Time Stamp Synchronization of Distributed Sensor Logs:
Impossibility Results and Approximation Algorithms

By

THOMAS CHESTER RISTENPART
B.S. (University of California Davis) 2003

THESIS
Submitted in partial satisfaction of the requirements ffier degree of

MASTERS OF SCIENCE
in
Computer Science
in the

OFFICE OF GRADUATE STUDIES
of the
UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in Charge

2005

Time Stamp Synchronization of Distributed Sensor Logs:
Impossibility Results and Approximation Algorithms

Copyright 2005

by
Thomas Chester Ristenpart

Contents

Acknowledgements Vi
1 Introduction 2
1.1 Distributed SensorLogs 2
1.2 Possibleapproaches 3
1.3 Contributions 3
1.4 Outline e 4
2 Formal Framework and Impossibility Results 5
2.1 LogFileswith TemporalData 5
2.1.1 Clocksandtimestamps 5
2.1.2 Logfiles 6
2.1.3 Causality e 7
2.1.4 Time stamp synchronization 8
2.2 Limitations and Impossibility Results, 9
3 Approximation Algorithms 12
3.1 Type-oneLogFiles 31
3.1.1 Utilizing Order e 13
3.1.2 Determining TightIntervals 14
3.1.3 Detecting VariableDelay 16
3.1.4 Heuristics e 17
3.1.5 Algorithm NTERVAL-SYNCHRONIZE « « v v v v v e i e e e e u 18
3.2 Type-twolLogFiles e 19
3.2.1 Utilizing Arrival Time Stamps o 19
3.2.2 A Stastical Approach: Algorithmr&-SyNCHRONIZE 20
3.2.3 A Minimal Delay Approach: Algorithm M-DELAY-SYNCHRONIZE 20
3.3 Reference Host Selection 22
3.4 Non-negligible Drift 23
4 Experiments 24
4.1 SimulatingLogFiles e 24
4.1.1 Temporal Variables 24
4.2 EXPeriments 25

4.3 Results. 26

5 Related Work 33
5.1 SensorAlert Analysis 33
5.2 Clock synchronization 4 3
5.3 Time stamp synchronization 34
6 Conclusion 36
6.1 Future Work e 36
6.2 Conclusion 36
Bibliography 38

Acknowledgements

Numerous people have contributed in countless ways to this thesis. Firgor@mdost, | must
acknowledge the guidance and support of my many and varied advisbaves: Matt Bishop,
whose academic integrity, never-ending encouragement, and shaitsnsgre a model for a true
scholar and gentleman; Phil Rogaway, who opened doors to intellectisali{su never even new
existed and who taught me about formal writing; Hao Chen, whose zdatnmeation, and work
ethic | aspire to mimic daily; and Zhendong Su, who taught me much about anhthiideng
during our brain-storming sessions. Of course, the many other tedchave had both at Davis
and before helped my intellectual growth at every turn. My numerous tasgbadvisors deserve
their credit: Dam Backer and Ash Morgan, two early mentors who taughtboetdahe engineer
in software engineering; Kim Reinking, not only for initially encouraging m@ueosue graduate
work, but for her seemingly endless dedication to the students she gdwigésbmates and other
fellow graduate students, who made possible the late night study sessiangjdats of research,
and stimulating discussions that make graduate school such a valuabtieegpeand my family,
for the invaluable support that only they can provide.

Lastly, | owe a huge debt to Promia, Inc., which funded this research trenstellar

researchers found there, particularly Steven Templeton, Mark HeglandrRay Granvold.

Vi

Abstract

Heterogenous, distributed sensor systems utilize individual sensordEsg, firewalls,
and honeypots) that forward alerts to a central location where theyggregated into log files.
Included in alerts are time stamps that record when the sensors obsegvalérthtriggering be-
havior. When the system clocks of the sensors are not synchrotgreploral relationships among
alerts cannot be directly determined from the time stamps. This impedes aojarsaisis of the
alert data since even simple temporal relationships such as order mightemewerable. Although
practitioners have reported repeatedly dealing with such situations, rcagenlutions to this prob-
lem have been explored when a priori synchronization mechanisms (&8),de unavailable or
misconfigured. This work investigates a completely general mechanismrfohni®nizing the time
stamps of collected alerts using only the data available in the log files. We shogetiexal, pre-
cise a posteriori synchronization is impossible, but that simple approximagiamskics work well
in realistic settings.

Chapter 1

Introduction

1.1 Distributed Sensor Logs

Increasingly, security auditors must analyze log files containing alertsddarge number
of distributed, heterogeneous sensors. For example, enterprisesgi@izations such as govern-
ment entities or large corporations have assets on numerous, largekseti&nsuring coverage of
such infrastructure requires a multitude of sensors, including Intruseiadiion Systems (IDS),
firewalls, and honeypots. Aggregating alert data from multiple sensovédeis a broader view of
any malicious behaviors. In an even larger setting, sensors have ggleyet across the Internet to
create so-called ‘Internet sensors’. Examples are the SANS Int8toeh Center [2], CAIDA [1],
and Symantec’s DeepSight [3]. These distributed Internet sensiéestadert data from numerous
locations across the Internet to allow for a very broad view of potentially mabcactivities.

