PSEUDO-RANDOM FUNCTIONS
We studied security of a block cipher against key recovery.

But we saw that security against key recovery is not sufficient to ensure that natural usages of a block cipher are secure.

We want to answer the question:

What is a good block cipher?

where “good” means that natural uses of the block cipher are secure.

We could try to define “good” by a list of necessary conditions:

- Key recovery is hard
- Recovery of M from $C = E_K(M)$ is hard
- ...

But this is neither necessarily correct nor appealing.
Q: What does it mean for a program to be “intelligent” in the sense of a human?
Q: What does it mean for a program to be “intelligent” in the sense of a human?

Possible answers:

- It can be happy
- It recognizes pictures
- It can multiply
- But only small numbers!
Q: What does it mean for a program to be “intelligent” in the sense of a human?

Possible answers:

- It can be happy
- It recognizes pictures
- It can multiply
- But only small numbers!
-
-
-

Clearly, no such list is a satisfactory answer to the question.
Q: What does it mean for a program to be “intelligent” in the sense of a human?

Turing’s answer: A program is intelligent if its input/output behavior is indistinguishable from that of a human.
Behind the wall:

- **Room 1**: The program P
- **Room 0**: A human
Turing Intelligence Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in room 1 and let it interact with object behind wall
- Now ask tester: which room was which?
Turing Intelligence Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in room 1 and let it interact with object behind wall
- Now ask tester: which room was which?

The measure of “intelligence” of P is the extent to which the tester fails.
Turing Intelligence Test

Game:

- Put tester in room 0 and let it interact with object behind wall
- Put tester in room 1 and let it interact with object behind wall
- Now ask tester: which room was which?

Clarification: Room numbers are in our head, not written on door!
Real versus Ideal

<table>
<thead>
<tr>
<th>Notion</th>
<th>Real object</th>
<th>Ideal object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligence</td>
<td>Program</td>
<td>Human</td>
</tr>
<tr>
<td>PRF</td>
<td>Block cipher</td>
<td>?</td>
</tr>
</tbody>
</table>
Real versus Ideal

<table>
<thead>
<tr>
<th>Notion</th>
<th>Real object</th>
<th>Ideal object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligence</td>
<td>Program</td>
<td>Human</td>
</tr>
<tr>
<td>PRF</td>
<td>Block cipher</td>
<td>Random function</td>
</tr>
</tbody>
</table>
A random function with L-bit outputs is implemented by the following box Fn, where T is initially \bot everywhere:

\[
\text{Fn}
\]

If $T[x] = \bot$ then
\[
T[x] \leftarrow \{0, 1\}^L
\]
Return $T[x]$
Random function

Game $\text{Rand}_{\{0,1\}}^L$

procedure $\text{Fn}(x)$

if $T[x] = \bot$ then $T[x] \leftarrow \{0, 1\}^L$

return $T[x]$

Adversary A

- Make queries to Fn
- Eventually halts with some output

We denote by

$$\Pr \left[\text{Rand}^A_{\{0,1\}} \Rightarrow d \right]$$

the probability that A outputs d
Game $\text{Rand}_{\{0,1\}^3}$

procedure $\text{Fn}(x)$
if $T[x] = \bot$ then $T[x] \leftarrow \{0, 1\}^3$
return $T[x]$

adversary A
y $\leftarrow \text{Fn}(01)$
return $(y = 000)$

$$\Pr \left[\text{Rand}^A_{\{0,1\}^3} \Rightarrow \text{true} \right] =$$
Game \(\text{Rand}_{\{0,1\}^3} \)

procedure \(\text{Fn}(x) \)

if \(T[x] = \bot \) then \(T[x] \leftarrow \{0, 1\}^3 \)

return \(T[x] \)

\begin{align*}
\text{adversary } A \\
y & \leftarrow \text{Fn}(01) \\
\text{return } (y = 000)
\end{align*}

\[
\Pr \left[\text{Rand}^A_{\{0,1\}^3} \Rightarrow \text{true} \right] = 2^{-3}
\]
Game $\text{Rand}_{0,1}^3$

procedure $\text{Fn}(x)$
if $T[x] = \perp$ then $T[x] \leftarrow \{0, 1\}^3$
return $T[x]$

adversary A

$y_1 \leftarrow \text{Fn}(00)$
$y_2 \leftarrow \text{Fn}(11)$
return $(y_1 = 010 \land y_2 = 011)$

$$\Pr \left[\text{Rand}_A^{0,1}_3 \Rightarrow \text{true} \right] =$$
Random function

Game $\text{Rand}_{\{0,1\}^3}$

procedure $\text{Fn}(x)$
if $T[x] = \bot$ then $T[x] \leftarrow \{0, 1\}^3$
return $T[x]$

adversary A
$y_1 \leftarrow \text{Fn}(00)$
$y_2 \leftarrow \text{Fn}(11)$
return $(y_1 = 010 \land y_2 = 011)$

$$\Pr \left[\text{Rand}_{\{0,1\}^3} \Rightarrow \text{true} \right] = 2^{-6}$$
Random function

