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What is a hash function?

By a hash function we usually mean a map h : D → {0, 1}n that is
compressing, meaning |D| > 2n.

E.g. D = {0, 1}≤264
is the set of all strings of length at most 264.

h n

MD4 128
MD5 128
SHA1 160
RIPEMD 128
RIPEMD-160 160
SHA-256 256
Skein 256, 512, 1024
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Collision resistance (CR)

Definition: A collision for h : D → {0, 1}n is a pair x1, x2 ∈ D of points
such that h(x1) = h(x2) but x1 6= x2.

If |D| > 2n then the pigeonhole principle tells us that there must exist a
collision for h.
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Collision resistance (CR)

Definition: A collision for h : D → {0, 1}n is a pair x1, x2 ∈ D of points
such that h(x1) = h(x2) but x1 6= x2.

If |D| > 2n then the pigeonhole principle tells us that there must exist a
collision for h.

Function h is collision-resistant if it is computationally infeasible to find
a collision.
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Function families

We consider a family H : {0, 1}k × D → {0, 1}n of functions, meaning
for each K we have a map h = HK : D → {0, 1}n defined by

h(x) = H(K , x)

Usage: K
$←{0, 1}k is made public, defining hash function h = HK .

Note the key K is not secret. Both users and adversaries get it.
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CR of function families

Let H : {0, 1}k × D → {0, 1}n be a family of functions. A cr-adversary
A for H

• Takes input a key K ∈ {0, 1}k
• Outputs a pair x1, x2 ∈ D of points in the domain of H

K −→ A −→ x1, x2

A wins if x1, x2 are a collision for HK , meaning

• x1 6= x2, and

• HK (x1) = HK (x2)

Denote by Advcr

H (A) the probability that A wins.
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CR of function families

Let H : {0, 1}k × D → {0, 1}n be a family of functions and A a
cr-adversary for H.

Game CRH

procedure Initialize
K

$←{0, 1}k
Return K

procedure Finalize(x1, x2)
Return (x1 6= x2 ∧ HK (x1) = HK (x2))

Let
Advcr

H (A) = Pr
[

CRA
H ⇒ true

]

.
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The measure of success

Let H : {0, 1}k ×D → {0, 1}n be a family of functions and A a cr
adversary. Then

Advcr

H (A) = Pr
[

CRA
H ⇒ true

]

.

is a number between 0 and 1.

A “large” (close to 1) advantage means

• A is doing well

• H is not secure

A “small” (close to 0) advantage means

• A is doing poorly

• H resists the attack A is mounting

7 / 62



CR security

Adversary advantage depends on its

• strategy

• resources: Running time t

Security: H is CR if Advcr

H (A) is “small” for ALL A that use
“practical” amounts of resources.

Insecurity: H is insecure (not CR) if there exists A using “few”
resources that achieves “high” advantage.

In notes we sometimes refer to CR as CR-KK2.
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Example

Let H: {0, 1}k × {0, 1}256 → {0, 1}128 be defined by

HK (x) = HK (x [1]x [2]) = AESK (x [1]) ⊕ AESK (x [2])

Is H collision resistant?
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Let H: {0, 1}k × {0, 1}256 → {0, 1}128 be defined by

HK (x) = HK (x [1]x [2]) = AESK (x [1]) ⊕ AESK (x [2])

Is H collision resistant?

Can you design an adversary A

K −→ A −→ x1 = x1[1]x1[2]
x2 = x2[1]x2[2]

such that HK (x1) = HK (x2)?
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Example

Let H: {0, 1}k × {0, 1}256 → {0, 1}128 be defined by

HK (x) = HK (x [1]x [2]) = AESK (x [1]) ⊕ AESK (x [2])

Weakness:
HK (x [1]x [2]) = HK (x [2]x [1])

adversary A(K )
x1 ← 01281128 ; x2 ← 11280128 ; return x1, x2

Then
Advcr

H (A) = 1

and A is efficient, so H is not CR.
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SHA1

algorithm SHA1(M) // |M | < 264

V ← SHF1( 5A827999 ‖ 6ED9EBA1 ‖ 8F1BBCDC ‖ CA62C1D6 , M )
return V

algorithm SHF1(K ,M) // |K | = 128 and |M | < 264

y ← shapad(M)

