
Course Information

CS 838 — Applied Cryptography

Instructor: Thomas Ristenpart

Website: http://pages.cs.wisc.edu/ rist/cs838/

1 / 55

Cryptography usage

Did you use any cryptography

• today?

2 / 55

Cryptography usage

Did you use any cryptography

• today?

• over the last week?

2 / 55

Cryptography usage

Did you use any cryptography

• today?

• over the last week?

• over the Christmas break?

2 / 55

Cryptography usage

• https invokes the Secure Socket Layer (SSL) communication
security protocol to securely transmit your credit card number to
the server

• SSL uses cryptography

3 / 55

Cryptography usage

Other uses of cryptography

• ATM machines

• On-line banking

• Remote login and file transfer using SSH

• X-Box, PlayStation 3

4 / 55

What is cryptography about?

Adversary: clever person with powerful computer

Goals:

• Data privacy

• Data integrity and authenticity

5 / 55

Privacy

The goal is to ensure that the adversary does not see or obtain the data
(message) M.

Example: M could be a credit card number being sent by shopper Alice
to server Bob and we want to ensure attackers don’t learn it.

6 / 55

Integrity and authenticity

The goal is to ensure that

• M really originates with Alice and not someone else

• M has not been modified in transit

7 / 55

Integrity and authenticity example

Alice
Bob
(Bank)

Alice

Pay $100 to Charlie

-

Adversary Eve might

• Modify “Charlie” to “Eve”

• Modify “$100” to “$1000”

Integrity prevents such attacks.

8 / 55

Medical databases

Doctor

Reads FA

Modifies FA to F ′

A

Get Alice
-

FA
�

Put: Alice, F ′

A
-

Database

Alice FA

Bob FB

Alice F ′

A

Bob FB

9 / 55

Medical databases

Doctor

Reads FA

Modifies FA to F ′

A

Get Alice
-

FA
�

Put: Alice, F ′

A
-

Database

Alice FA

Bob FB

Alice F ′

A

Bob FB

• Privacy: FA,F ′

A
contain confidential information and we want to

ensure the adversary does not obtain them

9 / 55

Medical databases

Doctor

Reads FA

Modifies FA to F ′

A

Get Alice
-

FA
�

Put: Alice, F ′

A
-

Database

Alice FA

Bob FB

Alice F ′

A

Bob FB

• Privacy: FA,F ′

A
contain confidential information and we want to

ensure the adversary does not obtain them
• Integrity and authenticity: Need to ensure

– doctor is authorized to get Alice’s file
– FA,F ′

A
are not modified in transit

– FA is really sent by database
– F ′

A
is really sent by (authorized) doctor

9 / 55

What is cryptography about?

Adversary: clever person with powerful computer

Goals:

• Data privacy

• Data integrity and authenticity

10 / 55

Ideal World

Secure channel: Cannot see inside or alter content.

11 / 55

Ideal World

Secure channel: Cannot see inside or alter content.

All our goals would be achieved!

11 / 55

Ideal World

Secure channel: Cannot see inside or alter content.

All our goals would be achieved!

But cryptonium is only available on planet Crypton and is in short
supply.

11 / 55

Cryptographic schemes

E : encryption algorithm
D: decryption algorithm

Ke : encryption key
Kd : decryption key

12 / 55

Cryptographic schemes

E : encryption algorithm
D: decryption algorithm

Ke : encryption key
Kd : decryption key

Algorithms: standardized, implemented, public!

12 / 55

Cryptographic schemes

E : encryption algorithm
D: decryption algorithm

Ke : encryption key
Kd : decryption key

Settings:

• public-key (assymmetric): Ke public, Kd secret

• private-key (symmetric): Ke = Kd secret

13 / 55

Cryptographic schemes

E : encryption algorithm
D: decryption algorithm

Ke : encryption key
Kd : decryption key

How do keys get distributed? Magic, for now!

14 / 55

Cryptographic schemes

Our concerns:

• How to define security goals?

• How to design E , D?

• How to gain confidence that E , D achieve our goals?

15 / 55

Why is cryptography hard?

• One cannot anticipate an adversary strategy in advance; number of
possibilities is infinite.

• “Testing” is not possible in this setting.