Numerous analysis techniques and algorithms have been developeasior skert data [6,
7, 11, 18, 19, 28, 29]. Recent work generalizes these analysisigeelsnfor distributed sen-
sors [20, 26, 27]. These techniques and algorithms assist secuiiityrauwal the often overwhelming
task of assessing the relevance of various alerts. Some techniques atteérfgatattack patterns or
behaviors that span multiple alerts. Others correlate low-level alerts ttedriggner level incident
reports, reducing the number of items an analyst must investigate. All ppcbaches assume that
alerts includesynchronized time stampthe time stamps share a common view of time and can be
used to determine temporal relationships (such as order). This assumjptioialiy satisfied when
alerts are from a single sensor. In multiple sensor settings, the individstahsyglocks used by each
sensor may not have the same view of time. Clock drift (change in a cloigkisaf time) and the
delays inherent in sending alert data across networks or the Intenmgticate the determination
of temporal relationships. When given unsynchronized time stamps, thetlige and techniques
utilized by security auditors might fail, or worse, yield misleading interpretatidagert data.

1.2 Possible approaches

Active mechanisms such as NTP [17] that perform a priori synchrtoizaf system
clocks can be used to ensure time stamps are synchronized. In pracigceorhetimes diicult
to ensure such mechanisms are in use and correctly configured onsalfseRor example, secu-
rity auditors who passively collect alert data might not have direct cbowar the configuration of
sensors. It becomes an even more complicated issue of coordinatiomwitigrie large organiza-
tions contribute alerts to a common log file host (as with Internet sensor&ctirthis work was
originally motivated by a large security vendor’s recurrinfidulty with several clients’ inability
to provide synchronized time stamps. It is therefore important to consittergsewhere a priori
clock synchronization mechanisms are unavailable.

Another possible approach is to adapt individual analysis techniquafgorithms to
compensate for unsynchronized time stamps. Serrano suggested eaciipphere the constraints
used to determine temporal relationships are relaxed [26]. For example, Imallgot orderings
(besides the one found in the aggregate log file) are considered whetatag alerts. Such an
approach is not general; it requires updating individual algorithms.itidally, it is difficult to
determine how much to relax the constraints. If the constraints are relaxeducio, erroneous
correlations might occur (false positives). If the constraints are naxed enough, correlations
might be missed (false negatives).

A previously unexplored approach for this problem is a posteriori time smphro-
nization. With this method, time stamps are translated to a common time frame after the hag file
been generated. This avoids the need for active system clock syigdtion before time stamps
are generated. Successful translation of all time stamps to a common time franteallow ac-
curate determination of temporal relationships. Because it requires moigion beyond what is
contained within the aggregate log file and is completely independent of whétsés tools are
to be used, time stamp synchronization is a potentially powerful generabagipfor solving the

synchronization problem.

1.3 Contributions

This work rigorously explores time stamp synchronization of distributedoséogs. Our

contributions include the following:

e We describe a model of aggregate log files and the temporal information in iverfocus
on two types of aggregate log fileSype-one log filenclude only processing time stamps

(when the remote sensor observed the al@ytpe-two log fileadditionally have arrival time
stamps (when the log file host received the alert).

e We prove that precise time stamp synchronization is impossible for both typearmhtype-
two aggregate log files. This is primarily due to not having enough temporahiation to
bound message delay.

e We introduce two bestffort algorithms. For type-one log files, we give an interval-based
algorithm which leverages the order of alerts. For type-two log files, veayi algorithm that
synchronizes based on the temporal information of entries that are thimuigive minimal
delay. Through simulation we show that both of these algorithms performinvetialistic

settings, providing accurate synchronization solutions for distributed|kxy fi

Additionally, we note that our model and algorithms are general: they capdiedto time stamps
generated by any many-to-one message passing system. Our resultbe@sldecially valuable
for synchronizating event notifications in sensor networks, wheredygi@riori synchronization

mechanisms utilize too much battery power [10, 13, 23].

1.4 Outline

In Chapter 2 we discuss in detail the settings assumed, a model of aggregié@eslaith
temporal information, and impossibility results. In Chapter 3 we presentitiige for approximate
synchronization of both type-one and type-two aggregate log files. &pt€h4 we describe the
simulations used to judge théfieacy of our algorithms and the results of these simulations. In
Chapter 5 we present related work in more detail. In Chapter 6 we desatilve work and briefly
conclude.

Chapter 2

Formal Framework and Impossibility

Results

In this chapter we develop a formal model of aggregate log files and usmdusl to
reason about the limitations of time stamp synchronization. Our main result is iBS22: we
show that no log file has a precise time stamp synchronization solution. Iretywe utilize this
model to guide the development of approximation algorithms.

2.1 Log Files with Temporal Data

The aggregate log files we consider consist of merged alert streamsnudtiple remote
sensors. A central host receives alerts from the remote sensocseatels entries for each alertin a
log file. We call this central host the log file host and notate it WithVe refer to the remote sensors
interchangeably as ‘remote sensors’, ‘remote hosts’, or simply ‘ha3ts’ model thus captures any

log files created in a many-to-one message passing architecture.