Game $\text{Rand}_{\{0,1\}^3}$

procedure $\text{Fn}(x)$

if $T[x] = \bot$ then $T[x] \leftarrow \{0, 1\}^3$
return $T[x]$

adversary A

$y_1 \leftarrow \text{Fn}(00)$
$y_2 \leftarrow \text{Fn}(11)$
return $(y_1 \oplus y_2 = 101)$

$$\Pr \left[\text{Rand}_{\{0,1\}^3}^A \Rightarrow \text{true} \right] = \frac{13}{65}$$
Random function

Game $\text{Rand}_{\{0,1\}^3}$

procedure $\text{Fn}(x)$

if $T[x] = \bot$ then $T[x] \leftarrow \{0, 1\}^3$
{return $T[x]$}

adversary A

$y_1 \leftarrow \text{Fn}(00)$
$y_2 \leftarrow \text{Fn}(11)$
{return $(y_1 \oplus y_2 = 101)$}

$$\Pr \left[\text{Rand}^A_{\{0,1\}^3} \Rightarrow \text{true} \right] = 2^{-3}$$
A family of functions $F : \text{Keys}(F) \times \text{Dom}(F) \to \text{Range}(F)$ is a two-argument map. For $K \in \text{Keys}(F)$ we let $F_K : \text{Dom}(F) \to \text{Range}(F)$ be defined by

$$\forall x \in \text{Dom}(F) : F_K(x) = F(K, x)$$

Examples:

- DES: $\text{Keys}(F) = \{0, 1\}^{56}$, $\text{Dom}(F) = \text{Range}(F) = \{0, 1\}^{64}$
- Any block cipher: $\text{Dom}(F) = \text{Range}(F)$ and each F_K is a permutation
Real versus Ideal

<table>
<thead>
<tr>
<th>Notion</th>
<th>Real object</th>
<th>Ideal object</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRF</td>
<td>Family of functions (eg. a block cipher)</td>
<td>Random function</td>
</tr>
</tbody>
</table>

F is a PRF if the input-output behavior of F_K looks to a tester like the input-output behavior of a random function.

Tester does not get the key K!
Let $F: \text{Keys}(F) \times \text{Dom}(F) \rightarrow \text{Range}(F)$ be a family of functions.

A prf-adversary (our tester) has an oracle F_n for a function from $\text{Dom}(F)$ to $\text{Range}(F)$. It can

- Make an oracle query x of its choice and get back $F_n(x)$
- Do this many times
- Eventually halt and output a bit d
Repeat queries

We said earlier that a random function must be consistent, meaning once it has returned y in response to x, it must return y again if queried again with the same x. This is why we have the “if” in the following: written as

<table>
<thead>
<tr>
<th>Game</th>
<th>procedure $F_n(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand $_{Range(F)}$</td>
<td>if $T[x] \neq \perp$ then $T[x] \leftarrow$ Range(F)</td>
</tr>
<tr>
<td></td>
<td>Return $T[x]$</td>
</tr>
</tbody>
</table>

Henceforth we make a rule:

- A prf-adversary is not allowed to repeat an oracle query.

Then our game is:

<table>
<thead>
<tr>
<th>Game</th>
<th>procedure $F_n(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rand $_{Range(F)}$</td>
<td>$T[x] \leftarrow$ Range(F)</td>
</tr>
<tr>
<td></td>
<td>Return $T[x]$</td>
</tr>
</tbody>
</table>
Let $F: \text{Keys}(F) \times \text{Dom}(F) \rightarrow \text{Range}(F)$ be a family of functions.

Intended meaning:

<table>
<thead>
<tr>
<th>A's output d</th>
<th>I think I am in the</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real world</td>
</tr>
<tr>
<td>0</td>
<td>Ideal (Random) world</td>
</tr>
</tbody>
</table>

The harder it is for A to guess world it is in, the “better” F is as a PRF.
The games

Let $F: \text{Keys}(F) \times \text{Dom}(F) \to \text{Range}(F)$ be a family of functions.

 Associated to F, A are the probabilities

$$\Pr \left[\text{Real}_F^A \Rightarrow 1 \right] \quad \bigg| \quad \Pr \left[\text{Rand}_{\text{Range}(F)}^A \Rightarrow 1 \right]$$

that A outputs 1 in each world. The advantage of A is

$$\text{Adv}^\text{prf}_F (A) = \Pr \left[\text{Real}_F^A \Rightarrow 1 \right] - \Pr \left[\text{Rand}_{\text{Range}(F)}^A \Rightarrow 1 \right]$$
Let $F: \{0, 1\}^k \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A

if $F_n(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Game Real_F

procedure Initialize

$K \leftarrow^$ {0, 1}k

procedure $F_n(x)$

Return $F_K(x)$

Real world

A

x

y

$y \leftarrow F_K(x)$
Example

Let $F: \{0, 1\}^k \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A

if $F_n(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Game Real_F

```plaintext
procedure Initialize
$K \leftarrow \{0, 1\}^k$

procedure $F_n(x)$
Return $F_K(x)$
```