Parse y as M1 ‖M2 ‖ · · · ‖Mn where |Mi | = 512 (1 ≤ i ≤ n)

V ← 67452301 ‖ EFCDAB89 ‖ 98BADCFE ‖ 10325476 ‖ C3D2E1F0
for i = 1, . . . , n do

V ← shf1(K ,Mi ‖ V )

return V

algorithm shapad(M) // |M | < 264

d ← (447 − |M|) mod 512

Let ℓ be the 64-bit binary representation of |M|
y ← M ‖ 1 ‖ 0d ‖ ℓ // |y | is a multiple of 512

return y 11 / 62



SHA1

algorithm shf1(K ,B ‖ V ) // |K | = 128, |B| = 512 and |V | = 160

Parse B as W0 ‖W1 ‖ · · · ‖W15 where |Wi | = 32 (0 ≤ i ≤ 15)

Parse V as V0 ‖ V1 ‖ · · · ‖ V4 where |Vi | = 32 (0 ≤ i ≤ 4)

Parse K as K0 ‖ K1 ‖ K2 ‖ K3 where |Ki | = 32 (0 ≤ i ≤ 3)

for t = 16 to 79 do Wt ← ROTL1(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)

A← V0 ; B ← V1 ; C ← V2 ; D ← V3 ; E ← V4

for t = 0 to 19 do Lt ← K0 ; Lt+20 ← K1 ; Lt+40 ← K2 ; Lt+60 ← K3

for t = 0 to 79 do

if (0 ≤ t ≤ 19) then f ← (B ∧ C ) ∨ ((¬B) ∧ D)

if (20 ≤ t ≤ 39 OR 60 ≤ t ≤ 79) then f ← B ⊕ C ⊕ D

if (40 ≤ t ≤ 59) then f ← (B ∧ C ) ∨ (B ∧ D) ∨ (C ∧ D)

temp ← ROTL5(A) + f + E + Wt + Lt

E ← D ; D ← C ; C ← ROTL30(B) ; B ← A ; A← temp

V0 ← V0+A ; V1 ← V1+B ; V2 ← V2+C ; V3 ← V3+D ; V4 ← V4+E

V ← V0 ‖ V1 ‖ V2 ‖ V3 ‖ V4

return V
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Applications of hash functions

• primitive in cryptographic schemes

• tool for security applications

• tool for non-security applications
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Password verification

• Client A has a password PW that is also held by server B

• A authenticates itself by sending PW to B over a secure channel
(SSL)

APW PW
- BPW

Problem: The password will be found by an attacker who compromises
the server.
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Password verification

• Client A has a password PW and server stores PW = H(PW ).

• A sends PW to B (over a secure channel) and B checks that
H(PW ) = PW

APW PW
- BPW

Server compromise results in attacker getting PW which should not
reveal PW as long as H is one-way, which we will see is a consequence
of collision-resistance.

But we will revisit this when we consider dictionary attacks!
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Compare-by-hash

• A has a large file FA and B has a large file FB . For example, music
collections.

• They want to know whether FA = FB

• A sends FA to B and B checks whether FA = FB

AFA FA
- BFB

Problem: Transmission could take forever, particularly if the link is slow
(DSL).
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Compare-by-hash

• A has a large file FA and B has a large file FB and they want to
know whether FA = FB

• A computes hA = H(FA) and sends it to B , and B checks whether
hA = H(FB).

AFA hA
- BFB

Collision-resistance of H guarantees that B does not accept if FA 6= FB !
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Compare-by-hash

• A has a large file FA and B has a large file FB and they want to
know whether FA = FB

• A computes hA = H(FA) and sends it to B , and B checks whether
hA = H(FB).

AFA hA
- BFB

Collision-resistance of H guarantees that B does not accept if FA 6= FB !

Added bonus: This to some extent protects privacy of FA,FB . But be
careful: not in the strong IND-CPA sense we have studied.
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Virus protection

An executable may be available at lots of sites S1,S2, . . . ,SN . Which
one can you trust?

