
KEY DISTRIBUTION

1 / 74

The public key setting

Alice Bobpk[A]

M ← Dsk[A](C) C� C
$
← Epk[A](M)

σ
$
←Ssk[A](M) M, σ- Vpk[A](M, σ)

Bob can:

• send encrypted data to Alice

• verify her signatures

as long as he has Alice’s public key pk[A].

But how does he get pk[A]?

2 / 74

Distributing public keys

How about:

Alice Bob

(pk[A], sk[A])
$
←K Alice, pk[A]-

M ← Dsk[A](C) C� C
$
←Epk[A](M)

σ
$
←Ssk[A](M) M, σ - Vpk[A](M, σ)

3 / 74

Man-in-the-middle attack

Adversary E Bob

(pk[E], sk[E])
$
←K Alice, pk[E]-

M ← Dsk[E](C) C� C
$
←Epk[E](M)

σ
$
←Ssk[E](M) M, σ - Vpk[E](M, σ)

Messages that Bob encrypts to Alice are obtained by E , and E can forge
Alice’s signatures.

4 / 74

The authenticity problem and PKI

Bob needs an authentic copy of Alice’s public key.

The PKI (Public Key Infrastructure) is responsible for ensuring this.

Usually it is done via certificates.

5 / 74

Certificate Process

• Alice generates pk and sends it to CA

• CA does identity check

• Alice proves knowledge of secret key to CA

• CA issues certificate to Alice

• Alice sends certificate to Bob

• Bob verifies certificate and extracts Alice’s pk

6 / 74

Generate key and send to CA

Key generation: Alice generates her keys locally via (pk, sk)
$
←K

Send to CA: Alice sends (Alice, pk) to a certificate authority (CA).

7 / 74

Identity check

Upon receiving (Alice, pk) the CA performs some checks to ensure pk is
really Alice’s key:

• Call Alice by phone

• Check documents

These checks are out-of-band.

8 / 74

Proof of knowledge

The CA might have Alice sign or decrypt something under pk to ensure
that Alice knows the corresponding secret key sk.

This ensures Alice has not copied someone else’s key.

9 / 74

Certificate Issuance

Once CA is convinced that pk belongs to Alice it forms a certificate

CERTA = (CERTDATA, σ),

where σ is the CA’s signature on CERTDATA, computed under the
CA’s secret key sk[CA].

CERTDATA:

• pk, ID (Alice)

• Name of CA

• Expiry date of certificate

• Restrictions

• Security level

• ...

The certificate CERTA is returned to Alice.

10 / 74

Certificate usage

Alice can send CERTA to Bob who will:

• (CERTDATA, σ)← CERTA

• Check Vpk[CA](CERTDATA, σ) = 1 where pk[CA] is CA’s public key

• (pk,Alice, expiry , . . .)← CERTDATA

• Check certificate has not expired

• . . .

If all is well we are ready for usage.

11 / 74

How does Bob get pk [CA]?

CA public keys are embedded in software such as your browser.

12 / 74

Certificate hierarchies

Mihir

..................................

...............................

...................................

Z
Z

CA(Calif)

CA(SD)

CA(Mass)

CA(USA)

CA(UCSD)

�
�

CERTMihir

CERT [CA(USA) : CA(Calif)]
CERT [CA(Calif) : CA(SD)]
CERT [CA(SD) : CA(UCSD)]
CERT [CA(UCSD) : Mihir]

CERT [X : Y] = (pk[Y],Y , . . . ,Ssk[X](pk[Y],Y , . . .))

To verify CERTMihir you need only pkCA[USA].

13 / 74

Why certificate hierarchies?

• It is easier for CA(UCSD) to check Mihir’s identity (and issue a
certificate) than for CA(USA) since Mihir is on UCSD’s payroll and
UCSD already has a lot of information about him.

• Spreads the identity-check and certification job to reduce work for
individual CAs

• Browsers need to have fewer embedded public keys. (Only root CA
public keys needed.)

14 / 74

Revocation

Suppose Alice wishes to revoke her certificate CERTA, perhaps because
her secret key was compromised.

• Alice sends CERTA and revocation request to CA

• CA checks that request comes from Alice

• CA marks CERTA as revoked

15 / 74

Certificate revocation lists (CRLs)

CA maintains a CRL with entries of form

(CERT ,Revocation date)

This list is disseminated.

Before Bob trusts Alice’s certificate he should ensure it is not on the
CRL.