16 / 55

Early history

Substitution ciphers/Caesar ciphers:

Ke = Kd = π : Σ→ Σ, a secret permutation

e.g., Σ = {A,B ,C , . . .} and π is as follows:

σ A B C D · · ·
π(σ) E A Z U · · ·

Eπ(CAB) = π(C)π(A)π(B)

= Z E A

Dπ(ZEA) = π
−1(Z)π−1(E)π−1(A)

= C A B

17 / 55

Early history

Substitution ciphers/Caesar ciphers:

Ke = Kd = π : Σ→ Σ, a secret permutation

e.g., Σ = {A,B ,C , . . .} and π is as follows:

σ A B C D · · ·
π(σ) E A Z U · · ·

Eπ(CAB) = π(C)π(A)π(B)

= Z E A

Dπ(ZEA) = π
−1(Z)π−1(E)π−1(A)

= C A B

Not very secure! (Common newspaper puzzle)

17 / 55

The age of machines

Enigma: German World War II machine

Broken by British in an effort led by Turing

18 / 55

Shannon and One-Time-Pad (OTP) Encryption

Ke = Kd = K
$←{0, 1}k

︸ ︷︷ ︸

K chosen at random

from {0, 1}k

For any M ∈ {0, 1}k
– EK (M) = K ⊕M
– DK (C) = K ⊕ C

19 / 55

Shannon and One-Time-Pad (OTP) Encryption

Ke = Kd = K
$←{0, 1}k

︸ ︷︷ ︸

K chosen at random

from {0, 1}k

For any M ∈ {0, 1}k
– EK (M) = K ⊕M
– DK (C) = K ⊕ C

Theorem (Shannon): OTP is perfectly secure as long as only one
message encrypted.

“Perfect” secrecy, a notion Shannon defines, captures mathematical

impossibility of breaking an encryption scheme.

Fact: if |M| > |K |, then no scheme is perfectly secure.

19 / 55

Modern Cryptography: A Computational Science

Security of a “practical” system must rely not on the impossibility but
on the computational difficulty of breaking the system.

(“Practical” = more message bits than key bits)

20 / 55

Modern Cryptography: A Computational Science

Rather than:

“It is impossible to break the scheme”

We might be able to say:

“No attack using ≤ 2160 time succeeds with probability ≥ 2−20”

I.e., Attacks can exist as long as cost to mount them is prohibitive, where

Cost = computing time/memory, $$$

21 / 55

Modern Cryptography: A Computational Science

Security of a “practical” system must rely not on the impossibility but
on the computational difficulty of breaking the system.

Cryptography is now not just mathematics; it needs to draw on
computer science

• Computational complexity theory

• Algorithm design

22 / 55

Classical Approach: Iterated design

Scheme 1.1

23 / 55

Classical Approach: Iterated design

Scheme 1.1 → bug!

23 / 55

Classical Approach: Iterated design

Scheme 1.1 → bug!
↓

Scheme 1.2

23 / 55

Classical Approach: Iterated design

Scheme 1.1 → bug!
↓

Scheme 1.2 → bug!

23 / 55

Classical Approach: Iterated design

Scheme 1.1 → bug!
↓

Scheme 1.2 → bug!
↓
...
↓

Scheme 1.n

23 / 55

Classical Approach: Iterated design

Scheme 1.1 → bug!
↓

Scheme 1.2 → bug!
↓
...
↓

Scheme 1.n → deploy

23 / 55

Classical Approach: Iterated design

Scheme 1.1 → bug!
↓

Scheme 1.2 → bug!
↓
...
↓

Scheme 1.n → deploy → bug!

23 / 55

Good cryptography

• Understanding the goals: Formal adversarial models and definitions
of security goals

• Beyond iterated design: Proof by reduction that a construction
achieves its goal

24 / 55

Defining security

A great deal of design tries to produces schemes without first asking:

“What exactly is the security goal?”

This leads to schemes that are complex, unclear, and wrong.

25 / 55

Defining security

Being able to precisely state what is the security goal of a design is
challenging but important.

We will spend a lot of time developing and justifying strong, precise
notions of security.

Thinking in terms of these precise goals and understanding the need for
them may be the most important thing you get from this course!

26 / 55

The factoring problem

Input: Composite integer N
Desired output: prime factors of N

Example:
Input: 85

Output:

27 / 55

The factoring problem

Input: Composite integer N
Desired output: prime factors of N

Example:
Input: 85

Output: 17, 5

27 / 55

The factoring problem

Input: Composite integer N
Desired output: prime factors of N

Example:
Input: 85

Output: 17, 5

Can we write a factoring program?

27 / 55

The factoring problem

Input: Composite integer N
Desired output: prime factors of N

Example:
Input: 85

Output: 17, 5

Can we write a factoring program? Easy!

Alg Factor(N) // N a product of 2 primes

For i = 2, 3, . . . , ⌈
√

N⌉ do
If N mod i = 0 then return i

27 / 55

The factoring problem

Input: Composite integer N
Desired output: prime factors of N

Example:
Input: 85

Output: 17, 5

Can we write a factoring program? Easy!