• Provide a safe way to get the hash h = H(X ) of the correct
executable X .

• Download an executable from anywhere, and check hash.
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General collision-finding attacks

We discuss attacks on H : {0, 1}k ×D → {0, 1}n that do no more than
compute H. Let D1, . . . ,Dd be some enumeration of the elements of D.

Adversary A1(K )

x1
$← D; y ← HK (x1)

For i = 1, . . . , q do
If (HK (Di ) = y ∧ x1 6= Di) then

Return x1,Di

Return FAIL

Adversary A2(K )

x1
$← D; y ← HK (x1)

For i = 1, . . . , q do

x2
$← D

If (HK (x2) = y ∧ x1 6= x2) then
Return x1, x2

Return FAIL

Now:

• A1 could take q = d = |D| trials to succeed.

• We expect A2 to succeed in about 2n trials.

But this still means 2160 trials to find a SHA1 collision.
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Birthday attacks

Let H : {0, 1}k × D → {0, 1}n be a family of functions with |D| > 2n.
The q-trial birthday attack finds a collision with probability about

q2

2n+1
.

So a collision can be found in about q =
√

2n+1 ≈ 2n/2 trials.

20 / 62



Recall Birthday Problem

for i = 1, . . . , q do yi
$←{0, 1}n

if ∃i , j (i 6= j and yi = yj) then COLL← true

Pr [COLL] = C (2n, q)

≈ q2

2n+1
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Birthday attack

Let H : {0, 1}k × D → {0, 1}n.

adversary A(K )

for i = 1, . . . , q do xi
$← D ; yi ← HK (xi )

if ∃i , j (i 6= j and yi = yj and xi 6= xj) then return xi , xj

else return FAIL
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Analysis of birthday attack

Let H : {0, 1}k × D → {0, 1}n.

adversary A(K )

for i = 1, . . . , q do xi
$← D ; yi ← HK (xi )

if ∃i , j (i 6= j and yi = yj and xi 6= xj) then return xi , xj

else return FAIL

What is the probability that this attack finds a collision?

adversary A(K )

for i = 1, . . . , q do xi
$← D ; yi ← HK (xi )

if ∃i , j (i 6= j and yi = yj) then COLL← true

We have dropped things that don’t much affect the advantage and
focused on success probability. So we want to know what is

Pr [COLL] .
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Analysis of birthday attack

Birthday

for i = 1, . . . , q do

yi
$←{0, 1}n

if ∃i , j (i 6= j and yi = yj) then

COLL← true

Pr [COLL] = C (2n, q)

Adversary A

for i = 1, . . . , q do

xi
$← D ; yi ← HK (xi )

if ∃i , j(i 6= j and yi = yj) then

COLL← true

Pr [COLL] =?

Are the two collision probabilities the same?
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Analysis of birthday attack

Birthday

for i = 1, . . . , q do

yi
$←{0, 1}n

if ∃i , j (i 6= j and yi = yj) then

COLL← true

Pr [COLL] = C (2n, q)

Adversary A

for i = 1, . . . , q do

xi
$← D ; yi ← HK (xi )

if ∃i , j(i 6= j and yi = yj) then

COLL← true

Pr [COLL] =?

Are the two collision probabilities the same?
Not necessarily, because

• on the left yi
$←{0, 1}n

• on the right xi
$← D ; yi ← HK (xi )
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Analysis of birthday attack

Consider the following processes

Process 1
y

$← {0, 1}n
return y

Process 2
x

$← D; y
$← HK (x)

return y

Process 1 certainly returns a random n-bit string. Does Process 2?
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Analysis of birthday attack

Process 1
y

$← {0, 1}
return y

Process 2
x

$←{a,b,c,d} ; y ← HK (x)
return y

Pr[y = 0] =

Pr[y = 1] =

Pr[y = 0] =

Pr[y = 1] =
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y

$← {0, 1}
return y

Process 2
x
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return y
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Analysis of birthday attack