16 / 74

Revocation Issues

• November 22: Alice’s secret key compromised

• November 24: Alice’s CERTA revoked

• November 25: Bob sees CRL

In the period Nov. 22-25, CERTA might be used and Bob might be
accepting as authentic signatures that are really the adversary’s. Also
Bob might be encrypting data for Alice which the adversary can decrypt.

17 / 74

OCSP

The On-line Certificate Status Protocol (OCSP) enables on-line checks
of whether or not a certificate has been revoked.

Bob CA

CERTA- CERTA -

ok / not�

But on-line verification kind of defeats the purpose of public-key
cryptography!

18 / 74

Revocation in practice

• VeriSign estimates that 20% of certificates are revoked

• In practice, CRLs are huge

Revocation is a big problem and one of the things that is holding up
widespread deployment of a PKI and use of public-key cryptography.

19 / 74

PGP

In PGP, there are no CAs. You get Alice’s public key from Carol and
decide to what extent you want to trust it based on your feelings about
Carol. Requires user involvement.

20 / 74

Certificate Examples

21 / 74

Certificate Examples

22 / 74

Certificate Examples

23 / 74

Certificate Examples

24 / 74

Certificate Examples

25 / 74

Certificate Examples

26 / 74

Shared key setting

AliceK BobK

M ← DK (C) C� C
$
←EK (M)

σ
$
←TK (M) M, σ - VK (M, σ)

Alice and Bob can

• send each other encrypted data

• verify each other’s MACs

Can be preferable to public key setting because computation costs are
lower.

But how do Alice and Bob get a shared key?

27 / 74

Diffie-Hellman Key Exchange

Let G = 〈g〉 be a cyclic group of order m and assume G , g ,m are public
quantities.

Alice Bob

x
$
← Zm; X ← gx Alice,X -

K ← Y x Bob,Y� y
$
← Zm; Y ← gy

K ← X y

Y x = (gy)x = gxy

︸︷︷︸

K

= (gx)y = X y

This enables Alice and Bob to agree on a common key K which can
subsequently be used, say to encrypt:

Alice Bob

M ← DK (C) C� C
$
←EK (M)

28 / 74

Security of DH Key Exchange under Passive Attack

Alice Bob

x
$
← Zm; X ← gx Alice,X -

K ← Y x Bob,Y� y
$
← Zm; Y ← gy

K ← X y

Eavesdropping adversary gets X = gx and Y = gy and wants to
compute gxy . But this is the (presumed hard) CDH problem.

Conclusion: DH key exchange is secure against passive (eavesdropping)
attack.

29 / 74

Security of DH Key Exchange under Active Attack

Man-in-the-middle attack:

E Bob

x
$
← Zm; X ← gx Alice,X -

K ← Y x Bob,Y� y
$
← Zm; Y ← gy

K ← X y

M ← DK (C) C� C
$
←EK (M)

Adversary E impersonates Alice so that:

• Bob thinks he shares K with Alice but E has K

• E can now decrypt ciphertexts Bob intends for Alice

Conclusion: DH key exchange is insecure against active attack

30 / 74

When is key agreement possible?

In the presence of an active adversary, it is impossible for Alice and Bob
to

• start from scratch, and

• exchange messages to get a common key unknown to the adversary

Why? Because there is no way for Bob to distinguish Alice from the
adversary.

Alice and Bob need some a priori “information advantage” over the
adversary. This typically takes the form of long-lived keys.

31 / 74

Settings and long-lived keys

• Public key setting: A has pkB and B has pkA

• Symmetric setting: A,B share a key K

• Three party setting: A,B each share a key with a trusted server S .

These keys constitute the long-lived information.

32 / 74

Session keys: The “real” key distribution problem

In practice, Alice and Bob will engage in multiple communication
“sessions.” For each, they

• First use a session-key distribution protocol, based on their
long-lived keys, to get a fresh, authentic session key;

• Then encrypt or authenticate data under this session key for the
duration of the session

33 / 74

Session key distribution

• Hundreds of protocols

• Dozens of security requirements

• Lots of broken protocols

• Protocols easy to specify and hard to get right

• Used ubiquitously: SSL, TLS, SSH, ...

34 / 74

Why session keys?

• In public-key setting, efficient cryptography compared to direct use
of long-lived keys

• Security attributes, in particular enabling different applications to
use keys in different ways and not compromise security of other
applications

35 / 74

Why session keys? Example

Alice and Bob share long-lived key K .