2.1.1 Clocks and time stamps

Let H be the set of all remote sensors (hosts) of interest. Eachhhest{ has a local

system cloclCy,. A simple and sfiicient model of a system clock is the linear equation
Ch(t) = t+Sp+Rut (2.2)

where the constar, is the skew and the constaRy, is the drift [22]. Heret is a time taken
from some global reference clock (we will refer to values taken fromgibbal reference clock

as the ‘actual’ time).Skewis therefore the initial fiset from actual time at time zer®@rift is the

rate of change of the clock’s skéwNote that our model of system clocks implies that they are
monotonically increasing (there are no clock resetsgoAfigurationfor a set of system clocks is
simply a mapConf: H — R x R which assigns to each hdst H a skew values, € R and a drift
value 0< R, € R (whereR is the set of all real numbers).

System clocks are used to create time stamps to record the time of varioussaemisg
within our sensor network. To simplify our treatment, we allow time stamps to baueabers. (In
implementations they are integral; restricting ourselves to integral time stampeatagsange our
results.) We consider the time stamps of two events: the processing of aat@legmote host and
the arrival of the alert data at the log file host. The time st@mgcords the time at which some alert
is processed at the remote host. The time stamgrords the time at which the alert data arrived
at the log file host. Lettindgp be the host where the alert was processed and utilizing the definition
of a system clock (Equation 2.1), we have tpat Ch(p) = (1 + Ry)p + Sh wherep is the actual
time the event was processed. Similarly the arrival time starap=< (a) = (1 + R)a+ S. with
actual arrival timea. Note that we floor the clock’s time to ensure that time stamps are integral. time
stamps are generally integral. Although time stamps are generally integraldetireprocessing
of an alert at a remote host and the reception at the log file host occtastipb delays due to
computation, queuing, and propagation. We define delay=as — p.

Two subtelties of our model are worth mentioning. First, clocks in our modehtco
abstract units of time. This framework can therefore be utilized to reasout g files with
time stamps expressed in various granularities (e.g., seconds, microseetmnd We worked with
time stamps measured in seconds and point out that synchronization is rfiangdtdior higher
granularities. With higher granularities, drifts and other types of clockcimacy are larger relative
to the units used in the time stamps (and thus have larger impact on synchronegimpts).
Second, our model allows time stamps to be real numbers (infinitely precisdnplemented
systems time stamps are generally restricted to integral values. Our resul$ doange under

such a restriction and the abstraction to real numbers yields simplified expositio

2.1.2 Logfiles

A log file is an ordered sequence of entries that correspond to aledsgsed at remote
hosts. Entries are ordered based on their arrival time. An entry will iectatbvant time stamps
and an identifier for the remote host that generated the alert. In actuaihs;ghere will be other

information included in entries. For full generality we assume such informati@nno temporal

tAlthough our model has drift as a constant, in reality there are alwayist sligviations in drift for a variety of
reasons (an example is temperature change when utilizing normal gsaiftators). For our purposes these deviations
are negligible.

significance.

For simplicity we assume all entries within a log file have the same number and variety
of time stamps. We consider two types of log files corresponding to the availaifititme stamps.
The first type of log file has entries that include only the remote host mogetime stampp for
each event. Formally,tgpe-one log files a finite, ordered list of triples,(p;, h;) wherei is the rank
of the triple in the listp; is the time stamp of the event, ahdis the identifier of the host that sent
the event.

The second type of log file has entries that include lp#md the arrival time stam@in
each entry. Formally, gype-two log files a finite, ordered list of four-tuples, ©;, &, h;) wherei is
the rank of the triple in the lis; is the processing time stamp of the eveiis the reception time
stamp, andh; is the identifier of the host that sent the event.

For convenience we ldiig € H be the set of all hosts that have at least one entry in a
type-one or type-two log fil&. Note that any type-two log file can be converted into a type-one log
file simply by removing all arrival time stamps. Whenever we do not specifghwype of log file,

it is assumed that both types are being considered.

2.1.3 Causality

The events that are reported on by remote hosts in a distributed system mmay oot
have causal relationships. A simple example of a causal relationship is pperted-before re-
lation [14]: an even® must have happened before an evBntAny causal relationship suggests
constraints on the relative timings of events. In our example, the time at whechAwccured must
be before the time at which eveBtoccured. For full generality, we assume no external knowledge
about causal relationships between the alerts found in a log file (i.e., aroalgpe B always
follows an alert of typed).

On the other hand, we do make a few natural assumptions about caglatiahships that
exist between events related to the generation of the log file.ilgt &, hi) and (, ;. a;, h;) be

any two entries in a log file such thiak j. Then the following statements hold:
1. & < aj (correct ordering of events),
2. pi < pj whenevelh; = h; (order reflects processing times), and
3. pi < & (non-negative delay).

The first states that all entries are partially ordered by their arrival tigiesig rise to the rank of

each entry (ties are handled arbitrarily). The second states that enbriegéch host arrive in the

order of their processing times. Particularly, we assume for simplicity thait emgifications are
sent to the log file host in the order that they are processed and thalays dee significant enough
to interfer with this ordering. Due to the fact that we assume system cloekmanotonically
increasing, this assumption is equivalent to assumingghatp; for entriesi < j with h = h;. Itis
trivial to detect when this is violated, and such entries can then be easileiyribhe last statement
ensures that delay cannot be negative—it takes at least zero time urgtsdtars event notification
to the log file host. Allowing delays of zero will be useful in our formalisms, Bngome settings

might not be a bad approximation for very small delays.

