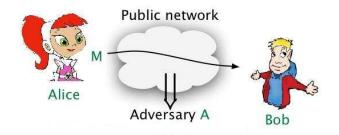
# MESSAGE AUTHENTICATION

(ロ) (部) (目) (目) (1/103)

# Integrity and authenticity



The goal is to ensure that

- M really originates with Alice and not someone else
- *M* has not been modified in transit

Alice

Bob (Bank)

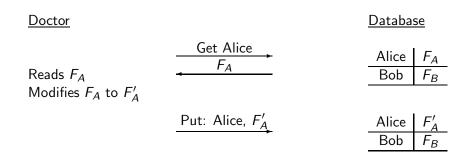
Alice

Pay \$100 to Charlie

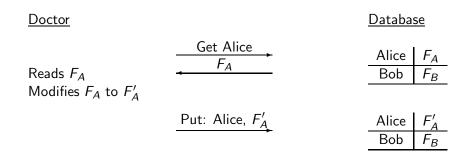
Adversary Eve might

- Modify "Charlie" to "Eve"
- Modify "\$100" to "\$1000"

Integrity prevents such attacks.



#### 



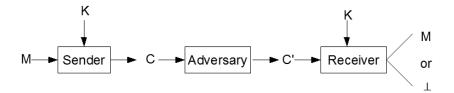
イロン 不通 と 不良 と 不良 と 一度

4/103

#### Need to ensure

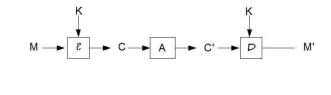
- doctor is authorized to get Alice's file
- $F_A, F'_A$  are not modified in transit
- F<sub>A</sub> is really sent by database
- $F'_A$  is really sent by (authorized) doctor

We will study how to authenticate messages in the *symmetric* setting where Sender and Receiver share a random key K not given to the adversary.



### Does privacy provide authenticity?

Let  $\mathcal{SE} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  be a (IND-CPA secure) symmetric encryption scheme.



*M*="Pay \$100 to Bob"

Adversary wants Receiver to get

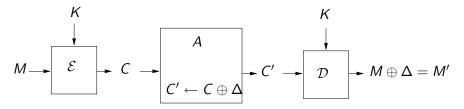
Sav

M' = "Pay \$1,000 to Bob"

Adversary needs to modify C to C' such that  $\mathcal{D}_{\mathcal{K}}(C') = M'$ .

**Intuition:** It is hard to modify *C* to ensure above, since modifying *C* will result in  $\mathcal{D}_{\mathcal{K}}(C)$  being garbled/random and Receiver will reject.

Say  $\mathcal{E}_{\mathcal{K}}(M) = \mathcal{K} \oplus M$  and  $\mathcal{D}_{\mathcal{K}}(C) = \mathcal{K} \oplus C$ . Should assume adversary knows M. Then it can let  $\Delta = M \oplus M'$  and



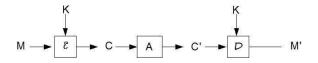
because

$$\mathcal{D}_{\mathcal{K}}(\mathcal{C}\oplus\Delta)=\mathcal{K}\oplus\mathcal{C}\oplus\Delta=\mathcal{M}\oplus\Delta$$

## Adding redundacy

Let  $S\mathcal{E} = (\mathcal{K}, \mathcal{E}, \mathcal{D})$  be a (IND-CPA secure) symmetric encryption scheme. To send M, sender computes  $C \stackrel{s}{\leftarrow} \mathcal{E}_{\mathcal{K}}(0^{128}||M)$  and sends C to receiver.

Receiver gets C' and lets  $R||M \leftarrow \mathcal{D}_{K}(C')$ . If  $R = 0^{128}$  it outputs M else  $\perp$ .



**Intuition:** If C is modified to C' then most probably the first 128 bits of  $\mathcal{D}_{\mathcal{K}}(C')$  will not all be 0 and Receiver will reject.

However, OTP again provides a counterexample to show that this does not provide integrity.

#### **Possible reaction:** OTP is bad! Use CBC instead.

But CBC has similar problems.

Possible reaction: OTP is bad! Use CBC instead.

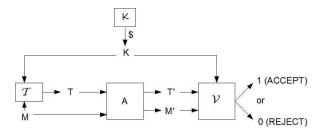
But CBC has similar problems.

**The real problem:** There is no good reason to think that privacy provides authenticity. Encryption is the wrong tool here.

To call an encryption scheme bad because it does not provide authenticity is like calling a car bad because it does not fly. To fly you need an airplane.

#### Message authentication schemes

A message authentication (MA) scheme  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  consists of three algorithms:



・ロン ・四 ・ ・ ヨン

10 / 103

We refer to T as the MAC or tag.

We let

- $\mathcal{T}_{\mathcal{K}}(\cdot) = \mathcal{T}(\mathcal{K}, \cdot)$
- $\mathcal{V}_{\mathcal{K}}(\cdot) = \mathcal{V}(\mathcal{K}, \cdot, \cdot)$

Let  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  be any MA scheme. We require that for all messages M,

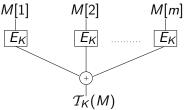
 $\mathcal{V}_{\mathcal{K}}(M,\mathcal{T}_{\mathcal{K}}(M))=1$ 

with probability one, where the probability is over the choice of  ${\cal K}$  and the coins of  ${\cal T}.$ 

That is, unaltered tags are accepted.

Let  $E: \{0,1\}^k \times B \to B$  be a block cipher, where  $B = \{0,1\}^n$ . View a message  $M \in B^*$  as a sequence of *n*-bit blocks,

 $M = M[1] \cdots M[m]$ Alg  $\mathcal{K}$   $K \stackrel{\$}{\leftarrow} \{0,1\}^{k}$ return K  $M = M[1] \cdots M[m]$ Alg  $\mathcal{V}_{\mathcal{K}}(M, T)$ if  $\mathcal{T} = \mathcal{T}_{\mathcal{K}}(M)$  then
return 1
else return 1
else return 0  $M[1] \qquad M[2] \qquad M[m]$ 



イロン 不通 とうほう 不良 とうほう

12 / 103

Certainly it knows the scheme  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$ 

We should also assume it can see a sequence  $(M_1, T_1), \ldots, (M_q, T_q)$  of correctly tagged messages sent by the sender, meaning  $T_i \stackrel{s}{\leftarrow} T_K(M_i)$  for  $i = 1, \ldots, q$ .

Some choices here

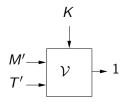
- Known message attack: Adversary does not influence choice of  $M_1, \ldots, M_q$
- Chosen-message attack: Adversary chooses  $M_1, \ldots, M_q$

We certainly want to ensure that an adversary cannot recover the key.

But this condition, while necessary for security, is not sufficient.

We say that an adversary succeeds in forgery if it produces M', T' such that

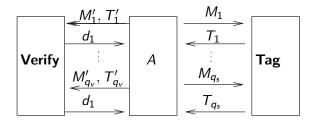
• Verifier accepts



• But sender never sent (tagged) M'

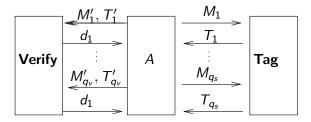
We want to prevent forgery.

Let  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  be a MA scheme. A uf-cma adversary has oracles  $\text{Tag}(\cdot) = \mathcal{T}_{\mathcal{K}}(\cdot)$  and  $\text{Verify}(\cdot, \cdot) = \mathcal{V}_{\mathcal{K}}(\cdot, \cdot)$ .



Tag represents the sender and Verify represents the receiver.

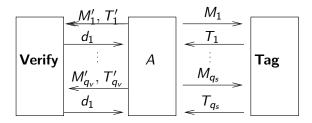
Let  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  be a MA scheme. A uf-cma adversary has oracles  $Tag(\cdot) = \mathcal{T}_{\mathcal{K}}(\cdot)$  and  $Verify(\cdot, \cdot) = \mathcal{V}_{\mathcal{K}}(\cdot, \cdot)$ .



We want to say that A wins if it ever gets **Verify** to accept. But it can do this trivially by sending, say,  $(M_1, T_1)$  to **Verify**. This however isn't really a forgery because  $M_1$  is authentic, meaning tagged by the sender.