App1 uses CBC encryption for privacy.
App2 uses CBC MAC for integrity.

What happens if they both use the same overlying key K?

36 / 74

Why session keys? Example

E : {0, 1}k × {0, 1}n → {0, 1}n a block cipher.

In App1, Alice lets C0
$
←{0, 1}n; C1 ← EK (C0 ⊕ M1) and sends

(C0,C1) to Bob.

Assume adversary sees C0,C1 and knows M1. Then T = C1 is the CBC
MAC of M2 = C0 ⊕ M1, so adversary can forge a MAC in App2 by
sending (M2,T).

37 / 74

Another example

Suppose an application needs to encrypt just one, short message, and
does it using a one-time pad.

C = K ⊕ M-

If M later becomes known, adversary gets K .
If latter is the long-lived key, other applications are compromised.

38 / 74

Inferences

The fault (for the above attacks) is not with the application(s) or the
cryptography (CBC encryption, CBC MAC, or OTP) they use. An
application has a right to think it has exclusive use of its key.

We need to design the system so that applications can use their keys as
they wish, yet there are no “bad interactions” between them.

The solution is to give each “instance” of each application its own
session key.

39 / 74

Basic setting and requirements

A party may concurrently be engaged in many different communication
sessions.

The requirement that one session’s usage of its session key not
compromise another is captured by asking that even exposure of a
session key from one session should not compromise session keys of
other sessions.

40 / 74

Three party setting

• S is a trusted authentication server

• A shares a key K [A] with S

• B shares a key K [B] with S

• At any time, A,B ,S can engage in a 3-party protocol to provide
A,B a (shared) session key.

Model of the Kerberos system.

41 / 74

Notation and conventions in this area

• {X}K denotes an encryption of X under key K

• NA denotes a “nonce” chosen by party A

A nonce is a non-repeating quantity such as a counter or a value drawn
at random from a large domain.

42 / 74

Needham-Schroeder (NS) 78 Protocol

A→ S : A,B ,NA

S → A : {NA,B , α, {α,A}K [B]}K [A]

A→ B : {α,A}K [B]

B → A : {NB}α
A→ B : {NB − 1}α

Session key α is chosen by S . Last two flows are for “key-confirmation.”

When A receives second flow it checks that NA,B are correct. When B

receives last flow it checks that the decryption is NB − 1.

43 / 74

Known-key attack [DS81]

A→ S : A,B ,NA

S → A : {NA,B , α, {α,A}K [B]}K [A]

A→ B : {α,A}K [B]

B → A : {NB}α
A→ B : {NB − 1}α

Assume E obtains all the flows from the execution depicted above and
also learns α.

What E does:
E → B : {α,A}K [B]

44 / 74

Known-key attack [DS81]

A→ S : A,B ,NA

S → A : {NA,B , α, {α,A}K [B]}K [A]

A→ B : {α,A}K [B]

B → A : {NB}α
A→ B : {NB − 1}α

Assume E obtains all the flows from the execution depicted above and
also learns α.

What E does:
E → B : {α,A}K [B]

B → A

44 / 74

Known-key attack [DS81]

A→ S : A,B ,NA

S → A : {NA,B , α, {α,A}K [B]}K [A]

A→ B : {α,A}K [B]

B → A : {NB}α
A→ B : {NB − 1}α

Assume E obtains all the flows from the execution depicted above and
also learns α.

What E does:
E → B : {α,A}K [B]

B → E

44 / 74

Known-key attack [DS81]

A→ S : A,B ,NA

S → A : {NA,B , α, {α,A}K [B]}K [A]

A→ B : {α,A}K [B]

B → A : {NB}α
A→ B : {NB − 1}α

Assume E obtains all the flows from the execution depicted above and
also learns α.

What E does:
E → B : {α,A}K [B]

B → E : {N ′
B}α

44 / 74

Known-key attack [DS81]

A→ S : A,B ,NA

S → A : {NA,B , α, {α,A}K [B]}K [A]

A→ B : {α,A}K [B]

B → A : {NB}α
A→ B : {NB − 1}α

Assume E obtains all the flows from the execution depicted above and
also learns α.

What E does:
E → B : {α,A}K [B]

B → E : {N ′
B}α

E → B : {N ′
B − 1}α

Now B thinks it has a fresh session with A with key α. But E knows α

and any use of it by B is insecure.

44 / 74

Time stamps

T will denote a time stamp.