Then

$$\Pr \left[\text{Real}_F^A \Rightarrow 1 \right] =$$
Example

Let $F: \{0, 1\}^k \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A

if $F_n(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Game Real_F

procedure Initialize

$K \leftarrow \{0, 1\}^k$

procedure $F_n(x)$

Return $F_K(x)$

Then

$$\Pr \left[\text{Real}_F^A \Rightarrow 1 \right] = 1$$

because the value returned by F_n will be $F_n(0^{128}) = F_K(0^{128}) = 0^{128}$ so A will always return 1.
Let \(F : \{0, 1\}^k \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128} \) be defined by \(F_K(x) = x \). Let prf-adversary \(A \) be defined by

\[
\text{adversary } A
\]

if \(F_n(0^{128}) = 0^{128} \) then Ret 1 else Ret 0

Then

\[
\Pr \left[\text{Rand}^A_{\text{Range}(F)} \Rightarrow 1 \right] =
\]
Let $F: \{0, 1\}^k \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A

if $F_0(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Then

$$\Pr \left[\text{Rand}_{\text{Range}(F)}^A \Rightarrow 1 \right] = \Pr \left[F_0(0^{128}) = 0^{128} \right] = 2^{-128}$$

because $F_0(0^{128})$ is a random 128-bit string.
Let $F: \{0, 1\}^k \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128}$ be defined by $F_K(x) = x$. Let prf-adversary A be defined by

adversary A

if $F(0^{128}) = 0^{128}$ then Ret 1 else Ret 0

Then

$$Adv_F^{prf}(A) = \Pr\left[\text{Real}_F^A \Rightarrow 1\right] - \Pr\left[\text{Rand}^A_{\text{Range}(F)} \Rightarrow 1\right]$$

$$= 1 - 2^{-128}$$
The measure of success

Let \(F : \text{Keys}(F) \times \text{Domain}(F) \to \text{Range}(F) \) be a family of functions and \(A \) a prf adversary. Then

\[
\text{Adv}^\text{prf}_F(A) = \Pr \left[\text{Real}_F^A \Rightarrow 1 \right] - \Pr \left[\text{Rand}_{\text{Range}(F)}^A \Rightarrow 1 \right]
\]

is a number between \(-1\) and 1.

A “large” (close to 1) advantage means

- \(A \) is doing well
- \(F \) is not secure

A “small” (close to 0 or \(\leq 0 \)) advantage means

- \(A \) is doing poorly
- \(F \) resists the attack \(A \) is mounting
PRF security

Adversary advantage depends on its
- strategy
- resources: Running time t and number q of oracle queries

Security: F is a (secure) PRF if $\text{Adv}^{\text{prf}}_F (A)$ is “small” for ALL A that use “practical” amounts of resources.

Example: 80-bit security could mean that for all $n = 1, \ldots, 80$ we have

$$\text{Adv}^{\text{prf}}_F (A) \leq 2^{-n}$$

for any A with time and number of oracle queries at most 2^{80-n}.

Insecurity: F is insecure (not a PRF) if there exists A using “few” resources that achieves “high” advantage.
Define $F : \{0, 1\}^k \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128}$ by $F_K(x) = x$ for all k, x. Is F a secure PRF?

Can we design A so that

$$\text{Adv}^{\text{prf}}_F (A) = \text{Pr}[\text{Real}_F^{A} \Rightarrow 1] - \text{Pr}[\text{Rand}^{A}_{\text{Range}(F)} \Rightarrow 1]$$

is close to 1?
Define $F : \{0, 1\}^k \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128}$ by $F_K(x) = x$ for all k, x.

Is F a secure PRF?

Can we design A so that

$$\text{Adv}_{F}^{\text{prf}}(A) = \Pr \left[\text{Real}_F^A \Rightarrow 1 \right] - \Pr \left[\text{Rand}_\text{Range}(F)^A \Rightarrow 1 \right]$$

is close to 1?

Exploitable weakness of F: $F_K(0^{128}) = 0^{128}$ for all K. We can determine which world we are in by testing whether $F_n(0^{128}) = 0^{128}$.
Example 1

Now F is defined by $F_K(x) = x$.

adversary A

if $F_n(0^{128}) = 0^{128}$ then return 1 else return 0
Example 1: Analysis

F is defined by $F_K(x) = x$.

adversary A

if $F_n(0^{128}) = 0^{128}$ then return 1 else return 0

We already analysed this and saw that

$$\Pr[\text{Real}_F \Rightarrow 1] = 1$$

$$\Pr[\text{Rand}_{\text{Range}(F)} \Rightarrow 1] = 2^{-128}$$
Example 1: Conclusion

F is defined by $F_K(x) = x$.

adversary A

if $F_n(0^{128}) = 0^{128}$ then return 1 else return 0

Then

$$\text{Adv}_{F}^{\text{prf}}(A) = \Pr[\text{Real}_F^A \Rightarrow 1] - \Pr[\text{Rand}^A_{\text{Range}(F)} \Rightarrow 1]$$

$$= 1 - 2^{-128}$$

and A is efficient.

Conclusion: F is not a secure PRF.
Define $F: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ by $F_K(x) = K \oplus x$ for all K, x. Is F a secure PRF?

Can we design A so that

$$\text{Adv}^{\text{prf}}_F (A) = \Pr \left[\text{Real}_F^A \Rightarrow 1 \right] - \Pr \left[\text{Rand}_\text{Range}(F)^A \Rightarrow 1 \right]$$

is close to 1?
Define $F: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ by $F_K(x) = K \oplus x$ for all K, x. Is F a secure PRF?