Process 1
y

$← {0, 1}
return y

Process 2
x

$←{a,b,c,d} ; y ← HK (x)
return y

Pr[y = 0] =
1

2

Pr[y = 1] =
1

2

Pr[y = 0] =
3

4

Pr[y = 1] =
1

4
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Analysis of birthday attack

Process 1
y

$← {0, 1}
return y

Process 2
x

$←{a,b,c,d} ; y ← HK (x)
return y

Pr[y = 0] =

Pr[y = 1] =

Pr[y = 0] =
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Analysis of birthday attack

Process 1
y

$← {0, 1}
return y

Process 2
x

$←{a,b,c,d} ; y ← HK (x)
return y

Pr[y = 0] =
1

2

Pr[y = 1] =
1

2

Pr[y = 0] =
1

2

Pr[y = 1] =
1

2

The processes are the same if every range point has the same number of
pre-images.
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Analysis of birthday attack

We say that H : {0, 1}k × D → {0, 1}n is regular if every range point
has the same number of pre-images under HK . That is if we let

H−1
K (y) = {x ∈ D : HK (x) = y}

then H is regular if

|H−1
K (y)| = |D|

2n

for all K and y . In this case the following processes both result in a
random output

Process 1
y

$← {0, 1}n
return y

Process 2
x

$← D; y
$← HK (x)

return y
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Analysis of birthday attack

If H: {0, 1}k × D → {0, 1}n is regular then the birthday attack finds a
collision in about 2n/2 trials.
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Analysis of birthday attack

If H: {0, 1}k × D → {0, 1}n is regular then the birthday attack finds a
collision in about 2n/2 trials.

If H is not regular, the attack may succeed sooner.

So we want functions to be “close to regular”.

It seems MD4,MD5,SHA1,RIPEMD,... have this property.
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Birthday attack times

Function n TB

MD4 128 264

MD5 128 264

SHA1 160 280

RIPEMD-160 160 280

SHA256 256 2128

TB is the number of trials to find collisions via a birthday attack.
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Compression functions

A compression function is a family h : {0, 1}k × {0, 1}b+n → {0, 1}n of
hash functions whose inputs are of a fixed size b + n, where b is called
the block size.

E.g. b = 512 and n = 160, in which case

h : {0, 1}k × {0, 1}672 → {0, 1}160

hKv

x

hK (x ‖ v)
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The MD transform

Design principle: To build a CR hash function

H : {0, 1}k × D → {0, 1}n

where D = {0, 1}≤264
:

• First build a CR compression function
h : {0, 1}k × {0, 1}b+n → {0, 1}n.

• Appropriately iterate h to get H, using h to hash block-by-block.
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MD setup

Assume for simplicity that |M| is a multiple of b. Let

• ‖M‖b be the number of b-bit blocks in M, and write
M = M[1] . . . M[ℓ] where ℓ = ‖M‖b.

• 〈i〉 denote the b-bit binary representation of i ∈ {0, . . . , 2b − 1}.
• D be the set of all strings of at most 2b − 1 blocks, so that
‖M‖b ∈ {0, . . . , 2b − 1} for any M ∈ D, and thus ‖M‖b can be
encoded as above.
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MD transform

Given: Compression function h : {0, 1}k × {0, 1}b+n → {0, 1}n.

Build: Hash function H : {0, 1}k × D → {0, 1}n.

Algorithm HK (M)
m← ‖M‖b ; M[m + 1]← 〈m〉 ; V [0]← 0n

For i = 1, . . . ,m + 1 do v [i ]← hK (M[i ]||V [i − 1])
Return V [m + 1]

hK0n

〈2〉M[2]M[1]

hK hK HK (M)
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MD preserves CR

Assume

• h is CR

• H is built from h using MD

Then

• H is CR too!

This means

• No need to attack H! You won’t find a weakness in it unless h has
one

• H is guaranteed to be secure assuming h is.