# **UF-CMA**

Let  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  be a MA scheme. A uf-cma adversary has oracles  $\text{Tag}(\cdot) = \mathcal{T}_{\mathcal{K}}(\cdot)$  and  $\text{Verify}(\cdot, \cdot) = \mathcal{V}_{\mathcal{K}}(\cdot, \cdot)$ .



We say A wins if  $\exists i$  such that

• **Verify** $(M'_i, T'_i)$  returned 1, but

• A did not query  $M'_i$  to **Tag** prior to querying  $M'_i$ ,  $T'_i$  to **Verify** Security means that the adversary can't get the receiver to accept a message that was not already transmitted by the sender.

# Definition: UF-CMA

Let  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  be a message authentication scheme and A a uf-cma adversary.

 $\mathsf{Game}\ \mathrm{UFCMA}_{\mathcal{MA}}$ 

procedure Initializeprocedure Tag(M) $K \stackrel{s}{\leftarrow} \mathcal{K}; S \leftarrow \emptyset$  $T \stackrel{s}{\leftarrow} \mathcal{T}_{\mathcal{K}}(M)$ procedure Verify(M, T) $S \leftarrow S \cup \{M\}$  $d \leftarrow \mathcal{V}_{\mathcal{K}}(M, T)$ return TIf  $(d = 1 \land M \notin S)$  then win  $\leftarrow$  trueprocedure Finalizereturn dreturn win

The uf-cma advantage of adversary A is

$$\mathsf{Adv}^{\mathrm{uf-cma}}_{\mathcal{M}\mathcal{A}}(\mathcal{A}) = \mathsf{Pr}\left[\mathrm{UFCMA}^{\mathcal{A}}_{\mathcal{M}\mathcal{A}} \Rightarrow \mathsf{true}\right]$$

Let  $\mathcal{MA}=(\mathcal{K},\mathcal{T},\mathcal{V})$  be a message authentication scheme and A a uf-cma adversary. Then

$$\mathsf{Adv}^{\mathrm{uf-cma}}_{\mathcal{M}\mathcal{A}}(\mathcal{A}) = \mathsf{Pr}\left[\mathrm{UFCMA}^{\mathcal{A}}_{\mathcal{M}\mathcal{A}}{\Rightarrow}\mathsf{true}
ight]$$

is a number between 0 and 1.

- A "large" (close to 1) advantage means
  - A is doing well
  - $\mathcal{M}\mathcal{A}$  is not secure
- A "small" (close to 0) advantage means
  - A is doing poorly
  - MA resists the attack A is mounting

Adversary advantage depends on its

- Strategy
- Resources: Running time t and numbers q<sub>s</sub>, q<sub>v</sub> of queries to the Tag and Verify oracles, respectively.

**Security:**  $\mathcal{MA}$  is a secure MA scheme (UF-CMA) if  $\mathbf{Adv}_{F}^{\mathrm{uf-cma}}(A)$  is "small" for ALL A that use "practical" amounts of resources.

**Insecurity:** MA is insecure (not UF-CMA) if there exists A using "few" resources that achieves "high" advantage.

Suppose MA scheme  $\mathcal{MA}$  has tags of length  $\ell$ . Then one can forge with probability  $q/2^{\ell}$  in q verification attempts:

adversary A Let M be any message For i = 1, ..., q do  $d \leftarrow Verify(M, \langle i \rangle)$ 

Here  $\langle i \rangle$  is the  $\ell$ -bit binary representation of i. The advantage of A is

$$\mathsf{Adv}^{\mathrm{uf-cma}}_{\mathcal{MA}}(A) = rac{q}{2^{\ell}}$$

**Conclusion:** Tags have to be long enough.

For 80 bit security, tags have to be at least 80 bits.

Associate to a family of functions  $F : \{0,1\}^k \times D \to \{0,1\}^n$  the MA scheme  $\mathcal{MA}[F] = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  with

|                                                                         | Alg $\mathcal{T}(K, M)$           | Alg $\mathcal{V}(K, M, T)$                |
|-------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|
| $K \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \{0,1\}^k$ | $T \leftarrow F_{\mathcal{K}}(M)$ | if $T = F_{\mathcal{K}}(M)$ then return 1 |
| return $K$                                                              | return $T$                        | else return $0$                           |

We refer to such a MA scheme as a  ${\rm MAC}$  (message authentication code). Its features are:

- Tag computation is deterministic and stateless.
- Verification is by tag re-computation.

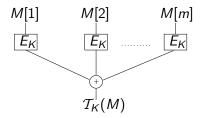
Most MA scheme we will see will be MACs.

Let  $E : \{0,1\}^k \times B \to B$  be a block cipher, where  $B = \{0,1\}^n$ . View a message  $M \in B^*$  as a sequence of *n*-bit blocks,

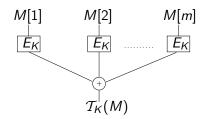
 $M = M[1] \dots M[m]$ 

Consider the family of functions  $\mathcal{T}: \{0,1\}^k imes B^* o B$  defined by

 $\mathcal{T}_{\mathcal{K}}(M[1]\ldots M[m]) = E_{\mathcal{K}}(M[1]) \oplus \cdots \oplus E_{\mathcal{K}}(M[m]).$ 

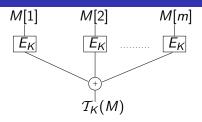


Is the MAC  $\mathcal{MA}[\mathcal{T}]$  secure?



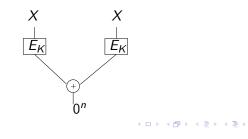
Is there a way to produce a message M' and its correct tag T'

- without knowing K
- possibly knowing a few input-output examples of  $T_K$ ?



Weakness:

 $\mathcal{T}_{\mathcal{K}}(XX) = \mathcal{E}_{\mathcal{K}}(X) \oplus \mathcal{E}_{\mathcal{K}}(X) = 0^n$ 



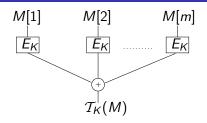
26 / 103

3

Let  $\mathcal{T}: \{0,1\}^k \times B^* \to B$  be defined by  $\mathcal{T}_{\mathcal{K}}(M[1]\dots M[m]) = E_{\mathcal{K}}(M[1]) \oplus \cdots \oplus E_{\mathcal{K}}(M[m])$ and let  $\mathcal{MA}[\mathcal{T}] = (\mathcal{K}, \mathcal{T}, \mathcal{V}).$ adversary A  $M \leftarrow 0^n || 0^n$ ;  $T \leftarrow 0^n$ ;  $d \leftarrow \text{Verify}(M, T)$ Then  $\mathcal{T}_{\mathcal{K}}(M) = E_{\mathcal{K}}(0^n) \oplus E_{\mathcal{K}}(0^n) = 0^n = T$ SO

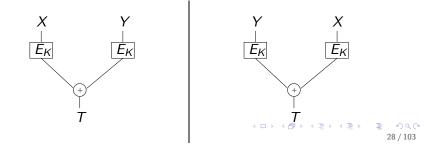
$$\mathsf{Adv}^{\mathrm{uf}\text{-}\mathrm{cma}}_{\mathcal{MA}[\mathcal{T}]}(A) = 1$$

So  $\mathcal{MA}[\mathcal{T}]$  is not UF-CMA secure.