Can we design A so that

$$\text{Adv}_{F}^{\text{prf}}(A) = \Pr \left[\text{Real}_F \Rightarrow 1 \right] - \Pr \left[\text{Rand}_\text{Range}^A(F) \Rightarrow 1 \right]$$

is close to 1?

Exploitable weakness of F:

$$F_K(0^\ell) \oplus F_K(1^\ell) = (K \oplus 0^\ell) \oplus (K \oplus 1^\ell) = 1^\ell$$

for all K. We can determine which world we are in by testing whether

$$\text{Fn}(0^\ell) \oplus \text{Fn}(1^\ell) = 1^\ell.$$
Example 2: The adversary

\[F: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \text{ is defined by } F_K(x) = K \oplus x. \]

adversary \(A \)

if \(F_n(0^\ell) \oplus F_n(1^\ell) = 1^\ell \) then return 1 else return 0
Example 2: Real world analysis

\[F: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \] is defined by \(F_K(x) = K \oplus x \).

adversary \(A \)
if \(F_n(0^\ell) \oplus F_n(1^\ell) = 1^\ell \) then return 1 else return 0

Game \(\text{Real}_F \)

procedure Initialize
\(K \leftarrow \{0, 1\}^k \)

procedure \(F_n(x) \)
Return \(F_K(x) \)

Real world

\[A \]
\[x \]
\[\stackrel{\leftarrow}{y} \]
\[F_n \]
\[y \leftarrow F_K(x) \]
Example 2: Real world analysis

Let $F: \{0, 1\}^\ell \times \{0, 1\}^\ell \to \{0, 1\}^\ell$ be defined by $F_K(x) = K \oplus x$.

An adversary A if $F_n(0^\ell) \oplus F_n(1^\ell) = 1^\ell$ then return 1 else return 0

Game Real_F

\begin{align*}
\text{procedure Initialize} \\
K \leftarrow \{0, 1\}^k \\
\text{procedure } F_n(x) \\
\text{Return } F_K(x)
\end{align*}

Then

$$\Pr\left[\text{Real}_F^A \Rightarrow 1\right] =$$
Example 2: Real world analysis

\[F: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \text{ is defined by } F_K(x) = K \oplus x. \]

adversary \(A\)

if \(Fn(0^\ell) \oplus Fn(1^\ell) = 1^\ell\) then return 1 else return 0

Game Real\(F\)

procedure Initialize

\[
K \leftarrow \{0, 1\}^k
\]

procedure \(Fn(x)\)

Return \(F_K(x)\)

Then

\[
\Pr \left[\text{Real}_F^A \Rightarrow 1 \right] = 1
\]

because

\[
Fn(0^\ell) \oplus Fn(1^\ell) = F_K(0^\ell) \oplus F_K(1^\ell) = (K \oplus 0^\ell) \oplus (K \oplus 1^\ell) = 1^\ell
\]
Example 2: Ideal world analysis

\[F: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \] is defined by \(F_K(x) = K \oplus x \).

adversary \(A \)
if \(F_n(0^\ell) \oplus F_n(1^\ell) = 1^\ell \) then return 1 else return 0

Game \(\text{Rand}_{\text{Range}}(F) \)

procedure \(F_n(x) \)
\(T[x] \leftarrow \{0, 1\}^\ell \) return \(T[x] \)

Ideal (random) world
Example 2: Ideal world analysis

$F: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ is defined by $F_K(x) = K \oplus x$.

adversary A

if $F_n(0^\ell) \oplus F_n(1^\ell) = 1^\ell$ then return 1 else return 0

Then

$$\Pr \left[\text{Real}_F^A \Rightarrow 1 \right] =$$
Example 2: Ideal world analysis

\[F: \{0, 1\}^{\ell} \times \{0, 1\}^{\ell} \rightarrow \{0, 1\}^{\ell} \text{ is defined by } F_K(x) = K \oplus x. \]

adversary \(A \)

if \(F_n(0^\ell) \oplus F_n(1^\ell) = 1^\ell \) then return 1 else return 0

Game \(\text{Rand}_{\text{Range}}(F) \)

procedure \(F_n(x) \)

\[T[x] \leftarrow \{0, 1\}^\ell \text{ return } T[x] \]

Then

\[\Pr \left[\text{Real}_F^{A} \Rightarrow 1 \right] = \Pr \left[F_n(1^\ell) \oplus F_n(0^\ell) = 1^\ell \right] = \]
Example 2: Ideal world analysis

\[F: \{0, 1\}^\ell \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \] is defined by \(F_K(x) = K \oplus x \).

adversary \(A \)

if \(F_n(0^\ell) \oplus F_n(1^\ell) = 1^\ell \) then return 1 else return 0

Then

\[
\Pr \left[\text{Real}_F^A \Rightarrow 1 \right] = \Pr \left[F_n(1^\ell) \oplus F_n(0^\ell) = 1^\ell \right] = 2^{-\ell}
\]

because \(F_n(0^\ell), F_n(1^\ell) \) are random \(\ell \)-bit strings.
Example 2: Conclusion

\(F: \{0,1\}^\ell \times \{0,1\}^\ell \rightarrow \{0,1\}^\ell\) is defined by \(F_K(x) = K \oplus x\).

adversary \(A\)

if \(F_n(0^\ell) \oplus F_n(1^\ell) = 1^\ell\) then return 1 else return 0

Then

\[
\text{Adv}^\text{prf}_F(A) = \Pr[\text{Real}_F^A \Rightarrow 1] - \Pr[\text{Rand}_{\text{Range}(F)}^A \Rightarrow 1] = 1 - 2^{-\ell}
\]

and \(A\) is efficient.