When a party receives a flow with some T , it rejects unless T is
“current.”

Inclusion of a time-stamp thus helps prevent replay.

“Current” means T is “close” to local time. There will always be some
chance of successful replay due to this, but for our purposes assume
time-stamping is perfect and replay is impossible.

45 / 74

Kerberos

A→ S : A,B

S → A : {T , α,B , {T , α,A}K [B]
︸ ︷︷ ︸

tB

}K [A]

A→ B : tB , {A,T}α
B → A : {T + 1}α

Session key α and time-stamp T are selected by S . When B receives
third flow it rejects unless time stamps in two parts match.

46 / 74

Known-key attack?

A→ S : A,B

S → A : {T , α,B , {T , α,A}K [B]
︸ ︷︷ ︸

tB

}K [A]

A→ B : tB , {A,T}α
B → A : {T + 1}α

Assume E obtains all of the above flows and also learns α.

• E → B : tB , {A,T}α

47 / 74

Known-key attack?

A→ S : A,B

S → A : {T , α,B , {T , α,A}K [B]
︸ ︷︷ ︸

tB

}K [A]

A→ B : tB , {A,T}α
B → A : {T + 1}α

Assume E obtains all of the above flows and also learns α.

• E → B : tB , {A,T}α ; B will reject because T is not current

47 / 74

Known-key attack?

A→ S : A,B

S → A : {T , α,B , {T , α,A}K [B]
︸ ︷︷ ︸

tB

}K [A]

A→ B : tB , {A,T}α
B → A : {T + 1}α

Assume E obtains all of the above flows and also learns α.

• E → B : tB , {A,T}α ; B will reject because T is not current

• E → B : tB , {A,T ′}α

47 / 74

Known-key attack?

A→ S : A,B

S → A : {T , α,B , {T , α,A}K [B]
︸ ︷︷ ︸

tB

}K [A]

A→ B : tB , {A,T}α
B → A : {T + 1}α

Assume E obtains all of the above flows and also learns α.

• E → B : tB , {A,T}α ; B will reject because T is not current

• E → B : tB , {A,T ′}α ; B will reject because T ′ does not match
time-stamp T in tB

47 / 74

Known-key attack?

A→ S : A,B

S → A : {T , α,B , {T , α,A}K [B]
︸ ︷︷ ︸

tB

}K [A]

A→ B : tB , {A,T}α
B → A : {T + 1}α

Assume E obtains all of the above flows and also learns α.

• E → B : tB , {A,T}α ; B will reject because T is not current

• E → B : tB , {A,T ′}α ; B will reject because T ′ does not match
time-stamp T in tB

• E → B : t ′B = {T ′
, α,A}K [B], {A,T ′}α

47 / 74

Known-key attack?

A→ S : A,B

S → A : {T , α,B , {T , α,A}K [B]
︸ ︷︷ ︸

tB

}K [A]

A→ B : tB , {A,T}α
B → A : {T + 1}α

Assume E obtains all of the above flows and also learns α.

• E → B : tB , {A,T}α ; B will reject because T is not current

• E → B : tB , {A,T ′}α ; B will reject because T ′ does not match
time-stamp T in tB

• E → B : t ′B = {T ′
, α,A}K [B], {A,T ′}α ; E can’t create t ′B because

it doesn’t have K [B]

47 / 74

How should we implement {X}K?

S → A : {T , α,B , {T , α,A}K [B]}K [A]

The protocols refer to {X}K as encryption of X under K . How would
you implement it?

48 / 74

How should we implement {X}K?

S → A : {T , α,B , {T , α,A}K [B]}K [A]

The protocols refer to {X}K as encryption of X under K . How would
you implement it?

• Question: What information in above flow needs to be kept private?

48 / 74

How should we implement {X}K?

S → A : {T , α,B , {T , α,A}K [B]}K [A]

The protocols refer to {X}K as encryption of X under K . How would
you implement it?

• Question: What information in above flow needs to be kept private?

• Answer: α only (T ,B ,A are known!)

48 / 74

How should we implement {X}K?

S → A : {T , α,B , {T , α,A}K [B]}K [A]

The protocols refer to {X}K as encryption of X under K . How would
you implement it?

• Question: What information in above flow needs to be kept private?

• Answer: α only (T ,B ,A are known!)

• Question: Then why are T ,B ,A encrypted?

48 / 74

How should we implement {X}K?