2.1.4 Time stamp synchronization

When all clocks involved are properly synchronized, temporal relatipastan be accu-
rately inferred from time stamps within a log file. However, in our setting werasghat the clocks
are not synchronized a priori. Unsynchronized clocks may not adpedo a variety of reasons,
incorrect configuration and filering time zones being two. Even if they are initially synchronized
by hand, clock drift will cause their view of time to diverge.

The goal of a posteriori time stamp synchronization mechanisms is to modify all time
stamps so that they accurately represent the temporal data of eacls akghgdrom a common time
frame. In our setting the common time frame will be the clock of some distinguisinecteehost,
which we will call thereference hostBy translating all processing time stanips$o the common
time frame of the reference host, correct temporal relationships betweatsean be derived. To
accomplish this, any mechanism must calculat®mection gfsetfor each processing time stamp
in a log file. Consider an entry,{;, &, h;) and an arbitrary reference hastThe precise correction
offset to converp; to the reference host’s clo€k is off, (i) = (R — Ry)pi + St — Sh,. Adding this
correction dfset to the time stamp yields

P+ off (i) = Cn(pi) + (R — Ra)pi + Sy — Spy
= (1+Ry)pi + Sh+ (R = R)pi + Sy - Sp,
=(1+R)pi+Sr
= Cr(pi)
which is the the processing time stamp of the event relative to the referest®diock. For a log

file, we call the set of fisets that precisely translate each time stamp to anyrfsosine frame a

synchronization solutian

2.2 Limitations and Impossibility Results

An intrinsic limitation for time stamp synchronization of aggregate log files occues d
to the interplay between skew and delay. Because messages (alert tidojrage sent in only one
direction, there is no way to give an upper bound on the delay a messegentgred. We can
imagine two scenarios for a single message passed from a remote sertberfitst scenario, we
imagine that the message containing the alert encountered little delay. This implie¢setalert
was processed at the remote sensor recently. In the second scemainoagine that the message
containing the alert encountered significant delay. This implies that thewaderprocessed at the
remote sensor long ago. Now for the key point: the processing time stampaletiheould be the
same for both scenarios. Particularly, if the remote sensor’s systemt@sokery small skew in the
first scenario and has very large skew in the second scenario, thegsthiting time stamps could
be basically equal. Thus, in attempting a posteriori time stamp synchronizatodg wot know
whether an alert was generated in the first scenario or the second.

Generalizing on this thought experiment, we can show formally that the inydsptaveen
skew and delay allows for infinitely many ‘scenarios’. We begin by defiaiogrrect configuration
Recall that a configuration is simply an assignment of skews and drifts toodaak in the system.
For a given log file, a correct configuration is one that could have lvease when the log file was
generated, thus corresponding to the notion of a possible scenario.

Definition 1 [Correct configuration] Let F= (1, Py, a1, h1),...,(n, Py, @n, hn) be a type-two log

file. We say that a configuratid@onf: H — R xR for the system clocks represented in F is correct
if and only if it yields a solution to the system of linear equations described by

P = pi(1+Ry)+ Sk i e[1l.n] (2.2)
g =a(l+R)+S_ ie[l.n] (2.3)
a < aj i,je[l.n,i<] (2.4)
pi < Pj i,je[l.n],i<jhi=h; (2.5)
pi<q i e[l.n] (2.6)

which is implied by the time stamps and the ordering of entries within the log file.

The existence of multiple correct configurations for any log file implies thaetiean inherent
ambiguity restricting theficacy of time stamp synchronization mechanisms.

Theorem 1 Any log file with one correct configuration has many correct confitjons.

Proof: LetF = (1,Py,a1,1),...,(n, Py, an, hn) be a type-two log file. We assume that it has a
correct configuratiorConf: H — R x R. We show how to construct another configurat©onf’

10

that is distinct fromConf and also correct. We defir@onf’ as follows
Conf'(h) = (Sh+ 6h, Rn)

wheredy is some positive real number (we choose one for eachthedtir). Now we must show
that this configuration is correct, which amounts to showing that there is tissota the equations
listed in Definition 1. First we note that by assumpt@eonf was correct, and therefore has a solution
to its corresponding equations. Ligta; fori € [1..n] be that solution. Lep!, a be the solution we
seek forConf’. Then fori € [1..n] we let

[= on and a =g
Pi = Pi 1R, 8 =a;.

Now we must show that these assignments actually solve the various equitiorach € [1..n],
we have that

p= pi,(l"' Rh.) + Shi + 0y

N Ohy
_(p, 1+Rhi)(1+Rh‘)+Sh‘+6h‘

= pi(1+ Rh.) + Shi

and thus all of the equations defined by Equation 2.2 are satisfied. Itia tavverify that the

equations related to Equations 2.3, 2.4, and 2.5 are satisfied. Finally, tagoeguelated to Equa-
tion 2.6 are satisfied since we restricigdto be positive for all hosth. Sinces, can take on any
positive value, we have shown that there are an infinite amount of possitrlect configurations.

O

A straightforward corollary of Theorem 1 is that log files with a correctfiguration have

many synchronization solutions.
Corollary 1 Any log file that has a correct configuration has many synchronizabartiens.

Proof: By Theorem 1 any log file with a correct configuration has many. For ga@hstampp,
and for arbitrary reference hoBt a precise correctionfiset is

(Ro — Ry)ti + Sp — Spy,

whereRp, Ry, Sp, andSy, are given by any correct configuration. Since there are many possible

correct configurations, there are many precise correcfisets.0

It is important to note that any log file created under our assumptions mustaharect
configuration: the one that was actually in use during the generation ofgHfddo Thus, for any
log file our model captures, there are many possible synchronization slutioturn, this implies

that the best a general algorithm can do is approximately synchronize dilirte stamps.