Conclusion: \(F\) is not a secure PRF.
Birthday Problem

q people $1, \ldots, q$ with birthdays

$$y_1, \ldots, y_q \in \{1, \ldots, 365\}$$

Assume each person’s birthday is a random day of the year. Let

$$C(365, q) = \Pr [2 \text{ or more persons have same birthday}]$$

$$= \Pr [y_1, \ldots, y_q \text{ are not all different}]$$

- What is the value of $C(365, q)$?
- How large does q have to be before $C(365, q)$ is at least $1/2$?
Birthday Problem

q people $1, \ldots, q$ with birthdays

\[y_1, \ldots, y_q \in \{1, \ldots, 365\} \]

Assume each person’s birthday is a random day of the year. Let

\[
C(365, q) = \Pr[2 \text{ or more persons have same birthday}]
\]

\[= \Pr[y_1, \ldots, y_q \text{ are not all different}]\]

- What is the value of $C(365, q)$?
- How large does q have to be before $C(365, q)$ is at least $1/2$?

Naive intuition:

- $C(365, q) \approx q/365$
- q has to be around 365
Birthday Problem

q people $1, \ldots, q$ with birthdays

$$y_1, \ldots, y_q \in \{1, \ldots, 365\}$$

Assume each person’s birthday is a random day of the year. Let

$$C(365, q) = \Pr [2 \text{ or more persons have same birthday}]$$

$$= \Pr [y_1, \ldots, y_q \text{ are not all different}]$$

• What is the value of $C(365, q)$?
• How large does q have to be before $C(365, q)$ is at least 1/2?

Naive intuition:
• $C(365, q) \approx q/365$
• q has to be around 365

The reality
• $C(365, q) \approx q^2/365$
• q has to be only around 23
Birthday collision bounds

$C(365, q)$ is the probability that some two people have the same birthday in a room of q people with random birthdays

<table>
<thead>
<tr>
<th>q</th>
<th>$C(365, q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.253</td>
</tr>
<tr>
<td>18</td>
<td>0.347</td>
</tr>
<tr>
<td>20</td>
<td>0.411</td>
</tr>
<tr>
<td>21</td>
<td>0.444</td>
</tr>
<tr>
<td>23</td>
<td>0.507</td>
</tr>
<tr>
<td>25</td>
<td>0.569</td>
</tr>
<tr>
<td>27</td>
<td>0.627</td>
</tr>
<tr>
<td>30</td>
<td>0.706</td>
</tr>
<tr>
<td>35</td>
<td>0.814</td>
</tr>
<tr>
<td>40</td>
<td>0.891</td>
</tr>
<tr>
<td>50</td>
<td>0.970</td>
</tr>
</tbody>
</table>
Birthday Problem

Pick $y_1, \ldots, y_q \leftarrow \{1, \ldots, N\}$ and let

$$C(N, q) = \Pr[y_1, \ldots, y_q \text{ not all distinct}]$$

Birthday setting: $N = 365$
Birthday Problem

Pick $y_1, \ldots, y_q \gets \{1, \ldots, N\}$ and let

$$C(N, q) = \Pr \left[y_1, \ldots, y_q \text{ not all distinct} \right]$$

Birthday setting: $N = 365$

Fact: $C(N, q) \approx \frac{q^2}{2N}$
Let \(y_1, \ldots, y_q \leftrightarrow \{1, \ldots, N\} \). Then

\[
1 - C(N, q) = \Pr[y_1, \ldots, y_q \text{ all distinct}]
\]

\[
= 1 \cdot \frac{N - 1}{N} \cdot \frac{N - 2}{N} \cdot \ldots \cdot \frac{N - (q - 1)}{N}
\]

\[
= \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)
\]

so

\[
C(N, q) = 1 - \prod_{i=1}^{q-1} \left(1 - \frac{i}{N}\right)
\]
Birthday bounds

Let

\[C(N, q) = \Pr[y_1, \ldots, y_q \text{ not all distinct}] \]

Fact: Then

\[0.3 \cdot \frac{q(q - 1)}{N} \leq C(N, q) \leq 0.5 \cdot \frac{q(q - 1)}{N} \]

where the lower bound holds for \(1 \leq q \leq \sqrt{2N} \).
Union bound

\[\Pr [C_1 \vee C_2] = \Pr [C_1] + \Pr [C_2] - \Pr [C_1 \wedge C_2] \]

\[\leq \Pr [C_1] + \Pr [C_2] \]