For this reason, MD is the design used in many current hash functions.
Newer hash functions use other iteration methods with analogous
properties.
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MD preserves CR

Theorem: Let h : {0, 1}k × {0, 1}b+n → {0, 1}n be a family of
functions and let H : {0, 1}k × D → {0, 1}n be obtained from h via the
MD transform. Then for any cr-adversary AH there exists a cr-adversary
Ah such that

Advcr

H (AH) ≤ Advcr

h (Ah)

and the running time of Ah is that of AH plus the time for computing h

on the outputs of AH .

Implication:
h CR ⇒ Advcr

H (Ah) small

⇒ Advcr

H (AH) small

⇒ H CR
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How Ah works

Let (M1,M2) be the HK -collision returned by AH . The Ah will trace the
chains backwards to find an hk -collision.
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Case 1: ‖M1‖b 6= ‖M2‖b

Let x1 = 〈2〉||V1[2] and x2 = 〈1〉||V2[1]. Then

• hK (x1) = hK (x2) because HK (M1) = HK (M2).

• But x1 6= x2 because 〈1〉 6= 〈2〉.
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Case 2: ‖M1‖b = ‖M2‖b

x1 ← 〈2〉||V1[2] ; x2 ← 〈2〉||V2[2]
If x1 6= x2 then return x1, x2
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Case 2: ‖M1‖b = ‖M2‖b

x1 ← 〈2〉||V1[2] ; x2 ← 〈2〉||V2[2]
If x1 6= x2 then return x1, x2

Else // V1[2] = V2[2]
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If x1 6= x2 then return x1, x2

Else // V1[2] = V2[2]
x1 ← M1[2]||V1[1] ; x2 ← M2[2]||V2[1]
If x1 6= x2 then return x1, x2
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Case 2: ‖M1‖b = ‖M2‖b

x1 ← 〈2〉||V1[2] ; x2 ← 〈2〉||V2[2]
If x1 6= x2 then return x1, x2

Else // V1[2] = V2[2]
x1 ← M1[2]||V1[1] ; x2 ← M2[2]||V2[1]
If x1 6= x2 then return x1, x2

Else // V1[1] = V2[1]
x1 ← M1[1]||0n ; x2 ← M2[1]||0n

Return x1, x2
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How are compression functions designed?

Let E : {0, 1}b × {0, 1}n → {0, 1}n be a block cipher. Let us design
keyless compression function

h : {0, 1}b+n → {0, 1}n

by
h(x ||v) = Ex(v)

Is H collision resistant?
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How are compression functions designed?

Let E : {0, 1}b × {0, 1}n → {0, 1}n be a block cipher. Let us design
keyless compression function

h : {0, 1}b+n → {0, 1}n

by
h(x ||v) = Ex(v)

Is H collision resistant?

NO!
adversary A

Pick some x1, x2, v1 with x1 6= x2

y ← Ex1(v1) ; v2 ← E−1
x2

(y)
return x1 ‖ v1, x2 ‖ v2

Then
Ex1(v1) = y = Ex2(v2)
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How are compression functions designed?

Let E : {0, 1}b × {0, 1}n → {0, 1}n be a block cipher. Keyless
compression function

h : {0, 1}b+n → {0, 1}n

may be designed as
h(x ||v) = Ex(v)⊕ v

The compression function of SHA1 is underlain in this way by a block
cipher E : {0, 1}512 × {0, 1}160 → {0, 1}160.
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Cryptanalytic attacks

So far we have looked at attacks that do not attempt to exploit the
structure of H.

Can we do better than birthday if we do exploit the structure?

Ideally not, but functions have fallen short!
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Cryptanalytic attacks against hash functions

When Against Time Who

1993,1996 md5 216 [dBBo,Do]

2005 RIPEMD 218

2004 SHA0 251 [JoCaLeJa]
2005 SHA0 240 [WaFeLaYu]
2005 SHA1 269, 263 [WaYiYu,WaYaYa]
2009 SHA1 252 [MHP]
2005,2006 MD5 1 minute [WaFeLaYu,LeWadW,Kl]

md5 is the compression function of MD5
SHA0 is an earlier, weaker version of SHA1
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Security of MD5

MD5 is used in 720 different places in Microsoft Windows OS.

What can current attacks do against MD5?