Alg Factor(N) // N a product of 2 primes

For i = 2, 3, . . . , ⌈
√

N⌉ do
If N mod i = 0 then return i

But this is very slow ...
Prohibitive if N is large (e.g., 400 digits)

27 / 55

Can we factor fast?

• Gauss couldn’t figure out how

• Nor does anyone know now

Nobody today knows how to factor a 400 digit number in a practical
amount of time.

28 / 55

Provable Security

Provide

• A scheme

• A proof of security

The proof should establish something like:

“The only way to break the scheme is to factor a large number”

or, put another way

“If an adversary breaks the scheme, it must have found a fast
factoring algorithm.”

29 / 55

Provable Security

Being able to break scheme implies

• attacker has found a way to factor fast

• attacker is smarter than Gauss

• and smarter than all living mathematicians...

or

• the adversarial model was wrong!

30 / 55

Atomic Primitives or Problems

Examples:

• Factoring: Given large N = pq, find p, q

• Block cipher primitives: DES, AES, ...

• Hash functions: MD5, SHA1, ...

31 / 55

Atomic Primitives or Problems

Examples:

• Factoring: Given large N = pq, find p, q

• Block cipher primitives: DES, AES, ...

• Hash functions: MD5, SHA1, ...

Features:

• Few such primitives

• Bugs rare

• Design an art, confidence by history.

31 / 55

Atomic Primitives or Problems

Examples:

• Factoring: Given large N = pq, find p, q

• Block cipher primitives: DES, AES, ...

• Hash functions: MD5, SHA1, ...

Features:

• Few such primitives

• Bugs rare

• Design an art, confidence by history.

Drawback: Don’t directly solve any security problem.

31 / 55

Higher Level Primitives

Goal: Solve security problem of direct interest.

Examples: encryption, authentication, digital signatures, key
distribution, . . .

32 / 55

Higher Level Primitives

Goal: Solve security problem of direct interest.

Examples: encryption, authentication, digital signatures, key
distribution, . . .

Features:

• Lots of them

• Bugs common in practice

32 / 55

Lego Approach

We typically design high-level primitives from atomic ones

Atomic primitive

↓
Transformer

↓
High-level primitive

History shows that the Transformer is usually the weak link:

• Atomic primitives secure, yet

• Higher level primitive insecure

33 / 55

Provable security

Enables us to get transformers for which we can guarantee

Atomic primitive secure ⇒ High-level primitive secure

I.e., If attacker breaks encryption scheme then they are smarter than
Gauss.

34 / 55

Provable security in practice

Proven-secure schemes in use (SSL, SSH, IPSec, . . .):

• HMAC

• OAEP

• ECIES

• . . .

35 / 55

New uses for old mathematics

Cryptography uses

• Number theory

• Combinatorics

• Modern algebra

• Probability theory

36 / 55

Modern Cryptography: Esoteric mathematics?

Hardy, in his essay A Mathematician’s Apology writes:

“Both Gauss and lesser mathematicians may be
justified in rejoicing that there is one such
science [number theory] at any rate, and that
their own, whose very remoteness from ordinary
human activities should keep it
gentle and clean”

No longer: Number theory is the basis of modern public-key systems
such as RSA.

37 / 55

Cryptography beyond communication security

Parties 1, 2, 3, . . . , n.

Party i has the integer xi ∈ {0, . . . ,M − 1}
They want to know

x =
x1 + . . . + xn

n

but each party i wants to keep its own xi private.

38 / 55

Cryptography beyond communication security

Parties 1, 2, 3, . . . , n.

Party i has the integer xi ∈ {0, . . . ,M − 1}
They want to know

x =
x1 + . . . + xn

n

but each party i wants to keep its own xi private.

Usage:

xi = score of student i on homework 1

xi = vote of party i for proposition X on ballot

...

38 / 55

Cryptography beyond communication security

Parties 1, 2, 3, . . . , n.

Party i has the integer xi ∈ {0, . . . ,M − 1}
They want to know

x =
x1 + . . . + xn

n

but each party i wants to keep its own xi private.

Trusted Party Solution:

39 / 55

Cryptography beyond communication security

Parties 1, 2, 3, . . . , n.

Party i has the integer xi ∈ {0, . . . ,M − 1}
They want to know

x =
x1 + . . . + xn

n

but each party i wants to keep its own xi private.

Trusted Party Solution:

Secure Computation: Allows us
to accomplish objective without a
trusted party, using only (secure)
communication between parties.