Another weakness:

$$\mathcal{T}_{\mathcal{K}}(XY) = E_{\mathcal{K}}(X) \oplus E_{\mathcal{K}}(Y) = E_{\mathcal{K}}(Y) \oplus E_{\mathcal{K}}(X) = \mathcal{T}_{\mathcal{K}}(YX)$$



Let  $\mathcal{T} : \{0,1\}^k \times B^* \to B$  be defined by  $\mathcal{T}_{\mathcal{K}}(M[1] \dots M[m]) = E_{\mathcal{K}}(M[1]) \oplus \dots \oplus E_{\mathcal{K}}(M[m])$ and let  $\mathcal{MA}[\mathcal{T}] = (\mathcal{K}, \mathcal{T}, \mathcal{V}).$  **adversary** A  $\mathcal{T} \leftarrow \mathbf{Tag}(1^n 0^n); d \leftarrow \mathbf{Verify}(0^n 1^n, \mathcal{T})$ Then

$$\begin{aligned} \mathcal{T}_{\mathcal{K}}(1^n 0^n) &= E_{\mathcal{K}}(1^n) \oplus E_{\mathcal{K}}(0^n) \\ &= E_{\mathcal{K}}(0^n) \oplus E_{\mathcal{K}}(1^n) \\ &= \mathcal{T}_{\mathcal{K}}(0^n 1^n) \end{aligned}$$

so

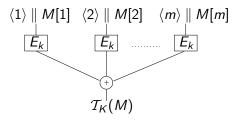
 $\mathsf{Adv}^{\mathrm{uf-cma}}_{\mathcal{MA}[\mathcal{T}]}(A) = 1$ 

Let  $E : \{0,1\}^k \times B^n \to B^n$  be a block cipher, where  $B = \{0,1\}^n$ . View a message  $M \in B^*$  as a sequence of  $\ell$ -bit blocks,

$$M = M[1] \dots M[m]$$

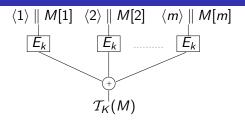
where  $\ell = n - 32$ . Let  $\mathcal{T} : \{0, 1\}^k \times B^* \to B$  be defined by

 $\mathcal{T}_{\mathcal{K}}(M[1] \dots M[m]) = E_{\mathcal{K}}(\langle 1 \rangle || M[1]) \oplus \cdots \oplus E_{\mathcal{K}}(\langle m \rangle || M[m])$ 



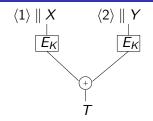
Notation:

 $\langle i \rangle$  is the 32-bit binary representation of the block index *i* 

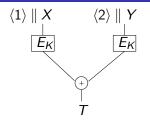


- $\begin{aligned} \mathcal{T}_{\mathcal{K}}(0^{\ell}||0^{\ell}) &= E_{\mathcal{K}}(\langle 1 \rangle ||0^{\ell}) \oplus E_{\mathcal{K}}(\langle 2 \rangle ||0^{\ell}) \\ &\neq 0^{n} \end{aligned}$
- $$\begin{split} \mathcal{T}_{\mathcal{K}}(1^{\ell}||0^{\ell}) &= E_{\mathcal{K}}(\langle 1 \rangle ||1^{\ell}) \oplus E_{\mathcal{K}}(\langle 2 \rangle ||0^{\ell}) \\ &\neq E_{\mathcal{K}}(\langle 1 \rangle ||0^{\ell}) \oplus E_{\mathcal{K}}(\langle 2 \rangle ||1^{\ell}) \\ &= \mathcal{T}_{\mathcal{K}}(0^{\ell}||1^{\ell}) \end{split}$$

So previous attacks fail.



<ロト < 部ト < 語ト < 語ト 差 の Q (Cr) 32 / 103



Weakness: suppose we have

$$T_1 = \mathcal{T}_{\mathcal{K}}(X_1Y_1) = \mathcal{E}_{\mathcal{K}}(\langle 1 \rangle || X_1) \oplus \mathcal{E}_{\mathcal{K}}(\langle 2 \rangle || Y_1)$$
  

$$T_2 = \mathcal{T}_{\mathcal{K}}(X_1Y_2) = \mathcal{E}_{\mathcal{K}}(\langle 1 \rangle || X_1) \oplus \mathcal{E}_{\mathcal{K}}(\langle 2 \rangle || Y_2)$$
  

$$T_3 = \mathcal{T}_{\mathcal{K}}(X_2Y_1) = \mathcal{E}_{\mathcal{K}}(\langle 1 \rangle || X_2) \oplus \mathcal{E}_{\mathcal{K}}(\langle 2 \rangle || Y_1)$$

Add these and we get

 $T_1 \oplus T_2 \oplus T_3 = E_{\mathcal{K}}(\langle 1 \rangle \parallel X_2) \oplus E_{\mathcal{K}}(\langle 2 \rangle \parallel Y_2) = \mathcal{T}_{\mathcal{K}}(X_2 Y_2)$ 

so we computed the tag of  $X_2 \parallel Y_2$ .

<ロト < 部ト < 目ト < 目ト 目 のQで 32 / 103

#### Attack on Example 2

Let  $\mathcal{T}: \{0,1\}^k \times B^* \to B$  be defined by  $\mathcal{T}_{\mathcal{K}}(M[1] \dots M[m]) = E_{\mathcal{K}}(\langle 1 \rangle || M[1]) \oplus \dots \oplus E_{\mathcal{K}}(\langle m \rangle || M[m])$ and let  $\mathcal{MA}[\mathcal{T}] = (\mathcal{K}, \mathcal{T}, \mathcal{V}).$ 

#### adversary A

Let  $x_1, x_2, y_1, y_2$  be distinct  $\ell$ -bit strings  $T_1 \leftarrow \operatorname{Tag}(x_1 || y_1) // T_1 = E_{\mathcal{K}}(\langle 1 \rangle || x_1) \oplus E_{\mathcal{K}}(\langle 2 \rangle || y_1)$   $T_2 \leftarrow \operatorname{Tag}(x_1 || y_2) // T_2 = E_{\mathcal{K}}(\langle 1 \rangle || x_1) \oplus E_{\mathcal{K}}(\langle 2 \rangle || y_2)$   $T_3 \leftarrow \operatorname{Tag}(x_2 || y_1) // T_3 = E_{\mathcal{K}}(\langle 1 \rangle || x_2) \oplus E_{\mathcal{K}}(\langle 2 \rangle || y_1)$   $T_4 \leftarrow T_1 \oplus T_2 \oplus T_3$   $d \leftarrow \operatorname{Verify}(x_2 || y_2, T_4)$ So

$$T_4 = E_{\mathcal{K}}(\langle 1 \rangle || x_2) \oplus E_{\mathcal{K}}(\langle 2 \rangle || y_2)$$

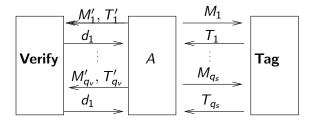
and

$$\mathsf{Adv}^{\mathrm{uf}\text{-}\mathrm{cma}}_{\mathcal{MA}[\mathcal{T}]}(A) = 1$$

# **UF-CMA**

Adversary

- Is allowed a chosen-message attack (CMA)
- Yet should not succeed in existential forgery (UF)



We say A wins if  $\exists i$  such that

- **Verify** $(M'_i, T'_i)$  returned 1, but
- A did not query  $M'_i$  to **Tag** prior to querying  $M'_i$ ,  $T'_i$  to **Verify**.

- Replay
- Justifying UF
- Justifying CMA

Suppose Alice transmits  $(M_1, T_1)$  to Bank where  $M_1 =$  "Pay \$100 to Bob". Adversary

- Captures ( $M_1, T_1$ )
- Keeps re-transmitting it to bank

Result: Bob gets \$100, \$200, \$300,...

Our notion of security does not ask for protection against replay.

Question: Why not?

**Answer:** Replay is best addressed as an add-on to standard message authentication.

Let  $T_A$  be the time as per Alice's local clock and  $T_B$  the time as per Bob's local clock.

- Alice sends  $(M, T_K(M), T_A)$
- Bob receives (M, tag, T) and accepts iff  $\mathcal{V}_{\mathcal{K}}(M, tag) = 1$  and  $|\mathcal{T}_B T| \leq \Delta$  where  $\Delta$  is a small threshold.

Does this work?

Let  $T_A$  be the time as per Alice's local clock and  $T_B$  the time as per Bob's local clock.

- Alice sends  $(M, T_K(M), T_A)$
- Bob receives (M, tag, T) and accepts iff  $\mathcal{V}_{\mathcal{K}}(M, tag) = 1$  and  $|\mathcal{T}_B T| \leq \Delta$  where  $\Delta$  is a small threshold.

### Does this work?

Obviously forgery is possible within a  $\Delta$  interval. But the main problem is that  $T_A$  is not authenticated, so adversary can transmit

$$(M, \mathcal{T}_{\mathcal{K}}(M), \mathcal{T}_1), (M, \mathcal{T}_{\mathcal{K}}(M), \mathcal{T}_2), \ldots$$

for any times  $T_1, T_2, \ldots$  of its choice, and Bob will accept.

Let  $T_A$  be the time as per Alice's local clock and  $T_B$  the time as per Bob's local clock.