11

Chapter 3

Approximation Algorithms

In this chapter, we investigate algorithms for approximating synchronizatibtiens.
Recall that a synchronization solution is a set of correctitsets that translate all time stamps in a
log file to be on the time frame of a reference host’s clock. Furthermoree ttoesection €fsets are
a function of drift, skew, and the actual time at which the time stamp was crekaedmplify our
task, we assume that drifts are negligible and thereby reduce correfiisetsdo be a function of
(constant) skews. (Note that our impossibility result in the previous chafileapplies to a setting
where we force restrictions on clock drift.) Consider some log file and arbiteference host
For all hostsh assume thaR, = 0. Then, for each entny,(©;, &, h) with h # r, we have that the
correction dfset is R — Ryt + Sy — Sp = Sy — Sp. We call any diference in skews a relative skew.
We have thus reduced the problem of finding correctifigats to simply identifying the (constant)
relative skews of hosts to a reference host.

This chapter therefore focuses on developing algorithms for approxignatiative skews
in both type-one and type-two log files with negligible drifts. We first investijgie-one log files.
We show that under certain assumptions about delay, the orderingrasevithin a log file can be
utilized to create bounds on relative skews. We show that it is possible to sorsetetext when
these assumptions are violated and propose a heuristics-based agpraach situations. We then
turn to type-two log files and show how to utilize the extra temporal informatiowighed by the
arrival time stamps. We propose two algorithms: a simple stastical one anchseé bn finding
entries with minimal delay. Finally, we discuss some considerations conceathithg algorithms,

particularly non-negligible drifts and the impact of reference host selectio

12

13

3.1 Type-one Log Files

3.1.1 Utilizing Order

In our setting the order of entries within a log file is temporal information that we ca
leverage to bound relative skews approximately. Particularly, the ogdgnres us information
about the relative values of the arrival times of all the events. In turnktiisvledge about the
arrival times allows us to calculate lower and upper bounds on relativesske

We consider a type-one log file = (1, Py, h1), ..., (N, Py, hn) with all drifts negligible
(Ra=0forallh € Hg). Let (, P, g) and (, pj, h) be two entries such that< j andg # h. Then,
we note that

B — P (1+ Rg)pi + Sg— (1 + Ra)pj — Sh
= P —pj+Sg—Sn (3.1)

where the second equation utilizes the negligible drift assumption. The defioitidelay (see
Section 2.1) tells us thag; = & — d; andp; = a; — dj. We can therefore cast Equation 3.1 in terms
of arrival times and delays:

P-P; = a-di-a+dj+Sg— Sy
= a4 —q +(Sg—Sh)+(dj —di). (3.2)
Sinceg < aj, we know thaf, — p; is a lower bound 01%g — Sp, + (dj — di).

We can similarly derive an upper bound. L&tT,, h) and (, P, g) be two events in the
log file such thak < I. Then,

P - P« (1+Rg)p + Sg — (1 + Rn)px — Sh
a —d —ax+dc+ (Sq— Sh)

a —ak+ (Sg—Sp) + (dk — dy). (3.3)

Here we have tha > ax which implies thaty — ax > 0. Thereforep, — Py is an upper bound on
Sy — Sh + (dk — di). Notice that deriving these bounds does not require explicit knowleddghe
arrival times.

If we assume that the fierence in delays for any two events is negligible, then we can
utilize the bounds described to guide our selection of correctitsets. We therefore make the
negligible delay assumptiorfor all events {; p;, g) and (, p;, h) we haved; — d; = 0. In other

words, all hosts’ delays were constant and equal when the log filereated! Note that the closer

In the next section we show how to detect when this assumption is violatesliggdst approaches for handling such
situations.

14

together arrivals are at the log file host (i.e., as thEedince in arrival times approaches zero) the
tighter these bounds become.

Every pair of events in a log file contributes a potential lower and uppenddi/e scan
a log file and produce two sets of bounds for each pair of hosts. Fbrdéstinct pair of hostg and
hin alog file let

Bgh=1{P - Pjli <jA(,19).(,Pj,h) e F}
and
be the sets of all lower bounds and upper bounds on the relative skebweday. Then, by the
negligible delay assumption we get that g} < Sg — Sp < min{Tyn}. In other words, the
interval [maxBgn}, min{Tgn}] is guaranteed to contain the relative skew. We can not naively pick
values from these intervals as correctidfsets, lest we end up with an inconsistent synchronization
solution, in the following sense. Consider distiach, r € HE wherer is the reference host. When
we pick valuesyff,(g) € [max{Bg}, min{Tq}] andoff,(h) € [max{Bn}, min{Th}], we should have
that

X

off +(9) — off (h) St —Sg—(Sr - Sh)

= Sh—Sg

and thus if our selections are good we should have thatBgak < off,(9) — off,(h) < min{Tgyn}.