More generally

\[\Pr [C_1 \vee C_2 \vee \cdots \vee C_q] \leq \Pr [C_1] + \Pr [C_2] + \cdots + \Pr [C_q] \]
Arithmetic sums

\[0 + 1 + 2 + \cdots + (q - 1) = \]
Arithmetic sums

\[0 + 1 + 2 + \cdots + (q - 1) = \frac{q(q - 1)}{2} \]
Birthday bounds

Let

\[C(N, q) = \Pr [y_1, \ldots, y_q \text{ not all distinct}] \]

Then

\[C(N, q) \leq 0.5 \cdot \frac{q(q - 1)}{N} \]

Proof of this upper bound: Let \(C_i \) be the event that \(y_i \in \{y_1, \ldots, y_{i-1}\} \). Then

\[
C(N, q) = \Pr [C_1 \lor C_2, \ldots, \lor C_q] \\
\leq \Pr [C_1] + \Pr [C_2] + \ldots + \Pr [C_q] \\
\leq \frac{0}{N} + \frac{1}{N} + \ldots + \frac{q - 1}{N} \\
= \frac{q(q - 1)}{2N}.
\]
Let $E : \{0, 1\}^k \times \{0, 1\}^\ell \to \{0, 1\}^\ell$ be a block cipher.

Can we design A so that

$$\text{Adv}^\text{prf}_E (A) = \Pr \left[\text{Real}_E^A \Rightarrow 1 \right] - \Pr \left[\text{Rand}_{\{0, 1\}^\ell}^A \Rightarrow 1 \right]$$

is close to 1?
Defining property of a block cipher: E_K is a permutation for every K

So if x_1, \ldots, x_q are distinct then

- $F_n = E_K \Rightarrow F_n(x_1), \ldots, F_n(x_q)$ distinct
- F_n random $\Rightarrow F_n(x_1), \ldots, F_n(x_q)$ not necessarily distinct

Let us turn this into an attack.
Birthday attack on a block cipher

\[E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell \text{ a block cipher} \]

adversary \(A \)
Let \(x_1, \ldots, x_q \in \{0, 1\}^\ell \) be distinct
for \(i = 1, \ldots, q \) do \(y_i \leftarrow F_n(x_i) \)
if \(y_1, \ldots, y_q \) are all distinct then return 1
else return 0
Let $E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ be a block cipher

Game Real_E

procedure Initialize

$K \leftarrow \{0, 1\}^k$

procedure $\text{Fn}(x)$

Return $E_K(x)$

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^\ell$ be distinct

for $i = 1, \ldots, q$ do $y_i \leftarrow \text{Fn}(x_i)$

if y_1, \ldots, y_q are all distinct

then return 1 else return 0

Then

$$\Pr \left[\text{Real}_E^A \Rightarrow 1 \right] =$$
Let $E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ be a block cipher.

<table>
<thead>
<tr>
<th>Game Real_E</th>
<th>adversary A</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure Initialize</td>
<td>Let $x_1, \ldots, x_q \in {0, 1}^\ell$ be distinct</td>
</tr>
<tr>
<td>$K \leftarrow {0, 1}^k$</td>
<td>for $i = 1, \ldots, q$ do $y_i \leftarrow \text{Fn}(x_i)$</td>
</tr>
<tr>
<td>procedure $\text{Fn}(x)$</td>
<td>if y_1, \ldots, y_q are all distinct</td>
</tr>
<tr>
<td>Return $E_K(x)$</td>
<td>then return 1 else return 0</td>
</tr>
</tbody>
</table>

Then

$$\text{Pr} \left[\text{Real}_E^A \Rightarrow 1 \right] = 1$$

because y_1, \ldots, y_q will be distinct because E_K is a permutation.
Ideal world analysis

Let $E : \{0, 1\}^K \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ be a block cipher

<table>
<thead>
<tr>
<th>Game Rand_{0,1}^\ell</th>
</tr>
</thead>
<tbody>
<tr>
<td>procedure Fn(x)</td>
</tr>
<tr>
<td>$T[x] \leftarrow {0, 1}^\ell$</td>
</tr>
<tr>
<td>Return $T[x]$</td>
</tr>
</tbody>
</table>

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^\ell$ be distinct

for $i = 1, \ldots, q$ do $y_i \leftarrow$ Fn(x_i)

if y_1, \ldots, y_q are all distinct
then return 1 else return 0

Then

$$\Pr \left[\text{Rand}_{0,1}^\ell A \Rightarrow 1 \right] = \Pr [y_1, \ldots, y_q \text{ all distinct}]$$

$$= 1 - C(2^\ell, q)$$

because y_1, \ldots, y_q are randomly chosen from $\{0, 1\}^\ell$.
Birthday attack on a block cipher

$E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ a block cipher

adversary A

Let $x_1, \ldots, x_q \in \{0, 1\}^\ell$ be distinct

for $i = 1, \ldots, q$ do $y_i \leftarrow F_n(x_i)$

if y_1, \ldots, y_q are all distinct then return 1 else return 0

\[
\text{Adv}_{E}^{\text{prf}}(A) = \Pr[\text{Real}_E^A \Rightarrow 1] - \Pr[\text{Rand}_E^A \Rightarrow 1]
\]

= $C(2^\ell, q)$

\[
\geq 0.3 \cdot \frac{q(q-1)}{2^\ell}
\]

so

$q \approx 2^{\ell/2} \Rightarrow \text{Adv}_{E}^{\text{prf}}(A) \approx 1$.
Conclusion: If $E : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^\ell$ is a block cipher, there is an attack on it as a PRF that succeeds in about $2^{\ell/2}$ queries.