S → A : {T , α,B , {T , α,A}K [B]}K [A]

The protocols refer to {X}K as encryption of X under K . How would
you implement it?

• Question: What information in above flow needs to be kept private?

• Answer: α only (T ,B ,A are known!)

• Question: Then why are T ,B ,A encrypted?

• Answer: For integrity

48 / 74

How should we implement {X}K?

S → A : {T , α,B , {T , α,A}K [B]}K [A]

The protocols refer to {X}K as encryption of X under K . How would
you implement it?

• Question: What information in above flow needs to be kept private?

• Answer: α only (T ,B ,A are known!)

• Question: Then why are T ,B ,A encrypted?

• Answer: For integrity

• Question: So how should we implement {X}K ?

48 / 74

How should we implement {X}K?

S → A : {T , α,B , {T , α,A}K [B]}K [A]

The protocols refer to {X}K as encryption of X under K . How would
you implement it?

• Question: What information in above flow needs to be kept private?

• Answer: α only (T ,B ,A are known!)

• Question: Then why are T ,B ,A encrypted?

• Answer: For integrity

• Question: So how should we implement {X}K ?

• Answer: AEAD is a good match

48 / 74

Recall AEAD

Provides:

• Privacy and integrity of the message M

• Integrity of the associated data AD

Sender

• C
$
← EK (N,AD,M)

• Send (N,AD ,C)

Receiver

• Receive (N,AD ,C)

• M ← DK (N,AD ,C)

Sender must never re-use a nonce.

49 / 74

Implementing {X}K using AEAD

S → A : {T , α,B , {T , α,A}K [B]}K [A]

can be implemented as

S → A : N,N ′
,T ,CB

︸ ︷︷ ︸

tB

,CA

where

• CB
$
←EK [B](N,T‖A, α)

• CA
$
←EK [A](N

′
,T‖B‖CB , α)

50 / 74

Alternative implementation

S → A : {T , α,B , {T , α,A}K [B]}K [A]

can be implemented as

S → A : T ,CA,CB , τB
︸ ︷︷ ︸

tB

,CA, τA

where we use an IND-CPA encryption scheme and a UF-CMA MAC to
compute these quantities as follows:

• CA
$
←EK [A](α)

• CB
$
←EK [B](α)

• τA ← MACK [A](T ,B ,CA)

• τB ← MACK [B](T ,A,CB)

Encryption and MAC should use separate keys!

51 / 74

Key Confirmation

A→ B : tB , {A,T}α
B → A : {T + 1}α

What is required here?

52 / 74

Key Confirmation

A→ B : tB , {A,T}α
B → A : {T + 1}α

What is required here? Seems to be integrity so we might implement as:

A→ B : tB ,MACα(A,T)
B → A : MACα(T + 1)

52 / 74

Security of Session Key

Question: What is desired security attribute of session key?

53 / 74

Security of Session Key

Question: What is desired security attribute of session key?

Answer: It should be indistinguishable from random to adversary

At end of protocol:

b
$
←{0, 1}; α0 ← α; α1

$
←{0, 1}|α|

- - b ?αb A

53 / 74

Session key security under key confirmation

A→ B : tB ,

C
︷ ︸︸ ︷

{A,T}α
B → A : {T + 1}α

Session key is not indistinguishable from random. Adversary given
challenge αb can decrypt C under αb and check whether it gets back
A,T . Or, if a MAC, can re-compute MAC and check.

Key confirmation destroys session key security and is unnecessary
anyway!

54 / 74

BR95 Protocol

A→ B : RA

B → S : RA,RB

S → A : CA, MACK [A](A,B ,RA,CA)
S → B : CB , MACK [B](A,B ,RB ,CB)

where CA
$
←EK [A](α); CB

$
←EK [B](α)

NO key confirmation: α never used!

This protocol can be proven to satisfy a strong, formal notion of session
key distribution security assuming standard properties of E , MAC

[BR95].

55 / 74

Session key exchange in public key setting

Apk[B] Bpk[A]

-
�

-

��	
K

@@R
K

Most important type of session key exchange in practice, used in all
communication security protocols: SSL, SSH, TLS, IPSEC, 802.11, ...

56 / 74

Protocol KE1

Apk[B] Bpk[A]

A,RA -
RB ,C ,B ,SignB(RA,RB ,C)� C

$
←EA(K)

A,SignA(RA,RB) -

• Session key K chosen by B

• SignP(M) is P ’s signature of M, created under sk[P] and verifiable
given pk[P].