- Alice sends  $(M, \mathcal{T}_{\mathcal{K}}(M || T_A), T_A)$
- Bob receives (M, tag, T) and accepts iff  $\mathcal{V}_{\mathcal{K}}(M || T, tag) = 1$  and  $|T_B T| \leq \Delta$  where  $\Delta$  is a small threshold.

Alice maintains a counter  $ctr_A$  and Bob maintains a counter  $ctr_B$ . Initially both are zero.

- Alice sends  $(M, \mathcal{T}_{K}(M \| ctr_{A}))$  and then increments  $ctr_{A}$
- Bob receives (M, tag). If V<sub>K</sub>(M||ctr<sub>B</sub>, tag) = 1 then Bob accepts and increments ctr<sub>B</sub>.

Counters need to stay synchronized.

Special purpose: Used in a specific setting, to authenticate data of some known format or distribution. Comes with a

WARNING! only use under conditions X.

General purpose: Used to authenticate in many different settings, where the data format and distribution are not known in advance.

We want general purpose schemes because

- They can be standardized and broadly used.
- Once a scheme is out there, it gets used for everything anyway.
- General purpose schemes are easier to use and less subject to mis-use: it is hard for application designers to know whether condition X is met.

A possible critique of existential forgery:

- In practice we usually care only that A cannot forge tags for "important" or "meaningful" messages.
- Yet the UF-CMA definition declare A successful even if it forges the tag of a "garbage" message

A possible critique of existential forgery:

- In practice we usually care only that A cannot forge tags for "important" or "meaningful" messages.
- Yet the UF-CMA definition declare A successful even if it forges the tag of a "garbage" message

Response: We want general purpose schemes!

- We cannot anticipate application contexts and it is dangerous to let security depend on assumptions about message semantics.
- In fact, "random" messages are possible, for example
  - Keys
  - Executable files
  - Scientific data being read by sensors

## Possible critique of CMAs: They cannot be mounted in practice.

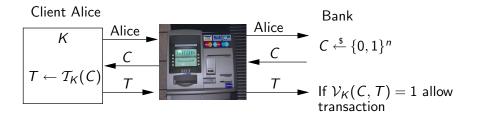
Possible critique of CMAs: They cannot be mounted in practice.

Response:

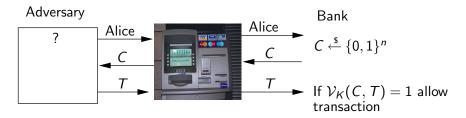
- Actually, they sometime can
- Security against CMA is important for security of some protocols using MA
- Better safe than sorry

- Message forwarding: Charlie sends M to Alice who authenticates it under a key K she shares with Bob, sending  $(M, \tau)$  to the latter
- Notary public: Will authenticate any given data

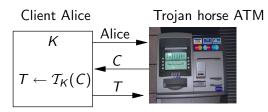
Alice's smartcard contains a key K also held by Bank.



## Adversary card attemps to get Bank to accept under Alice's name.



## Trojan horse ATM can mount a CMA to try to find key K.



 $\rm UF\text{-}CMA$  asks that adversary be unable to forge a tag for a "new" message.  $\rm SUF\text{-}CMA$  asks that adversary be unable to

- forge a tag for a "new" message
- forge a new tag even for an "old" message

"New message": A message not authenticated by sender
"Old message": A message authenticated by sender

"New tag": Not a tag computed/sent by sender for this message

Let  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  be a message authentication scheme and A an adversary,

Game SUFCMA $_{\mathcal{MA}}$ procedure Initialize  $K \xleftarrow{\$} \mathcal{K}: S \leftarrow \emptyset$ procedure Verify(M, T) $d \leftarrow \mathcal{V}_{\kappa}(M, T)$ If  $(d = 1 \land (M, T) \notin S)$  then win  $\leftarrow$  true **procedure Finalize** return d return win

procedure Tag(M)  $T \stackrel{s}{\leftarrow} \mathcal{T}_{K}(M)$   $S \leftarrow S \cup \{(M, T)\}$ return T

The suf-cma advantage of adversary A is

$$\mathsf{Adv}^{\mathrm{suf-cma}}_{\mathcal{M}\mathcal{A}}(\mathcal{A}) = \mathsf{Pr}\left[\mathrm{SUFCMA}^{\mathcal{A}}_{\mathcal{M}\mathcal{A}} \Rightarrow \mathsf{true}\right]$$

## $SUF-CMA \Rightarrow UF-CMA$

Any MA scheme  $\mathcal{MA} = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  that is SUF-CMA scheme is also UF-CMA scheme.

Why? Suppose A's **Tag** queries are  $M_1, \ldots, M_q$ , resulting in tags

$$T_1 \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{T}_{\mathcal{K}}(M_1), \ldots, \, T_q \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{T}_{\mathcal{K}}(M_q)$$

Now suppose A queries Verify(M, T). Then

$$M \notin \{M_1,\ldots,M_q\} \Rightarrow (M,T) \notin \{(M_1,T_1),\ldots,(M_q,T_q)\}$$

So if A wins in game  $UFCMA_{MA}$  it also wins in game  $SUFCMA_{MA}$ . Theorem: For any A,

$$\mathsf{Adv}^{\mathrm{uf-cma}}_{\mathcal{M}\mathcal{A}}(A) \leq \mathsf{Adv}^{\mathrm{suf-cma}}_{\mathcal{M}\mathcal{A}}(A)$$

Let  $F : \{0,1\}^k \times D \to \{0,1\}^n$  be a family of functions.

Proposition: If F is a secure PRF then  $\mathcal{MA}[F]$  is a secure (UF-CMA and SUF-CMA) MAC.

- Random functions make good MACs
- PRFs are pretty much as good as random functions

Suppose  $\mathbf{Fn}: D \to \{0,1\}^n$  is random and consider A who

- Can query **Fn** at any points  $x_1, \ldots, x_q \in D$  it likes
- To win, must output x, T such that  $x \notin \{x_1, \ldots, x_q\}$  but  $T = \mathbf{Fn}(x)$

Then,

 $\Pr[A \text{ wins}] =$ 

Suppose  $\mathbf{Fn}: D \to \{0,1\}^n$  is random and consider A who

- Can query **Fn** at any points  $x_1, \ldots, x_q \in D$  it likes
- To win, must output x, T such that  $x \notin \{x_1, \ldots, x_q\}$  but  $T = \mathbf{Fn}(x)$

Then,

$$\Pr[A \text{ wins}] = \frac{1}{2^n}$$

イロト イポト イヨト イヨト 二日

52 / 103

because A did not query  $\mathbf{Fn}(x)$ .

Suppose  $F : \{0,1\}^k \times D \to \{0,1\}^n$  and let  $K \xleftarrow{\hspace{0.1cm} \$} \{0,1\}^k$ . Consider A who

- Can query  $F_K$  at any points  $x_1, \ldots, x_q \in D$  it likes
- To win, must output x, T such that  $x \notin \{x_1, \ldots, x_q\}$  but  $T = F_K(x)$

If Pr[A wins] is significantly more then  $2^{-n}$  then we are detecting a difference between  $F_K$  and a random function.

Theorem [GGM86,BKR96]: Let  $F : \{0,1\}^k \times D \to \{0,1\}^n$  be a family of functions and let  $\mathcal{MA}[F] = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  be the associated MAC. Let Abe a uf-cma adversary making  $q_s$  Tag queries and  $q_v \leq 2^n/2$  Verify queries, and having running time t. Then there is a prf-adversary Bsuch that

$$\mathsf{Adv}^{ ext{suf-cma}}_{\mathcal{MA}[F]}(A) \leq \mathsf{Adv}^{ ext{prf}}_F(B) + rac{2q_v}{2^n},$$

and *B* makes  $q_s + q_v$  **Fn** queries and has running time *t* plus some overhead.