3.1.2 Determining Tight Intervals

Our problem has a natural graph-theoretic representation that hahdiesonsistency
issue via shortest-path analysis. We view our problem as a Simple Tempobd¢f (STP), as
described by Dechter et al. [8]. An STP consists of a set of temporiables with bounds on their
differences. In our case the temporal variables are the skews of eadmbdawe diferences are
the relative skews that we seek. Formally, given a logFilere create a directed, weighted graph
G = (V, E, w) for which

o V={ShlheH}

e E={(g,h)|h,ge H}

min{Tgn} if Ugh# 0

00 otherwise

e W(g.h) ={

15

We call any such grapf® a constraint graph. Each node represents a host's skew and an edge
weightw(g, h) corresponds to the bourfsf — S, < min{Tg hl.2 We utilize infinite weightings to
represent when there is irffigient entries to give us even a single data point for a pair of hosts.
Note that a patl$;, Sy, . .., Sk implies a constraint

k-1
Sp—-Sk< Z W(Sh, Sh+1)
ho1

which captures the constraints for a consistent solution. Thus, the tigigpst bound on the
relative skews associated with two hogandh is the value of the shortest path frago h. Letdgn

represent the shortest path from n@jgto nodeSy. Then,
—(Shg < Sg - Sh < 6gh

represents the bounds that allow for a consistent synchronization sollitiese are minimal in the
sense that they include the only possible choiceSyef Sy that do not violate some constraint. We
will therefore utilize the grapls’ = (V, E, 6) where we give each edge, (1) the weightog .

We will not be able to crea®’ if there exists a negative-weight cycle@15]. A negative-
weight cycle is simply a cycl&1, S, ..., Sk = v1 such thatzﬁjw(sh,shﬂ) < 0. Dechter et al.
showed that a STP has a solution if and only if the gr@phas no negative-weight cycles [8].
Furthermore, we can show that a negative-weight cycle will only ocdwenvthe negligible delay
assumption has been violated.

Theorem 2 Let G = (V, E,w) be the constraint graph associated with some type-one log file F
with which R, = 0 for all h € Hg. If the negligible delay assumption holds, then there are no
negative-weight cycles in G.

Proof: Assume the negligible delay assumption holds and that there exists &gy8ig. .., Sk =
S; in G which has negative weight:

k

Z W(Sh, Sh+1) < 0.
ho1

We now derive a contradiction. We have that
W(Sh, Shi1) = B - B
= aj—dj+Sh+1—a+di—Sh

= (@j— @)+ Shs1—Sh

2For clarity we slightly abuse notation and simply use the name of the hostasamghe weighting function.

16

whereg; < a; are the arrival times associated with entries from hastdh + 1, respectively. Thus,
aj — @ > 0. Returning to our summation and utilizing this fact that all arrival tinféedences are

greater than or equal to zero we have that

T
iR

Sh+1 — Sh

M=~

W(Sh, Sh+1)

[

h=1

Il
oF
e

This contradicts the assumption that the cycle’s weight is negative. Tlaere¢herefore be no

negative-weight cycle itG. O

Thus, with the negligible delay assumption we are guaranteed that all dotsstran be
satisfied by some assignment of values to the relative skews. Finding sadsignment entails a
simple backtrack-free search through the constraints givén.ilVe first pick some hostto be the
reference host,fEectively settingS, = 0. We then iterate over all other hostschoosing a value
Sy — Sh € [-6rh, Onr] Such that

for all hostsg that have already had a value assigne8ite- Sy. Dechter et al. show that whé

contains no negative-weight cycles, such a backtrack-free sedteiways succeed.

3.1.3 Detecting Variable Delay

If remote hosts are spread across large geographical distancesrarettted to the log file
host via the Internet, large variations in delay will almost certaifilga temporal data in a log file.
Under these circumstances, the negligible delay assumption will not hold emditibl algorithm
will probably fail. In this section we explore théfects of variable delay. Under certain conditions
we show that variations in delay can be detected. With this in mind, we progosistics to assist
the initial algorithm in finding correctionftsets even in this dicult setting.

When the negligible delay assumption does not hold, variations in delay oaa peob-
lems for the initial algorithm. Variations in delay imply that we can not be assuegahtaX By} <
min{Tyn} holds for all hostd, g. More formally, if maxBgn} > min{Typ}, then there exist four
events (, p;,), (J, P, 9), (K, P, 9), and (, P, h) such thai < jandk < I andp; - pj > B — Pk
Then, by inspecting Equations 3.2 and 3.3 we can see that

a—aj+di—dj > ak—a|+dk—d|.

17

(1,1, hy) s
(2,0, hy) sh2 ~
(3,1,hy) Shl
(4,3, hg) sh3
(5,2,h) Shl
(6,5, hy) sh3 ~
(7,3, hs) ho

Figure 3.1: Example type-one log file that has an no intersection failuresrmgative cycle in the
associated dierence graph.

Sincea; — aj < 0 < & — &, the delays involved must have changed. A gr&ptonstructed with

any such interval will necessarily have a negative weight cycle. \We tieat

-w(h,g) > w(g,h)
wh.g) < -w(g.h)
w(h,g) +w(g.h) < O

Thus, the cycle&sy, Sp, Sg must have negative weight.