Depends on block length, not key length!

<table>
<thead>
<tr>
<th></th>
<th>ℓ</th>
<th>$2^{\ell/2}$</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES, 2DES, 3DES</td>
<td>64</td>
<td>2^{32}</td>
<td>Insecure</td>
</tr>
<tr>
<td>AES</td>
<td>128</td>
<td>2^{64}</td>
<td>Secure</td>
</tr>
</tbody>
</table>
KR-security versus PRF-security

We have seen two possible metrics of security for a block cipher E

- **KR-security**: It should be hard to get K from input-output examples of E_K
- **PRF-security**: It should be hard to distinguish the input-output behavior of E_K from that of a random function.

Question: Is it possible for E to be

- PRF-secure, but
- **NOT** KR-secure?
Question: Is it possible for a block cipher E to be PRF-secure but not KR-secure?

Why do we care? Because we
- agreed that KR-security is necessary
- claim that PRF-security is sufficient

for secure use of E, so a YES answer would render our claim false.

Luckily the answer to the above question is NO.
Fact: PRF-security implies

- KR-security
- Many other security attributes
Key recovery security, formally

Let $F : \text{Keys}(F) \times \text{Domain}(F) \rightarrow \text{Range}(F)$ a family of functions

Let B be an adversary

<table>
<thead>
<tr>
<th>Game KR_F</th>
<th>procedure $\text{Fn}(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{procedure Initialize}$</td>
<td>return $F_K(x)$</td>
</tr>
<tr>
<td>$K \leftarrow $ \text{Keys}(F)$</td>
<td>$\text{procedure Finalize}(K')$</td>
</tr>
<tr>
<td></td>
<td>return $(K = K')$</td>
</tr>
</tbody>
</table>

The kr-advantage of B is defined as

$$\text{Adv}_{kr}^F(B) = \Pr \left[\text{KR}_F^B \Rightarrow \text{true} \right]$$

The oracle allows a chosen message attack.

F is secure against key recovery if $\text{Adv}_{kr}^F(B)$ is “small” for all B of “practical” resources.
Let \(k = L\ell \) and define \(F = \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^L \) by

\[
F_K(X) = \begin{bmatrix}
K[1, 1] & K[1, 2] & \cdots & K[1, \ell] \\
K[2, 1] & K[2, 2] & \cdots & K[2, \ell] \\
\vdots & \vdots & \ddots & \vdots \\
K[L, 1] & K[L, 2] & \cdots & K[L, \ell]
\end{bmatrix}
\begin{bmatrix}
X[1] \\
X[2] \\
\vdots \\
X[\ell]
\end{bmatrix} = \begin{bmatrix}
Y[1] \\
Y[2] \\
\vdots \\
Y[L]
\end{bmatrix}
\]

Here the bits in the matrix are the bits in the key, and arithmetic is modulo two.

Question: Is \(F \) secure against key-recovery?
Let \(k = L\ell \) and define \(F = \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^L \) by

\[
F_K(X) = \begin{bmatrix}
K[1, 1] & K[1, 2] & \cdots & K[1, \ell] \\
K[2, 1] & K[2, 2] & \cdots & K[2, \ell] \\
\vdots & \vdots & \ddots & \vdots \\
K[L, 1] & K[L, 2] & \cdots & K[L, \ell]
\end{bmatrix}
\begin{bmatrix}
X[1] \\
X[2] \\
\vdots \\
X[\ell]
\end{bmatrix} =
\begin{bmatrix}
Y[1] \\
Y[2] \\
\vdots \\
Y[L]
\end{bmatrix}
\]

Here the bits in the matrix are the bits in the key, and arithmetic is modulo two.

Question: Is \(F \) secure against key-recovery?

Answer: NO
Example

For $1 \leq i \leq \ell$ let:

$$e_j = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix}$$

be the j-th unit vector.

$$F_K(e_j) = \begin{bmatrix} K[1, 1] & K[1, 2] & \cdots & K[1, \ell] \\ K[2, 1] & K[2, 2] & \cdots & K[2, \ell] \\ \vdots \\ K[L, 1] & K[L, 2] & \cdots & K[L, \ell] \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} K[1, j] \\ K[2, j] \\ \vdots \\ K[L, j] \end{bmatrix}$$
Adversary B

\[
\begin{align*}
K' &\leftarrow \varepsilon \quad // \varepsilon \text{ is the empty string} \\
&\text{for } j = 1, \ldots, \ell \text{ do } y_j \leftarrow F_n(e_j); \ K' \leftarrow K' \parallel y_j \\
&\text{return } K'
\end{align*}
\]

Then

\[
\text{Adv}^{kr}_F(B) = 1.
\]

The time-complexity of B is $t = O(\ell^2 L)$ since it makes $q = \ell$ calls to its oracle and each computation of $F_n = F_K$ takes $O(\ell L)$ time.

So F is insecure against key-recovery.
Why does PRF-security imply KR-security?