# Games for proof

#### Game G<sub>0</sub>

procedure Initialize  $K \stackrel{s}{\leftarrow} \{0,1\}^k; S \leftarrow \emptyset$ 

procedure Tag(M) if  $T[M] = \bot$  then  $T[M] \leftarrow F_{\mathcal{K}}(M)$  $S \leftarrow S \cup \{M\}$ ; return T[M]

procedure Verify(M, T')if  $T[M] = \bot$  then  $T[M] \leftarrow F_K(M)$ if T' = T[M] then  $d \leftarrow 1$  else  $d \leftarrow 0$ if  $(d = 1 \land M \notin S)$  then win  $\leftarrow$  true return d

#### procedure Finalize

return win

#### Game G<sub>1</sub>

procedure Initialize  $S \leftarrow \emptyset$ 

procedure Tag(M) if  $T[M] = \bot$  then  $T[M] \stackrel{s}{\leftarrow} \{0, 1\}^n$  $S \leftarrow S \cup \{M\}$ ; return T[M]

procedure Verify(M, T')if  $T[M] = \bot$  then  $T[M] \stackrel{s}{\leftarrow} \{0, 1\}^n$ if T' = T[M] then  $d \leftarrow 1$  else  $d \leftarrow 0$ if  $(d = 1 \land M \notin S)$  then win  $\leftarrow$  true return d

ヘロト 人間ト 人間ト 人間ト

procedure Finalize return win

## Adversary B

adversary B<br/> $S \leftarrow \emptyset$  $S \leftarrow S \cup \{M\}$ ; return T[M]SuperiorSuperiorRun  $A^{\mathrm{TagSim}(\cdot), \mathrm{VerifySim}(\cdot, \cdot)}$ subroutine  $\mathrm{VerifySim}(M, T')$ if win then return 1<br/>else return 0if  $T[M] = \bot$  then  $T[M] \leftarrow F_{M}$ 

subroutine TagSim(M) if  $T[M] = \bot$  then  $T[M] \leftarrow Fn(M)$  $S \leftarrow S \cup \{M\}$ ; return T[M]

subroutine VerifySim(M, T')if  $T[M] = \bot$  then  $T[M] \leftarrow Fn(M)$ if T' = T[M] then  $d \leftarrow 1$  else  $d \leftarrow 0$ if  $(d = 1 \land M \notin S)$  then win  $\leftarrow$  truereturn d

If  $\mathbf{Fn} = F_K$  then B is providing A the environment of game  $G_0$  so

$$\Pr[\operatorname{Real}_{F}^{B} \Rightarrow 1] = \Pr[G_{0}^{A} \Rightarrow \operatorname{true}]$$

If **Fn** is random then B is providing A the environment of game  $G_1$  so

$$\Pr[\operatorname{Rand}_F^B \Rightarrow 1] = \Pr[G_1^A \Rightarrow true]$$

$$\begin{aligned} \mathbf{Adv}_{F}^{\mathrm{prf}}(B) &= & \mathsf{Pr}\left[\mathrm{Real}_{F}^{B} \Rightarrow 1\right] - \mathsf{Pr}\left[\mathrm{Rand}_{F}^{B} \Rightarrow 1\right] \\ &= & \mathsf{Pr}[G_{0}^{A} \Rightarrow \mathsf{true}] - \mathsf{Pr}[G_{1}^{A} \Rightarrow \mathsf{true}] \end{aligned}$$

## Claim 1:

$$\Pr[\mathcal{G}_0^A \Rightarrow \mathsf{true}] = \mathbf{Adv}_{\mathcal{MA}[F]}^{\mathrm{suf-cma}}(A)$$

Claim 2:

$$\mathsf{Pr}[G_1^{\mathcal{A}} \Rightarrow \mathsf{true}] \leq rac{2q_v}{2^n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

57 / 103

### Game G<sub>0</sub>

procedure Initialize  $K \stackrel{s}{\leftarrow} \{0,1\}^k; S \leftarrow \emptyset$ procedure Tag(M) if  $T[M] = \bot$  then  $T[M] \leftarrow F_K(M)$   $S \leftarrow S \cup \{M\};$  return T[M]procedure Verify(M, T') if  $T[M] = \bot$  then  $T[M] \leftarrow F_K(M)$ 

if T' = T[M] then  $d \leftarrow 1$  else  $d \leftarrow 0$ if  $(d = 1 \land M \notin S)$  then win  $\leftarrow$  true return d

## procedure Finalize

return win

Claim 1:  $\Pr[G_0^A \Rightarrow true] = \mathbf{Adv}_{\mathcal{MA}[F]}^{suf-cma}(()A)$ Proof: The above games are equivalent.

Game SUFCMA<sub>MA[F]</sub> procedure Initialize  $K \stackrel{\hspace{0.1em}\mathsf{\scriptscriptstyle\$}}{\leftarrow} \mathcal{K}: S \leftarrow \emptyset$ procedure Tag(M) $T \leftarrow F_{\mathcal{K}}(M)$  $S \leftarrow S \cup \{M\}$ ; return Tprocedure Verify(M, T')if  $(T' = F_K(M) \land M \notin S)$  then win  $\leftarrow$  true return d procedure Finalize return win

Game G<sub>1</sub>

# procedure Initialize $S \leftarrow \emptyset$

procedure Tag(M) if  $T[M] = \bot$  then  $T[M] \stackrel{\leftarrow}{\leftarrow} \{0, 1\}^n$  $S \leftarrow S \cup \{M\}$ ; return T[M] procedure Verify(M, T')if  $T[M] = \bot$  then  $T[M] \stackrel{s}{\leftarrow} \{0, 1\}^n$ if T' = T[M] then  $d \leftarrow 1$  else  $d \leftarrow 0$ if  $(d = 1 \land M \notin S)$  then win  $\leftarrow$  true return d

ヘロト 人間 とくほ とくほ とう

## procedure Finalize return win

Claim 2:  $\Pr[G_1^A \Rightarrow true] \le 2q_v/2^n$ 

**Proof**: For a call **Verify**(M, T') to set win it must be that T' = T[M] and  $M \notin S$ . Assuming the latter,

$$\Pr\left[T'=T[M]\right]=?$$

59 / 103

**procedure Verify**(M, T')if  $T[M] = \bot$  then  $T[M] \stackrel{s}{\leftarrow} \{0, 1\}^n$ if T' = T[M] then  $d \leftarrow 1$  else  $d \leftarrow 0$ if  $(d = 1 \land M \notin S)$  then win  $\leftarrow$  true return d

The probability that T' = T[M] with  $M \notin S$  is  $2^{-n}$  for the first verify call, but what about later? Best strategy for A is to pick some  $M \notin S$  and then query

 $Verify(M, T_1), Verify(M, T_2), \ldots$ 

where  $T_1, T_2, \ldots$  are distinct. The probability that the *i*-th call sets win is 1

$$\overline{2^n-(i-1)}$$

イロト イロト イヨト イヨト 三日

60 / 103

Regardless of A's strategy, the probability that the *i*-th **Verify**(M, T') call with  $M \notin S$  sets win is at most

$$\frac{1}{2^n - (i - 1)}$$

$$\Pr[G_1^A \Rightarrow \text{true}] \leq \sum_{i=1}^{q_v} \frac{1}{2^n - (i-1)} \leq \sum_{i=1}^{q_v} \frac{1}{2^n - (q_v - 1)} \leq \frac{q_v}{2^n - q_v}$$

But  $q_{
m v} \leq 2^n/2$  means  $2^n-q_{
m v} \geq 2^n/2$ , so

$$\Pr[G_1^A \Rightarrow \mathsf{true}] \leq \frac{2q_v}{2^n}$$

 Theorem [GGM86,BKR96]: Let  $F : \{0,1\}^k \times D \to \{0,1\}^n$  be a family of functions and let  $\mathcal{MA}[F] = (\mathcal{K}, \mathcal{T}, \mathcal{V})$  be the associated MAC. Let Abe a uf-cma adversary making  $q_s$  Tag queries and  $q_v \leq 2^n/2$  Verify queries, and having running time t. Then there is a prf-adversary Bsuch that

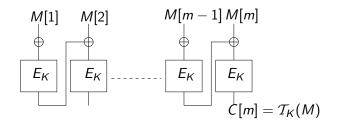
$$\mathsf{Adv}^{ ext{suf-cma}}_{\mathcal{MA}[F]}(A) \leq \mathsf{Adv}^{ ext{prf}}_F(B) + rac{2q_v}{2^n}$$

and *B* makes  $q_s + q_v$  **Fn** queries and has running time *t* plus some overhead.