• Find 2 random-looking messages that only differ in 3 bits (boring)

• Find two PDF documents whose hashes collide (more exciting)

• Find two Win32 executables whose hashes collide (very exciting)

• Break deployed cryptographic protocols (very exciting)
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Finding collisions

How do attacks work in reality against MD5? Examples:

• Find 2 random-looking messages that only differ in 3 bits
Cochran’s code for MD5:
http://www.cs.colorado.edu/∼jrblack/md5toolkit.tar.gz

Work’s in a few minutes on laptop...try it!

• Find 2 Win32 executables whose hashes collide
Swiss group:
http://www.win.tue.nl/hashclash/SoftIntCodeSign/

Takes 2 days on a Playstation 3
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Status of SHA-1

No collisions yet...
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Status of SHA-1

No collisions yet...

You can help find the first ever messages that collide under SHA-1!

http://boinc.iaik.tugraz.at/
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SHA3

National Institute for Standards and Technology (NIST) is holding a
world-wide competition to develop a new hash function standard.

Contest webpage:
http://csrc.nist.gov/groups/ST/hash/index.html

Requested parameters:

• Design: Family of functions with 224, 256, 384, 512 bit output sizes

• Compatibility: existing cryptographic standards

• Security: CR, one-wayness, near-collision resistance, others...

• Efficiency: as fast or faster than SHA-256
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SHA3

Submissions: 64

Round 1: 51 Round 2: 14

The round 2 functions: BLAKE, Blue Midnight Wish, CubeHash,
ECHO, Fugue, Grostl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3,
SIMD, Skein.

Final round candidates to be announced in 2010 and winner in 2012.

http://ehash.iaik.tugraz.at/wiki/The SHA-3 Zoo
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One-wayness

Let H : {0, 1}k × D → {0, 1}n be a family of functions.

We say that x ′ ∈ D is a pre-image of y ∈ {0, 1}n under HK if
HK (x ′) = y .

Informally: H is one-way if given y and K it is hard to find a pre-image
of y under HK .
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Password verification

• Client A has a password PW and server stores PW = H(PW ).

• A sends PW to B (over a secure channel) and B checks that
H(PW ) = PW

APW PW
- BPW

Server compromise results in attacker getting PW which should not
reveal PW as long as H is one-way, which we will see is a consequence
of collision-resistance.

But we will revisit this when we consider dictionary attacks!
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One-wayness adversaries

Let H : {0, 1}k × D → {0, 1}n be a family of functions. A OW -
adversary I

• gets input a key K

• gets input some y = HK (x) ∈ D

• Tries to compute a pre-image of y under HK

K −→
y −→ I −→ x ′
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Issues in formalizing one-wayness

Suppose HK (0n) = 0n for all K . Then it is easy to invert HK at y = 0n

because we know a pre-image of 0n under HK : it is simply x ′ = 0n.

Should this mean H is not one-way?

Turns out what is useful is to ask that it be hard to find a pre-image of
the image of a random point.
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Formal definition of one-wayness

Let H : {0, 1}k × D → {0, 1}n be a family of functions with D finite,
and A a OW-adversary.

Game OWH

procedure Initialize

K
$←{0, 1}k ;

x
$← D ; y ← HK (x)

return K , y

procedure Finalize(x ′)
return (HK (x ′) = y)

The ow-advantage of A is

Advow

H (A) = Pr[OWA
H ⇒ true].
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Generic attacks on one-wayness

For any H : {0, 1}k × D → {0, 1}n
• There is an attack that inverts H in about 2n trials

• But the birthday attack does not apply.
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Does CR imply OW?

Let H : {0, 1}k × D → {0, 1}n.

Given: Adversary A attacking one-wayness of H, meaning A(K , y)
returns x2 satisfying HK (x2) = y .

Want: Adversary B attacking collision resistance of H, meaning B(K )
returns x1, x2 satisfying HK (x1) = HK (x2) and x1 6= x2.

Adversary B(K )

x1
$← D; y ← HK (x1); x2

$← A(K , y)
return x1, x2

A succeeds ⇒ HK (x2) = y

⇒ HK (x2) = HK (x1)

⇒ B succeeds?
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Does CR imply OW?