Of course, there can still be negative-weight cycles even if all intearalsvell-defined.
Figure 3.1 illustrates an example. The first column gives an example typlegfike. The second
column specifies the bounds [m{&gn}, Min{Tgn}] for the relative skews of each pair of hostg €
{h1, hp, hg}. For example, the relative ske8y, — Sy, must be within [11]. The lower bound is due
to entries one and two while the lower bound is due to entries two and thredasttuwlumn gives
the associated constraint grapHor the log file. It clearly has a negative-weight cycle although all
intervals are well-defined. Thus, a more sensitive mechanism for deteatiagions in delay is the
existence of negative weight cycles@

Whether there are even more sensitive methods for detecting variatioriayridden open
guestion. However there is an intrinsic limitation based on the inter-arrival tirpiesll variations

in delay will be masked by larger gaps in arrivals.

3.1.4 Heuristics

Now that variations in delay can potentially be detected, the question becona¢gon
do about it. An insfficient solution is to simply give up whenever delay variations are detected,;
variations that trip our detection mechanisms will most likely occur frequentlginahlog files.
Another approach would be to attempt to insulate tiieots of variable delay from our correction

18

offset calculations as much as possible.

We propose a simple heuristic for accomplishing this, which we call the gaodgtate
heuristic. First we modify our algorithm so that it is on-line: for each newyein the log file we
calculate all bounds that it implies (with previous entries), update the ST gaad run the APSP
algorithm. If the algorithm succeeds, we continue. If the algorithm fails, Werimply ignore the
entry’s temporal data entirely and remove iteeets from the current state. As the name implies,
this heuristic basically assumes that temporal data earlier in a log file is less likedydoor than
data later in a log file. One can easily imagine other potential heuristics; wedealgsis of them

to future work.

3.1.5 Algorithm INTERVAL- SYNCHRONIZE

Figure 3.2 gives pseudocode for the proposed algorithm for typdegries. It begins
by initializing a complete, weighted gragi = (V, E, §) whereV contains a node for each remote
host represented in the log file atids a weighting function that labels each edge with the shortest
path between any two nodes. All edges initially have infinitely large weight.algeithm iterates
over all entries within the log file. The sBtincludes the most recent entry (relative to the current
entry) for all hosts. In each iteration, the graph weights are updated weihibrtest paths between
each pair of nodes. The subroutine APSP is any all-pairs shortestigatittan that returns true
when the graph has no negative-weight cycles. Floyd's APSP [5titligois simple and suitable
and is utilized in our implementation. It fices to simply maintain the shortest-path gr&shas
opposed to maintainin@ and running APSP from scratch each iteration), since only weights that
are smaller than the current shortest path value between any two nodbaweilhn &ect onG’. If
an entry causes the graph to contain a negative-weight cycle, we dreptity as per the good-prior
state heuristic. Of course, if the entries are handled in some order otheéhthane presented in the
log file then another heuristic would be utilized. The subroutire{Rer-Host chooses a reference
host. In our implementation this routine simply chooses the host which has thestigbiestraints
relative to all the other hosts. The subroutinepFSoLution does a backtrack-free search of the
constraints in order to generate an array of correcttésets, one per host.

The correctness of the algorithm follows from our previous developmitite relation-
ships between time stamps and shortest paths. As per our impossibility resGhsotier 2, the
algorithm is best-ort and there are no guarantee that the synchronization solution istcolme
the next chapter we evaluate it experimentally through simulation. The rutiniegis O(n|V|*)
wheren is the number of entries in the log file. Note tltis the number of hosts found in the log

file.

Algorithm INTERVAL-SyNcHRONIZE(F)
V « Hf
E <« {(hglhgeVAh=zg}
o(h,g) « o VYhgeV
R«0
foreach (j, pj,hj) € F
stillFeasible« true
)
foreach (i, o, hi) € Rs.t.hj # h;
d=pj-h
if d < &(hp, he) then
o' (hp, he) « d
stillFeasible— APSPY, E, &)
if stillFeasible= truethen
6«0
R« R\ {(k, P, hi) | hx = hj}
R« RU{(j.Bj.hy))
I « Pick-Rer-Host(F, V, E, 6)
S « Finp-Sorution(V, E, 6, 1)
return S

Subroutine Pick-Rer-Host(F, V, E, 6)
y = o0
foreachh € Hg
x=0
foreachge HE s.t.g#h
X=X+ w(h,g) - (-w(g,)|
if Xx<ythen
Yy« X
r<—h
return r

Subroutine Fino-Sorution(V, E, 6, 1)
S0
foreachheVsth#r
Pick x € [-d(h, h), 6(h,)] s.t.
V(g, S) € S? X—Se¢ [_6(h’ g)’ 6(g’ h)]
S« Su(hXx
return S

Figure 3.2: Algorithm for determining a synchronization solution for a type-tng file. The
function APSP is any all points-shortest path algorithm that outputs fale@evier the graph has
negative-weight cycles (it also updat&go reflect the new shortest paths).

3.2 Type-two Log Files

Type-two log files include the arrival time stamps for each entry. This extnpaeal

information specifies, according to the log file host’s clock, when the akstraceived. Even with

this extra temporal information our impossibility results from Chapter 2 still agplattempting

to approximate solutions, we could utilize the approach given for type-anilés, but this would

ignore the arrival time stamps. Instead, we propose two algorithms that utikzextina temporal

information: one using a simple statistical approach and the other baseddorgfamtries with

minimal delay.