# Basic CBC MAC

Let  $E : \{0,1\}^k \times B \to B$  be a block cipher, where  $B = \{0,1\}^n$ . View a message  $M \in B^*$  as a sequence of *n*-bit blocks,  $M = M[1] \dots M[m]$ . The basic CBC MAC  $\mathcal{MA}[\mathcal{T}]$  defines  $\mathcal{T} : \{0,1\}^k \times B^* \to B$  by

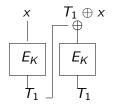
 $\begin{array}{l} \textbf{Alg } \mathcal{T}_{\mathcal{K}}(M) \\ C[0] \leftarrow 0^{n} \\ \text{for } i = 1, \dots, m \text{ do } C[i] \leftarrow E_{\mathcal{K}}(C[i-1] \oplus M[i]) \\ \text{return } C[m] \end{array}$ 



$$\begin{array}{l} \textbf{Alg } \mathcal{T}_{\mathcal{K}}(M) \\ C[0] \leftarrow 0^{n} \\ \text{for } i = 1, \dots, m \text{ do} \\ C[i] \leftarrow \mathcal{E}_{\mathcal{K}}(C[i-1] \oplus M[i]) \\ \text{return } C[m] \end{array} \qquad \begin{array}{l} \textbf{adversary } \mathcal{A} \\ \text{Let } x \in \{0, 1, 1\} \\ \mathcal{M} \leftarrow X \in \{0, 1\} \\ \mathcal{M}$$

adversary A  
Let 
$$x \in \{0,1\}^n$$
  
 $T_1 \leftarrow \operatorname{Tag}(x)$   
 $M \leftarrow x || T_1 \oplus x$   
 $d \leftarrow \operatorname{Verify}(M, T_1)$ 

Then,



$$T_{\mathcal{K}}(M) = E_{\mathcal{K}}(E_{\mathcal{K}}(x) \oplus T_1 \oplus x)$$
$$= E_{\mathcal{K}}(T_1 \oplus T_1 \oplus x)$$
$$= E_{\mathcal{K}}(x)$$
$$= T_1$$

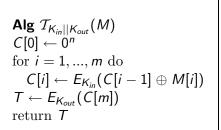
64 / 103

If all authenticated messages have the same number m of blocks then the splicing attack does not apply, so in such a setting we could continue to consider the basic CBC MAC.

But in many uses, we need to authenticate messages of varying lengths. One popular solution has been the ECBC (encrypted CBC) MAC.

# ECBC MAC

Let  $E : \{0,1\}^k \times B \to B$  be a block cipher, where  $B = \{0,1\}^n$ . The encrypted CBC (ECBC) MAC  $\mathcal{MA}[\mathcal{T}]$  is obtained by defining  $\mathcal{T} : \{0,1\}^{2k} \times B^* \to B$  by





The splicing attack fails against the m-restricted basic CBC MAC and the ECBC MAC.

But are there other attacks? Or are these MACs secure?

What's the best attack, and can we prove it is so?

There is a large class of MACs, including

- The *m*-restricted basic CBC MAC
- ECBC MAC, CMAC, HMAC, ...

which are subject to a birthday attack that succeeds in forgery with about  $q \approx 2^{n/2}$  Tag queries and a few verification queries, where *n* is the tag (output) length of the MAC.

Furthermore, we can typically show this is best possible, so the birthday bound is the "true" indication of security.

The class of MACs in question are called iterated-MACs and work by iterating some lower level primitive such as a block cipher or compression function.

The number q of m-block messages that can be safely authenticated is about  $2^{n/2}/m$ , where n is the block-length of the blockcipher, or the length of the chaining input of the compression function.

| MAC               | n   | т               | q                |
|-------------------|-----|-----------------|------------------|
| Basic DES-CBC-MAC | 64  | 1024            | 2 <sup>22</sup>  |
| DES-ECBC-MAC      | 64  | 1024            | 2 <sup>22</sup>  |
| Basic AES-CBC-MAC | 128 | 1024            | 2 <sup>54</sup>  |
| AES-ECBC-MAC      | 128 | 1024            | 2 <sup>54</sup>  |
| Basic AES-CBC-MAC | 128 | 10 <sup>6</sup> | 2 <sup>44</sup>  |
| AES-ECBC-MAC      | 128 | 10 <sup>6</sup> | 2 <sup>44</sup>  |
| HMAC-SHA1         | 160 | 10 <sup>6</sup> | 2 <sup>60</sup>  |
| HMAC-SHA256       | 256 | 10 <sup>6</sup> | 2 <sup>108</sup> |

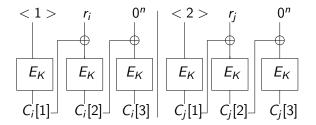
 $m = 10^6$  means message length 16Mbytes when n = 128.

We now illustrate how the birthday attack works in a simple case, namely the 3-restricted basic CBC MAC.

Here all messages in the adversary's queries, both to the **Tag** oracle and to the **Verify** oracle, must be exactly 3 blocks long.

### Internal collisions

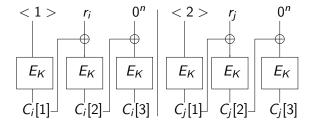
### Let $M_i = \langle 1 \rangle ||r_i||0^n$ and $M_j = \langle 2 \rangle ||r_j||0^n$ .



Internal Collision:  $C_i[2] = C_j[2]$ Internal collisions can be detected by examining the MAC output, because

$$C_i[2] = C_j[2] \quad \Longleftrightarrow \quad C_i[3] = C_j[3]$$

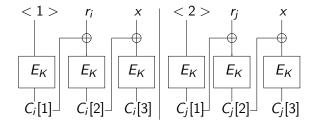
Suppose adversary A has the tags  $C_i[3] = C_j[3]$  of messages  $\langle 1 \rangle \parallel r_i \parallel 0^n$ ,  $\langle 2 \rangle \parallel r_j \parallel 0^n$  that have an internal collision, namely  $C_i[2] = C_j[2]$ .



Then if  $0^n$  is changed to some other value x, the tags will continue to be the same.

# Exploiting internal collisions to forge

Suppose adversary A has the tags  $C_i[3] = C_j[3]$  of messages  $\langle 1 \rangle \parallel r_i \parallel 0^n$ ,  $\langle 2 \rangle \parallel r_j \parallel 0^n$  that have an internal collision, namely  $C_i[2] = C_j[2]$ .



Then for any x we must have  $C'_i[3] = C'_j[3]$  meaning  $C'_i[3]$  is the correct tag for both messages  $\langle 1 \rangle \parallel r_i \parallel x$  and  $\langle 2 \rangle \parallel r_j \parallel x$ . Thus A can forge by picking some  $x \neq 0^n$  and

- Requesting tag of <1> || r<sub>i</sub> || x to get C'<sub>i</sub>[3]
- Calling **Verify** on  $\langle 2 \rangle \parallel r_j \parallel x$  and  $C'_i[3]$

< ロト < 同ト < ヨト < ヨト

# Finding internal collisions

Query q 3-block messages

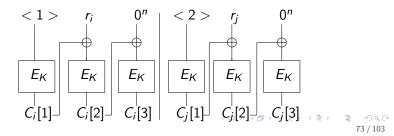
 $\langle 1 \rangle ||r_1||0^n, \langle 2 \rangle ||r_2||0^n, \ldots, \langle q \rangle ||r_q||0^n,$ 

to get back tags

 $C_1[3], C_2[3], \dots, C_q[3]$ Hope to find i, j with  $1 \le i < j \le q$  and  $C_i[3] = C_i[3].$ 

It follows that

$$C_i[2] = C_j[2].$$



# Birthday attack on 3-restricted basic CBC MAC

adversary A  
for 
$$i = 1, ..., q$$
 do  
 $r_i \stackrel{\$}{\leftarrow} \{0, 1\}^n$ ;  $C_i[3] \leftarrow \mathsf{Tag}(\langle i \rangle || r_i || 0^n)$   
 $S \leftarrow \{(i, j) : 1 \le i < j \le q \text{ and } C_i[3] = C_j[3]\}$   
if  $S \ne \emptyset$  then  
 $(i, j) \stackrel{\$}{\leftarrow} S$   
 $C'_i[3] \leftarrow \mathsf{Tag}(\langle i \rangle || r_i || 1^n)$   
 $d \leftarrow \mathsf{Verify}(\langle j \rangle || r_j || 1^n, C'_i[3])$ 

Previous discussion shows that if  $S \neq \emptyset$  then A succeeds, so

$$\mathsf{Adv}^{\mathrm{uf-cma}}_{\mathcal{MA}[\mathcal{T}]}(A) = \Pr[S \neq \emptyset].$$

A birthday analysis can be used to show that

$$\Pr[S \neq \emptyset] = C(2^n, q) \ge 0.3 \frac{q(q-1)}{2^n}$$

The effectiveness of the birthday attack can be reduced by truncating the MAC output to  $t \le n$  bits.