Claim: KR-insecurity ⇒ PRF-insecurity

Real world

A

\[x \]

\[y \]

Ideal (Random) world

A

\[x \]

\[y \]

\[y \leftarrow F_K(x) \]

\[y \leftarrow \text{Range}(F) \]

If you give me a method \(B \) to defeat KR-security I can design a method \(A \) to defeat PRF-security.

What \(A \) does:

- Use \(B \) to find key \(K' \)
- Test whether \(F_n(x) = F_{K'}(x) \) for some new point \(x \)
- If this is true, decide it is in the Real world
Issues: To run B, adversary A must give it input-output examples under F_K.

We have A give B input-output examples under F_n. This is correct in the real world but not in the random world. Nonetheless we can show it works.
If F is a PRF then it is KR-secure

Our first example of a proof by reduction!

Given: $F : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^L$
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

$$\text{Adv}_{F}^{kr}(B) \leq \text{Adv}_{F}^{prf}(A) + \square$$

How to infer that PRF-secure \Rightarrow KR-secure:

F is PRF secure \Rightarrow $\text{Adv}_{F}^{prf}(A)$ is small
\Rightarrow $\text{Adv}_{F}^{kr}(B)$ is small
\Rightarrow F is KR-secure
Our first example of a proof by reduction!

Given: $F : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^L$

Given: efficient KR-adversary B

Construct: efficient PRF-adversary A such that:

$$\text{Adv}_{F}^{\text{kr}}(B) \leq \text{Adv}_{F}^{\text{prf}}(A) + \square$$

Contrapositive:

F not KR-secure $\Rightarrow \text{Adv}_{F}^{\text{kr}}(B)$ is big
$\Rightarrow \text{Adv}_{F}^{\text{prf}}(A)$ is big
$\Rightarrow F$ is not PRF-secure
How reductions work

A will run B as a subroutine

B’s world:

How A runs B

A itself answers B’s oracle queries, giving B the impression that B is in its own correct world.
If F is a PRF then it is KR-secure

Given: $F : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^L$

Given: efficient KR-adversary B

Construct: efficient PRF-adversary A such that:

$$\text{Adv}_{F}^{\text{kr}}(B) \leq \text{Adv}_{F}^{\text{prf}}(A) + \square$$

Idea:
- A uses B to find key K'
- Tests whether K' is the right key

Issues:
- B needs an F_K oracle, which A only has in the real world
- How to test K'?

How they are addressed:
- A gives B its F_n oracle
- Test by seeing whether $F_{K'}$ agrees with F_n on a new point.
If F is a PRF then it is KR-secure

Given: $F : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^L$
Given: efficient KR-adversary B
Construct: efficient PRF-adversary A such that:

$$\text{Adv}_{F}^{\text{kr}}(B) \leq \text{Adv}_{F}^{\text{prf}}(A) + \square$$

adversary A

1. $i \leftarrow 0$
2. $K' \leftarrow B^{\text{FnKRSim}}$
3. $x \leftarrow \{0, 1\}^\ell - \{x_1, \ldots, x_i\}$
4. if $F_{K'}(x) = \text{Fn}(x)$ then return 1
5. else return 0

subroutine $\text{FnKRSim}(x)$

1. $i \leftarrow i + 1$
2. $x_i \leftarrow x$
3. $y_i \leftarrow \text{Fn}(x)$
4. return y_i
adversary A

\[
i \leftarrow 0
\]
\[
K' \leftarrow B^\text{FnKRSim}
\]
\[
x \leftarrow \{0, 1\}^\ell - \{x_1, \ldots, x_i\}
\]
if $F_{K'}(x) = \text{Fn}(x)$ then return 1
else return 0

\begin{align*}
\text{subroutine } & \text{FnKRSim}(x) \\
i & \leftarrow i + 1 \\
x_i & \leftarrow x \\
y_i & \leftarrow \text{Fn}(x) \\
\text{return } y_i
\end{align*}

- If $\text{Fn} = F_K$ then $K' = K$ with probability the KR-advantage of B, so

\[
\Pr \left[\text{Real}_F^A \Rightarrow 1 \right] \geq \text{Adv}^k_{F} (B)
\]

- If Fn is a random function, then due to the fact that $x \notin \{x_1, \ldots, x_i\}$,

\[
\Pr \left[\text{Rand}_{\text{Range}(F)}^A \Rightarrow 1 \right] = 2^{-L}
\]

So $\text{Adv}^\text{prf}_F (A) \geq \text{Adv}^k_F (B) - 2^{-L}$
If F is PRF-secure then it is KR-secure

Proposition: Let $F : \{0, 1\}^k \times \{0, 1\}^\ell \rightarrow \{0, 1\}^L$ be a family of functions, and B a kr-adversary making q oracle queries. Then there is a PRF adversary A making $q + 1$ oracle queries such that:

$$\text{Adv}^{\text{kr}}_F (B) \leq \text{Adv}^{\text{prf}}_F (A) + 2^{-L}$$

The running time of A is that of B plus $O(q(\ell + L))$ plus the time for one computation of F.

Implication:

F PRF-secure \Rightarrow F is KR-secure.
Our Assumptions

DES, AES are good block ciphers in the sense of being PRF-secure to the maximum extent possible.