39 / 55

Internet Gambling

Will you play?

40 / 55

Internet Gambling

Will you play?

Casino can cheat. It returns , T for some T 6= g

40 / 55

Internet Gambling

Will you play?

Casino can cheat. It returns , T for some T 6= g

Crypto can fix this!

40 / 55

Security today

• Millions of dollars of loss due to credit-card fraud, phishing, identity
theft, ...

• Lack of privacy: Enormous amounts of information about each of
us is collected and harvested by businesses dedicated to this
purpose

Cryptography is a central tool in getting more security and privacy

41 / 55

Cryptography in the real world

Central uses: SSL, SSH, TLS, IPSEC, ...

42 / 55

Cryptography in the real world

• Poor exposition: Incomplete, unclear scheme specifications in
documents

• Lack of precise goal formulations

• Complex, unclear or incorrect schemes

Lack of cryptographic education and skill in workforce.

43 / 55

What you can get from this course

You can get the ability to

• Identify threats

• Evaluate security solutions and technologies

• Design high-quality solutions

• Write clear, complete scheme specifications

• Begin research in cryptography

If nothing else, develop a healthy sense of paranoia!

44 / 55

Administrative

Resources:

• Lecture slides

• Course notes

• Research papers

No textbook.

All resources will be on course web page.

45 / 55

Administrative

• Read course information sheet!
Handout today and on course webpage.

• The course will require:
– Homeworks
– Short write-up on course project (5 pages or less)
– Final presentation on course project (10-20 minutes)
– Final discussion with me

• Grades will be based on my assessment of how well you did on the
above endeavors. Try to learn something, have fun, and you’ll end
up with a high grade.

46 / 55

Homeworks

• Homeworks must be written up individually. If a problem is
discussed with others (in the class or otherwise), then the writeup
should explicitly indicate this.

• Writeups are strongly encouraged to be typeset in LaTeX if you
want me to read them

• Finding solutions on the Internet is not allowed

47 / 55

Projects

• In-depth investigation of some topic in applied or theoretical crypto

• Individual or small group

• Examples: analyse a proposed standard or implementation,
insightful comments on a research paper, extend the OpenSSL
codebase in some meaningful way, new cryptographic research
result, etc.

• Short presentation to class at end of term

• Projects must be approved by me. 1 page proposal due February 8,
meetings following week to discuss.

• Probably have short project progress meetings once a week during
last 5 weeks of class

48 / 55

Pre-requisites

This is a theory course! Largely definitions and proofs, although of
applied value.

Needed: undergraduate algorithms and theory of computation, some
probability theory, a little calculus, and

Mathematical Maturity

49 / 55

Warm-up

Question: What is the cost of multiplying two k-bit numbers?

50 / 55

Warm-up

Question: What is the cost of multiplying two k-bit numbers?
Answer: O(k2)

1 0 1 1 1 0
× 1 0 1

1 0 1 1 1 0
0 0 0 0 0 0 0

+ 1 0 1 1 1 0 0 0

1 1 1 0 0 1 1 0

50 / 55

Warm-up

Question: I have a coin with probability p of HEADS. I flip it n times.

Pr[at least one HEADS] =

51 / 55

Warm-up

Question: I have a coin with probability p of HEADS. I flip it n times.

Pr[at least one HEADS] = pn

Because I flip n coins and each has probability p of being HEADS.

51 / 55

Warm-up

Question: I have a coin with probability p of HEADS. I flip it n times.

Pr[at least one HEADS] = pn

WRONG! Why?

Say p = 1

2
and n = 3. Then the “probability” is

pn =
1

2
(3) =

3

2
> 1 ??

52 / 55

Warm-up

Question: I have a coin with probability p of HEADS. I flip it n times.

Pr[at least one HEADS] = pn

WRONG! Why?

Let Hi be the event that the i -th flip is heads.

Pr [Hi] = p for all 1 ≤ i ≤ n

Pr [at least one HEADs] = Pr [H1 ∨ H2 ∨ · · · ∨ Hn]

but this is not equal to

Pr [H1] + · · ·+ Pr [Hn]

53 / 55

Warm-up

Example: n = 2

H1

H1 ∧ H2

H2

Pr [H1 ∨ H2] = Pr [H1] + Pr [H2]− Pr [H1 ∧ H2]

Is there another way to compute

Pr [at least one HEADs] ?

54 / 55

Warm-up

Question: I have a coin with probability p of HEADS. I flip it n times.

Pr[at least one HEADS] = 1− Pr [all TAILs]

= 1− (1− p)n

55 / 55