For example for n = 128 one might use t = 80.

The reason it helps is that internal collisions can no longer be unambiguiously identified. (A MAC output collision does not necessarily mean there was an internal collision.)

To be effective, truncation must be combined with "throttling," which restricts the attack to a small number of verification queries.

Truncation is an option with many standardized MACs.

A rigorous and tight quantitative analysis of the security of truncation is lacking.

Question: Are there better-than-birthday attacks when authenticating same-length messages?

Answer: NO

And we can prove the answer is correct.

Basic CBC MAC is a PRF (and hence a SUF-CMA MAC) if all messages authenticated have the same length.

Theorem [BKR96]: Let  $E : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$  be a family of functions and  $m \ge 1$  an integer. Let  $E^m : \{0,1\}^k \times \{0,1\}^{nm} \to \{0,1\}^n$  be the family of functions defined by

$$\begin{array}{l} \textbf{Alg } E_{\mathcal{K}}^{m}(M) \\ C[0] \leftarrow 0^{n} \\ \text{for } i = 1, ..., m \text{ do } C[i] \leftarrow E_{\mathcal{K}}(C[i-1] \oplus M[i]) \\ \text{return } C[m] \end{array}$$

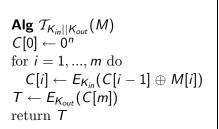
Let A be a prf-adversary against  $E^m$  that makes q oracle queries and has running time t. Then there is a prf-adversary B against E such that

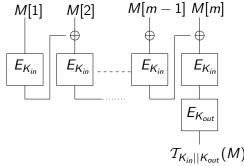
$$\mathsf{Adv}_{E^m}^{\mathrm{prf}}(A) \leq \mathsf{Adv}_E^{\mathrm{prf}}(B) + rac{q^2m^2}{2^n}$$

and B makes at most qm oracle queries and has running time about t.

# ECBC MAC

Let  $E : \{0,1\}^k \times B \to B$  be a block cipher, where  $B = \{0,1\}^n$ . The encrypted CBC (ECBC) MAC  $\mathcal{MA}[\mathcal{T}]$  is obtained by defining  $\mathcal{T} : \{0,1\}^{2k} \times B^* \to B$  by





- No splicing attack
- But birthday attack applies

Birthday attack turns out to be best possible: can securely authenticate messages of varying lengths as long as total number of blocks is at most  $2^{n/2}$ 

# Security of ECBC

Theorem: Let  $E : \{0,1\}^k \times B \to B$  be a block cipher where  $B = \{0,1\}^n$ . Define  $F : \{0,1\}^{2k} \times B^* \to \{0,1\}^n$  by Alg  $F_{K_{in}||K_{out}}(M)$   $C[0] \leftarrow 0^n$ for i = 1, ..., m do  $C[i] \leftarrow E_{K_{in}}(C[i-1] \oplus M[i])$   $T \leftarrow E_{K_{out}}(C[m])$ return T

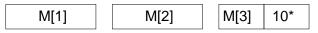
Let A be a prf-adversary against F that makes at most q oracle queries, these totalling at most  $\sigma$  blocks, and has running time t. Then there is a prf-adversary B against E such that

$$\mathsf{Adv}^{\mathrm{prf}}_{\mathsf{F}}(\mathsf{A}) \leq \mathsf{Adv}^{\mathrm{prf}}_{\mathsf{E}}(\mathsf{B}) + rac{\sigma^2}{2^n}$$

and B makes at most  $\sigma$  oracle queries and has running time about t.

So far we assumed messages have length a multiple of the block-length of the block cipher. Call such messages *full*. How do we deal with non-full messages?

The obvious approach is padding.



This works, but if M was full, an extra block is needed



leading to an extra block cipher operation.

Handling length-variablity and non-full messages leads to two extra block cipher invocations in ECBC MAC as compared to basic CBC MAC.

Also ECBC uses two block cipher keys and needs to rekey, which is expensive.

Can we do better?

Standards: NIST SP 800-38B, RFCs 4493, 4494, 4615

Features: Handles variable-length and non-full messages with

- Minimal overhead
- A single block cipher key

Security:

- Subject to a birthday attack
- Security proof shows there is no better attack

History: XCBC[BIRo], OMAC/OMAC1[IW]

- $E: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$  is a block cipher, in practice AES.
- CBC<sub>K</sub>(M) is the basic CBC MAC of a full message M under key K ∈ {0,1}<sup>n</sup> and using E.
- $J \in \{0,1\}^n$  is a particular fixed constant.

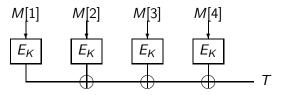
CMAC uses its key  $K \in \{0,1\}^n$  to derive subkeys  $K_1, K_2$  via

- $K_0 \leftarrow E_K(0)$
- if  $msb(K_0) = 0$  then  $K_1 \leftarrow (K_0 \ll 1)$  else  $K_1 \leftarrow (K_0 \ll 1) \oplus J$
- if  $msb(K_1) = 0$  then  $K_2 \leftarrow (K_1 \ll 1)$  else  $K_2 \leftarrow (K_1 \ll 1) \oplus J$

where  $x \ll 1$  means x left shifted by 1 bit, so that the msb vanishes and the lsb becomes 0. These bit operations reflect simple finite-field operations.

$$\begin{aligned} \mathbf{Alg} \ \mathrm{CMAC}_{\mathcal{K}}(M) \\ M[1] \dots M[m-1]\mathcal{M}[m] \leftarrow \mathcal{M} \quad // |\mathcal{M}[m]| \leq n \\ \ell \leftarrow |\mathcal{M}[m]| \quad // \ell \leq n \\ \text{if } \ell = n \ \text{then } \mathcal{M}[m] \leftarrow \mathcal{K}_1 \oplus \mathcal{M}[m] \\ \text{else } \mathcal{M}[m] \leftarrow \mathcal{K}_2 \oplus (\mathcal{M}[m] || 10^{n-\ell-1}) \\ \mathcal{M} \leftarrow \mathcal{M}[1] \dots \mathcal{M}[m-1]\mathcal{M}[m] \\ \mathcal{T} \leftarrow \mathrm{CBC}_{\mathcal{K}}(\mathcal{M}) \\ \text{return } \mathcal{T} \end{aligned}$$

The following MAC has the nice feature that the block cipher computations can be done in parallel.



<ロ> (日) (日) (日) (日) (日)

86 / 103

But we saw earlier that this is not secure!

Can we fix it?

# PMAC [BIRo]

#### Features:

- Minimal overhead
- A single block cipher key
- Handles variable-length and non-full messages
- Parallelizable

### Security:

- Subject to a birthday attack
- Security proof shows there is no better attack [BIRo]

# Tweakable Block Ciphers [LRW]

A tweakable block cipher is a map

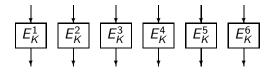
$$E: \{0,1\}^k \times \mathrm{TwSp} \times \{0,1\}^n \to \{0,1\}^n$$

such that

$$E_{K}^{T}: \{0,1\}^{n} \to \{0,1\}^{n}$$

is a permutation for every K, T, where  $E_K^T(X) = E(K, T, X)$ .

With a single key one thus implicitly has a large number of maps



These appear to be independent random permutations to an adversary who does not know the key K, even if it can choose the tweaks and inputs.