• RA,RB are random nonces

• EA(·) is encryption under A’s public key pk[A], decryptable by A

using sk[A]

57 / 74

Binding attack

A E B

A,RA - E ,RA -
RB ,C ,B ,SignB(RB ,C ,B)� RB ,C ,B ,SignB(RB ,C ,B)�

A,SignA(RA,RB) - E ,SignE (RA,RB) -

A thinks it shares K with B , but B records K as a key shared with E .
This is generally acknowledged to be a problem even though E does not
know K .

A good example of exactly why this is a problem is, however, lacking.

58 / 74

Protocol KE2

Apk[B] Bpk[A]

A,RA -
RB ,C ,B ,SignB(A,B ,RA,RB ,C)� C

$
←EA(K)

A,SignA(A,B ,RA,RB) -

Identities are included in scopes of signatures, thwarting the binding
attack. Protocol KE2 can be shown to meet a strong, formal notion of
secure session key exchange.

59 / 74

Forward secrecy

Apk[B] Bpk[A]

A,RA -
RB ,C ,B ,SignB(A,B ,RA,RB ,C)� C

$
←EA(K)

A,SignA(A,B ,RA,RB) -
CB� CB

$
←EK (M)

Nov. 20: Adversary E records above flows.
Dec. 18: A’s, system compromised and sk[A] exposed.
Dec. 19: A revokes pk[A] so that no further damage is done but cannot
prevent E from

K ← Dsk[A](C);M ← DK (CB)

Can we achieve forward secrecy: Privacy of communication done prior
to exposure of sk[A] is not compromised?

60 / 74

KE3: Forward secrecy

Apk[B] Bpk[A]

A, ga
-

gb
,B ,SignB(A,B , ga

, gb)�

A,SignA(A,B , ga
, gb) -

Session key is K = H(A,B , ga
, gb

, gab).

Adversary E records above flows on Nov. 20. On Dec. 18, sk[A] is
exposed. This allows E to forge A’s signatures, but A can address this
by revoking pk[A]. But sk[A] does not help E obtain K .

There is no public-key encryption here, only signatures.

All standard protocols use DH to get forward security.

61 / 74

Anonymity

The requirement here is that the protocol flows do not allow the
adversary to identify the participants.

This might be desirable when B is a mobile client, communicating with
base station A; B does not want her location known to E .

The protocols we have seen so far send the identities in the clear

A B

A, ga
-

B , . . .�

Such protocols do not provide anonymity.

62 / 74

KE4: Targeting anonymity for B

A B

A, ga
-

gb
, {B}Ke

,

σ

︷ ︸︸ ︷

SignB(A,B , ga
, gb)�

SignA(A,B , ga
, gb) -

where Ke = H(1,A,B , ga
, gb

, gab) and the session key is
K = H(0,A,B , ga

, gb
, gab).

63 / 74

KE4: Targeting anonymity for B

A B

A, ga
-

gb
, {B}Ke

,

σ

︷ ︸︸ ︷

SignB(A,B , ga
, gb)�

SignA(A,B , ga
, gb) -

But if B ∈ {B1, . . . ,Bn} then E can identify B via:

For i = 1, . . . , n do:
if Vpk[Bi]((A,Bi , g

a
, gb), σ) = 1 then return Bi

Signatures reveal identity!

Question: so why don’t we send gb encrypted too?

64 / 74

KE4: Targeting anonymity for B

A B

A, ga
-

gb
, {B}Ke

,

σ

︷ ︸︸ ︷

SignB(A,B , ga
, gb)�

SignA(A,B , ga
, gb) -

But if B ∈ {B1, . . . ,Bn} then E can identify B via:

For i = 1, . . . , n do:
if Vpk[Bi]((A,Bi , g

a
, gb), σ) = 1 then return Bi

Signatures reveal identity!

Question: so why don’t we send gb encrypted too?
Answer: How would A decrypt?

64 / 74

KE5: Anonymity for B

A B

A, ga
-

gb
, {B ,SignB(A,B , ga

, gb)}Ke�

{SignA(A,B , ga
, gb)}Ke -

where Ke = H(1,A,B , ga
, gb

, gab) and the session key is
K = H(0,A,B , ga

, gb
, gab)

65 / 74

Passwords

A password is a human-memorizable key.

