M+3}=
\end{aligned}
$$

A message recovery attack

Suppose sender encrypts M and $M+1$ under public key $N, 3$. Adversary has

$$
C_{1}=M^{3} \bmod N \text { and } C_{2}=(M+1)^{3} \bmod N
$$

Then modulo N we have

$$
\begin{aligned}
\frac{C_{2}+2 C_{1}-1}{C_{2}-C_{1}+2} & =\frac{(M+1)^{3}+2 M^{3}-1}{(M+1)^{3}-M^{3}+2} \\
& =\frac{\left(M^{3}+3 M^{2}+3 M+1\right)+2 M^{3}-1}{\left(M^{3}+3 M^{2}+3 M+1\right)-M^{3}+2} \\
& =\frac{3 M^{3}+3 M^{2}+3 M}{3 M^{2}+3 M+3}=\frac{M\left(3 M^{2}+3 M+3\right)}{3 M^{2}+3 M+3}=M
\end{aligned}
$$

so adversary an recover M.

The SRSA scheme

Encrypt M unde $p k=N$, e via:

- $x \stackrel{ }{\leftarrow} \mathbf{Z}_{N}^{*} ; C_{a} \leftarrow x^{e} \bmod N$;
- $K \leftarrow H(x)$
- Let C_{s} be a symmetric encryption of M under K
- Ciphertext is $\left(C_{a}, C_{s}\right)$

Decrypt $\left(C_{a}, C_{S}\right)$ under $s k=N, d$ via:

- $x \leftarrow C_{a}^{d} \bmod N$
- $K \leftarrow H(x)$
- Decrypt C_{s} under K to get M

The SRSA scheme

Let $\mathcal{S E}=(\mathcal{K} \mathcal{S}, \mathcal{E S}, \mathcal{D S})$ be a symmetric encryption scheme with k-bit keys, and $H:\{0,1\}^{*} \rightarrow\{0,1\}^{k}$ a hash function.

Example: $\mathcal{S E}$ could be AES CBC encryption in which case $k=128$.
The SRSA asymmetric encryption scheme $\mathcal{A E}=(\mathcal{K}, \mathcal{E}, \mathcal{D})$ associated to RSA generator $K_{\text {rsa }}$ is
$\operatorname{Alg} \mathcal{K}$
$(N, p, q, e, d) \leftarrow K_{\text {rsa }}$
$p k \leftarrow(N, e)$
$s k \leftarrow(N, d)$
return $(p k, s k)$

Alg $\mathcal{E}_{N, e}(M)$
$x^{\stackrel{\varsigma}{\leftarrow}} \mathbf{Z}_{N}^{*}$
$K \leftarrow H(x)$
$C_{a} \leftarrow x^{e} \bmod N$
$C_{s}{ }^{\stackrel{s}{s} \mathcal{E} \mathcal{S}_{K}(M)}$
return $\left(C_{a}, C_{s}\right)$

Alg $\mathcal{E}_{N, d}\left(C_{a}, C_{s}\right)$
$x \leftarrow C_{a}^{d} \bmod N$
$K \leftarrow H(x)$
$M \leftarrow \mathcal{D} \mathcal{S}_{K}\left(C_{s}\right)$
return M

PKCS \#1

Receiver keys: $p k=(N, e)$ and $s k=(N, d)$ where $n=|N|_{8}=128$
$\operatorname{Alg} \mathcal{E}_{N, e}(M) \quad / / m=|M|_{8} \leq n-11$
Pad ${\stackrel{5}{5}\left(\{0,1\}^{8}-\{00\}\right)^{n-m-3}}^{-1}$
$x \leftarrow 00||02|| P a d||00|| M$
$C \leftarrow x^{e} \bmod N$
return C
$\operatorname{Alg} \mathcal{D}_{N, d}(C) \quad / / C \in \mathbb{Z}_{N}^{*}$
$x \leftarrow C^{d} \bmod N$
$a a\|b b\| w \leftarrow x$
if $a a \neq 00$ or $b b \neq 02$ or $00 \notin w$ then return \perp
Pad ||00||M $\leftarrow w$ where $00 \notin$ Pad return M

$$
x=\begin{array}{|l|l|l|l|l|}
\hline 00 & 02 & \text { Pad } & 00 & M \\
\hline
\end{array}
$$

Attack on PKCS \#1 [BI98]

The attack A succeeds in decrypting C after making $q \approx 1$ million clever queries to the box.

Attack on PKCS \#1 and response

This is a (limited) chosen-ciphertext attack in which the oracle does not fully decrypt but indicates whether or not the decryption is valid.

The attack can be mounted on SSL.
Use of an IND-CCA scheme would prevent the attack.

OAEP [BR94]

Receiver keys: $p k=(N, e)$ and $s k=(N, d)$ where $|N|=1024$ Hash functions: $G:\{0,1\}^{128} \rightarrow\{0,1\}^{894}$ and $H:\{0,1\}^{894} \rightarrow\{0,1\}^{128}$

Algorithm $\mathcal{E}_{N, e}(M) \quad / /|M| \leq 765$
$r \leftarrow\{0,1\}^{128} ; p \leftarrow 765-|M|$

$x \leftarrow s \| t$
$C \leftarrow x^{e} \bmod N$
return C

Algorithm $\mathcal{D}_{N, d}(C) \quad / / C \in \mathbb{Z}_{N}^{*}$
$x \leftarrow C^{d} \bmod N$
$s|\mid t \leftarrow x$

if $a=0^{128}$ then return M
else return \perp

RSA OAEP usage

Protocols:

- SSL ver. 2.0, 3.0 / TLS ver. 1.0, 1.1
- SSH ver 1.0, 2.0

Standards:

- RSA PKCS \#1 versions 1.5, 2.0
- IEEE P1363
- NESSIE (Europe)
- CRYPTREC (Japan)