# Tweakable Block Cipher Security, Formally

Let  $E: \{0,1\}^k \times \mathrm{TwSp} \times \{0,1\}^n \to \{0,1\}^n$  be a tweakable block cipher

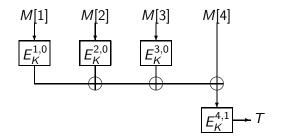
Game  $\operatorname{Real}_{E}$ procedure Initialize  $K \stackrel{\hspace{0.1em}\hspace{0.1em}{}^{\hspace{0.1em}\hspace{0.1em}}}}{\left\{0,1\right\}^{k}}$ procedure  $\operatorname{Fn}(T,x)$ Return  $E_{K}^{T}(x)$  Game  $\operatorname{Rand}_{\{0,1\}^n}$ procedure  $\operatorname{Fn}(\mathcal{T}, x)$   $Y \stackrel{\$}{\leftarrow} \{0,1\}^n$ Return Y

Associated to E, A are the probabilities

$$\Pr\left[\operatorname{Real}_{E}^{A} \Rightarrow 1\right] \qquad \Pr\left[\operatorname{Rand}_{\{0,1\}^{n}}^{A} \Rightarrow 1\right]$$

that A outputs 1 in each world. The advantage of A is

$$\mathbf{Adv}_{E}^{\mathrm{prf}}(A) = \mathsf{Pr}\left[\mathrm{Real}_{E}^{A} \!\!\Rightarrow\!\! 1\right] - \mathsf{Pr}\left[\mathrm{Rand}_{\{0,1\}^{n}}^{A} \!\!\Rightarrow\!\! 1\right]$$

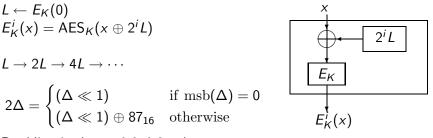


・ロト ・聞ト ・ヨト ・ヨト

∃ ∽ < ⊂ 90 / 103

Illustrated for a full message of 4 blocks.

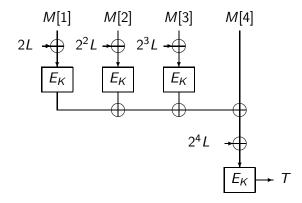
We want to tweak block ciper  $E : \{0,1\}^k \times \mathrm{TwSp} \times \{0,1\}^n \to \{0,1\}^n$ with  $\mathrm{TwSp} = \{1,\ldots,2^{64}\}.$ 



Doubling is cheap: 0.3-0.8 cpb

**Intuition:** Hard for adversary to find distinct  $(x_1, i_1), (x_2, i_2)$  such that  $x_1 \oplus 2^{i_1}L = x_2 \oplus 2^{i_2}L$ 

# **PMAC** Instantiated



 The software speed of hash functions (MD5, SHA1) lead people in 1990s to ask whether they could be used to MAC.

But hash functions are keyless.

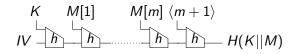
Question: How do we key hash functions to get MACs?

**Proposal**: Let  $H: D \to \{0,1\}^n$  represent the hash function and set

 $\mathcal{T}_{K}(M) = H(K||M)$ 

93 / 103

Is this secure?



Let  $M' = M ||\langle m + 1 \rangle$ . Then

$$H(K||M') = h(\langle m+2 \rangle ||H(K||M))$$

so given the MAC H(K||M) of M we can easily forge the MAC of M'.

# HMAC [BCK96]

Suppose  $H:D\to \{0,1\}^{160}$  is the hash function. HMAC has a 160-bit key K. Let

$$K_o = \text{opad} \oplus K || 0^{352} \text{ and } K_i = \text{ipad} \oplus K || 0^{352}$$

where

$$opad = 5D$$
 and  $ipad = 36$ 

in HEX. Then

$$HMAC_{K}(M) = H(K_{o}||H(K_{i}||M))$$

$$K_{i}||M \rightarrow H$$

$$K_{o}||X \rightarrow H$$

$$HMAC_{K}(M)$$

# HMAC

#### Features:

- Blackbox use of the hash function, easy to implement
- Fast in software

#### Usage:

- As a MAC for message authentication
- As a PRF for key derivation

### Security:

- Subject to a birthday attack
- Security proof shows there is no better attack [BCK96,Be06]

**Adoption and Deployment:** HMAC is one of the most widely standardized and used cryptographic constructs: SSL/TLS, SSH, IPSec, FIPS 198, IEEE 802.11, IEEE 802.11b, ...

# **HMAC** Security

Theorem: [BCK96] HMAC is a secure PRF assuming

- The compression function is a PRF
- The hash function is collision-resistant (CR)

But recent attacks show MD5 is not CR and SHA1 may not be either.

So are HMAC-MD5 and HMAC-SHA1 secure?

- No attacks so far, but
- Proof becomes vacuous!

Theorem: [Be06] HMAC is a secure PRF assuming only

• The compression function is a PRF

Current attacks do not contradict this assumption. This new result may explain why HMAC-MD5 is standing even though MD5 is broken with regard to collision resistance.

- Don't use HMAC-MD5
- No immediate need to remove HMAC-SHA1
- Use HMAC-SHA256 for new applications

• Block cipher based: CBC-MAC, ECBC-MAC, CMAC, PMAC, XCBC, OMAC, XOR-MAC, RMAC, ...

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

99 / 103

- Hash function based: HMAC
- Carter-Wegman (CW) MACs: UMAC, Poly127-AES, Poly1305-AES, ...

CW MACs can be very fast.

A family of functions  $H : \text{Keys}(H) \times D \rightarrow \{0,1\}^{I}$  is  $\epsilon$ -AU if for all distinct  $M_1, M_2, \in D$  we have

$$\Pr\left[H_{\mathcal{K}}(M_1) = H_{\mathcal{K}}(M_2)\right] \leq \epsilon$$

where the probability is over  $K \stackrel{\hspace{0.1em}\hspace{0.1em}{\scriptscriptstyle\$}}{\leftarrow} \operatorname{Keys}(H)$ .

This is a weak form of collision resistance in which the attacker must select its collision  $M_1, M_2$  without seeing the key K.

One can design fast, non-cryptographic  $\epsilon$ -AU-families: NH [BHKKR], Poly127 [Ber], Poly1305[Ber], ...

# NH [BHKKR]

$$\begin{split} & w = 16, \ 32, \ \text{or} \ 64 \quad // \ \text{word size} \\ & M = M[1] \cdots M[m] \quad // \ M[i] \in \{0, \dots, 2^w - 1\} \\ & K = K[1] \cdots K[m] \quad // \ K[i] \in \{0, \dots, 2^w - 1\} \\ & \text{Alg } NH_{\mathcal{K}}(M) \\ & \text{for } i = 1, \dots, m/2 \ \text{do} \\ & a[i] \leftarrow (M[2i - 1] + K[2i - 1]) \ \text{mod } 2^w \\ & b[i] \leftarrow (M[2i] + K[2i]) \ \text{mod } 2^w \\ & S \leftarrow (a[1]b[1] + \dots + a[m/2]b[m/2]) \ \text{mod } 2^{2w} \\ & \text{return } S \end{split}$$

This is  $\epsilon$ -AU for  $\epsilon = 2^{-w}$ 

Care or assembly code required to get 2*w*-bit product of *w*-bit operands.

$$\begin{split} &H: \mathsf{Keys}(H) \times D \to \{0,1\}^{l} \text{ an } \epsilon\text{-}\mathsf{AU} \text{ family} \\ &F: \mathsf{Keys}(F) \times \{0,1\}^{l} \to \{0,1\}^{n} \text{ a } \mathsf{PRF} \text{ (e.g. AES)} \\ &N: \text{ nonce, different for each message} \end{split}$$

Alg MAC( $K_1K_2, N, M$ ) return  $(N, F(K_1, N) \oplus H(K_2, M))$ 

This is a UF-CMA-secure (nonce-based) MAC, assuming F is a PRF and H is AU.

 $\label{eq:holdsolution} \begin{array}{l} \mathsf{NH} + \mathsf{HMAC}\text{-}\mathsf{SHA1} \to \mathsf{UMAC} \\ \mathsf{Poly127} + \mathsf{AES} \to \mathsf{Poly127}\text{-}\mathsf{AES} \\ \mathsf{Poly1305} + \mathsf{AES} \to \mathsf{Poly1305}\text{-}\mathsf{AES} \end{array}$ 

Table shows Pentium-4 machine-cycles per byte for processing various byte-length messages. UMAC here has a 96-bit tag while Poly127-AES has a 128-bit tag.

|             | 44 | 64 | 256  | 552 | 1024 | 1500 |
|-------------|----|----|------|-----|------|------|
| UMAC        | 22 | 15 | 4.5  | 2.7 | 1.9  | 2.2  |
| Poly127-AES | 23 | 17 | 7.5  | 5.8 | 5.1  | 4.8  |
| SHA1        |    | 76 | 34.5 |     | 23.6 |      |

This data is from the UMAC webpage. SHA1 speeds via OpenSSL.