Attackers are capable of forming a set D of possible passwords called a
dictionary such that

• If the target password pw is in D and

• The attacker knows pw = f (pw), the image of pw under some
public function f .

then the target password can be found via

for all pw ′ ∈ D do

if f (pw ′) = pw then return pw ′

This is called a dictionary attack.

66 / 74

Password usage

Fact is that in spite of all the great crypto around, a significant fraction
of our security today resides in passwords: bank ATM passwords; login
passwords; passwords for different websites; ...

Few of us today have cryptographic keys; but we all have more
passwords than we can remember!

Passwords are convenient and entrenched.

Preventing dictionary attacks is an important concern.

67 / 74

Preventing dictionary attacks: Password selection

Systems try to force users to select “good” passwords, meaning ones
not in the dictionary. But studies show that a significant fraction of user
passwords end up being in the dictionary anyway.

Attackers get better and better at building dictionaries.

Good password selection helps, but it is unrealistic to think that even
the bulk of passwords are well selected, meaning not in the dictionary.

68 / 74

Preventing dictionary attacks: avoiding image revelation

An alternative approach is to ensure that usage of a password pw never
reveals an image pw = f (pw) of pw under a public function f . Then,
even if the password is in the dictionary, the dictionary attack cannot be
mounted.

69 / 74

Password-based session-key exchange

A, B share a password pw .

They want to interact to get a common session key.

The protocol should resist dictionary attack: adversary should be unable
to obtain an image of pw under a public function.

70 / 74

Protocol KE6

Apw Bpw

A, ga
-

B , gb
,

σ

︷ ︸︸ ︷

MACpw (1,A,B , ga
, gb)�

A,MACpw (0,A,B , ga
, gb)-

Session key is K = H(A,B , ga
, gb

, gab).

Dictionary attack is possible: Let f be defined by

f (x) = MACx(1,A,B , ga
, gb)

Then get pw via

for all pw ′ ∈ D do

if f (pw ′) = σ then return pw ′

71 / 74

Protocol KE7

Apw Bpw

A, ga
-

B , gb
,

σ

︷ ︸︸ ︷

MACKm
(1,A,B , ga

, gb)�

A,MACKm
(0,A,B , ga

, gb)-

where Km = H(1,A,B , ga
, gb

, gab
, pw) and the session key is

K = H(0,A,B , ga
, gb

, gab).

Does protocol transcript reveal f (pw) for some public f ? Defining

f (x) = MACH(1,A,B,ga,gb,gab ,x)(1,A,B , ga
, gb)

is the natural idea

72 / 74

Protocol KE7

Apw Bpw

A, ga
-

B , gb
,

σ

︷ ︸︸ ︷

MACKm
(1,A,B , ga

, gb)�

A,MACKm
(0,A,B , ga

, gb)-

where Km = H(1,A,B , ga
, gb

, gab
, pw) and the session key is

K = H(0,A,B , ga
, gb

, gab).

Does protocol transcript reveal f (pw) for some public f ? Defining

f (x) = MACH(1,A,B,ga,gb,gab ,x)(1,A,B , ga
, gb)

is the natural idea but f is not public because E cannot compute gab!
Dictionary attack does not seem possible ... at least under a passive
attack.

72 / 74

Active attack on KE7

E Bpw

A, ga
-

B , gb
,

σ

︷ ︸︸ ︷

MACKm
(1,A,B , ga

, gb)�

where Km = H(1,A,B , ga
, gb

, gab
, pw). But now E has a and can

compute gab = (gb)a so

f (x) = MACH(1,A,B,ga,gb,gab ,x)(1,A,B , ga
, gb)

becomes public and a dictionary attack is possible.

73 / 74

Security goal

We cannot prevent E from eliminating one candidate password per
interaction with A or B in an active attack.

Our goals are

• A protocol transcript should not reveal the image of pw under a
public function.

• An interaction with A or B should not allow E to eliminate more
than a small number d (ideally d = 1) of candidate passwords.

74 / 74

Protocol KE8: EKE2 [BPR00]

Apw Bpw

A,Epw (ga) -

B ,Epw (gb),H(1,A,B , ga
, gb

, gab)�

A,H(2,A,B , ga
, gb

, gab) -

E : PW × G → G is a block cipher over group G and keyspace PW of
all possible passwords; the session key is K = H(0,A,B , ga

, gb
, gab).

This prevents the previous active attack because the adversary cannot
compute Epw (ga) while knowing a.

This protocol has a proof [BPR00].

75 / 74