Let H : {0, 1}k × D → {0, 1}n.

Given: Adversary A attacking one-wayness of H, meaning A(K , y)
returns x2 satisfying HK (x2) = y .

Want: Adversary B attacking collision resistance of H, meaning B(K )
returns x1, x2 satisfying HK (x1) = HK (x2) and x1 6= x2.

Adversary B(K )

x1
$← D; y ← HK (x1); x2

$← A(K , y)
return x1, x2

A succeeds ⇒ HK (x2) = y

⇒ HK (x2) = HK (x1)

⇒ B succeeds?

Problem: May have x1 = x2.
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CR ; OW

Counter example: Let H : {0, 1}k × {0, 1}n → {0, 1}n be defined by

HK (x) = x

Then

• H is CR since it is impossible to find x1 6= x2 with
HK (x1) = HK (x2).

• But H is not one-way since the adversary A that given K , y returns
y has ow-advantage 1.
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Does CR imply OW?

Adversary B(K )

x1
$← D; y ← HK (x1); x2

$← A(K , y)
return x1, x2

Inuition: If |D| is sufficiently larger than 2n, meaning H is compressing,
then y is likely to have more than one pre-image, and we are likely to
have x2 6= x1.

In this case, H being CR will imply it is one way
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CR⇒ OW for functions that compress

Theorem: Let H : {0, 1}k ×D → {0, 1}n be a family of functions. Let A

be a ow-adversary with running time at most t. Then there is a
cr-adversary B such that

Advow

H (A) ≤ 2 ·Advcr

H (B) +
2n

|D| .

Furthermore the running time of B is about that of A.

Implication: CR⇒ OW as long as 2n/|D| is small.
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Proof of Theorem

Adversary B(K )

x1
$← D; y ← HK (x1); x2

$← A(K , y)
return x1, x2

Definition: x1 is a sibling of x2 under HK if x1, x2 form a collision for HK .

For any K ∈ {0, 1}k , let

SK = {x ∈ D : |H−1
K (HK (x))| = 1}

be the set of all domain points that have no siblings.
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Advantage of B

Adversary B(K )

x1
$← D; y ← HK (x1); x2

$← A(K , y)
return x1, x2

Then Advcr

H (B)

= Pr [HK (x2) = y ∧ x1 6= x2]

= Pr [HK (x2) = y ∧ x1 6= x2 ∧ x1 /∈ SK ]

= Pr [x1 6= x2 | HK (x2) = y ∧ x1 /∈ SK ]
︸ ︷︷ ︸

1− 1

|H−1
K

(y)| ≥ 1− 1
2

= 1
2

·Pr [HK (x2) = y ∧ x1 /∈ SK ]

Because A has no information about x1, barring the fact that
HK (x1) = y .
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Advantage of B

Adversary B(K )

x1
$← D; y ← HK (x1); x2

$← A(K , y)
return x1, x2

Advcr

H (B) ≥ 1

2
Pr [HK (x2) = y ∧ x1 /∈ SK ]

Fact: Pr
[
E ∧ F

]
≥ Pr [E ]− Pr [F ]

Proof: Pr
[
E ∧ F

]
= Pr [E ]− Pr [E ∧ F ] ≥ Pr [E ]− Pr [F ]

Apply with

E : HK (x2) = y and F : x1 ∈ SK

Advcr

H (B) ≥ 1

2
(Pr [HK (x2) = y ]− Pr [x1 ∈ SK ])
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Advantage of B

Adversary B(K )

x1
$← D; y ← HK (x1); x2

$← A(K , y)
return x1, x2

Advcr

H (B) ≥ 1

2
Advow

H (A)− Pr [x1 ∈ SK ]

2

Recall SK is the set of domain points that have no siblings, so if
α1, α2, . . . , αs are in SK then HK (α1),HK (α2), . . . ,HK (αs) must be
distinct. So

|SK | ≤ |{0, 1}n| = 2n.

So

Pr [x1 ∈ SK ] ≤ 2n

|D| .
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