3.2.1 Utilizing Arrival Time Stamps

Let (i, B, &, h) and (, pj, 3, 9) be two time stamps from a type-two log file. First we look

at what is given by the éierence of the two arrival time stamps:

aj—-g = 1+ RL)aj +S -(1+R)a -SL

aj—a +(a; -)R

19

20

whereL is the log file host. If we make the negligible drift assumption thgr & = a; — a. We
can thus utilize this information in combination with théfdrence in processing time stamps:

Pj=PB = Pj—Pj+Sg—Sh
Pj-P = a-a+d—dj+Sg-Sh

For every pair of hosts we can now easily calculate the relative skew gatsve delay. If in the
aboveh = g, then the right hand side of Equation 3.4 simplifesite d;.

3.2.2 A Stastical Approach: Algorithm Srat-SyNCHRONIZE

If we view each host’s delay as a random variable, then we can utilize swtstyuide
our search for relative skews. A very simple approach would be tarasshat the dference in
delays is uniformly distributed. Consider two holstg and letcij = p; — p; — (aj — &) for all entries
(i,P.a,h) and (, p;,aj,9). A uniform distribution on delay dierences implies that the mean of
all thec;j values is an approximation &, — Sy. Of course, if these éierences are not uniformly
distributed this estimation will be wrong. Perhaps other assumptions regdhngirtstribution of
the delay (and also theirfiiérences) could be utilized; we leave this to future work.

Figure 3.3 gives pseudocode for a simple stastical algorithm cati@eS8ncaroniZE that
approximates relative skews.rlis a reference host then thé&set calculated for every other hdst
is equal to

2 p-a-@-a)l/)t

0] N
where the summations are over all event entries of the foym, &, h) and (j,[_)j,éj,r). In our
implementation the reference host is chosen to be the host with the minimal suriaotes relative
to the other hosts. The asymptotic complexit{ig?).

3.2.3 A Minimal Delay Approach: Algorithm M IN-DELAY-SYNCHRONIZE

Another approach revolves around finding entries from each hoshwiave minimal
delay. When both entries are from the same host, Equation 3.4 gives es Hadi are equal to the
difference in two delays. This hints that between arrival time stamps and pirogdisne stamps
we have enough information to analyze the delays that were involved wiigasewere created.
Particularly, we would like to find the entry from each host which has the sstaliday associated
with it. Although we can not know the exact delays, we can determine whick kas the least
delay.

Algorithm SrarSyncHroNizE(F)
Dhg < Oforallg,h e Hr
Vhg < 0forallg,he He
Nhg < Oforallg,h e He
foreach (i, p,,&,h) € F
foreach (], pj,aj,9) e Fst.i<jAag#h
Dng < Dng + B ~ @ ~ (; - &)
Vg < VhgU (P - & — (P; - &)}
Nhg < Nhg+ 1
foreachh € Hg
foreachge He s.t.g#h
Ahg — Dhg/nhg
I « Pick RerHost(F, A, V, n)
S « FinnSorution(HE, A, 1)
return S

Subroutine Pick RerHost(F, A, V, n)
m ¢« oo
foreachh e Hg
s« 0
foreachge HE s.t.g#h
foreach x € V4
02— (x— Ahg)z/nhg
S« S+ 0'2
if s< mthen
me«s
r<—h
return r

Subroutine FinoSorution(HE, A, 1)
S0
foreachhe He s.t.h#r
X Anr

S« Su(hXx
return S

Figure 3.3: A simple stastical algorithm for finding a synchronization solutiotype-two log files

Let (i, p;, &, h) be an entry for a hodt. Under the negligible drift assumption, we have
that

b= p+She
pp = a—-d+She
= a+S.-d+She

P — SL+Sh—di.

ol
Il

Recall that botl§ andSy are constants amdj > 0. By comparing the valugs, — g for all entries
from the same host, we can see that the largest such value will be fromttigenéth the smallest
delay. We'll call any such entry minimal-delay entry

To find relative skews, we first identify a minimal-delay entry from each.hbken, for

each pair of minimal-delay entries 5, &, h) and (, p;, aj, g) we calculate the relative skew
Pi-a-(p-a) = d—-dj+Sg—Sh.

Since the two valued; andd; are minimal, we should get a good approximatiorsgf- Sy (at the
limit, when both delays are zero, then we know the exact relative skew).

Figure 3.4 gives the pseudocode implementing the-DELay-SyncHroNIZE algorithm.
The main loop iterates over all the entries in a log file, maintaining dMset minimal-delay events

21

22

Algorithm Subroutine Pick-Rer-Host(F, n, M)
MiN-DEeLAY-SyNcHRONIZE(F) X0
M0 foreachh € Hg
np, < Oforallh,ge He if n, > xthen
foreach (i, p,a,h) e F X « Np
Nh<—nNh+1 r<—nh
if (J,Pj»aj,h) € M then return r
if Pj—aj <P —a then
M < M\ {(}, P}, aj,)} Subroutine Fino-Sorution(M, 1)
M« M U{(i, B, &, h)} S0
else (,p.a,r)eM
M MU, p,a,h) foreach (j, pj,aj,h) e Ms.t.h=r
I « Pick-Rer-Host(F, n, M) X—p-a-(p-3)
S « Finp-Sorution(M, 1) S« Su(hXx
return S return S

Figure 3.4: Algorithm for finding a synchronization solution for a type-twg fite. By the end of
the main loop, the sé¥l contains a minimal-delay event for each host.

(one per host). After this a reference host is chosen. In our implemeniagasimply chose the
host with the most entries in the log file. Finally, a synchronization solution etedeutilizing the
minimal-delay events. The algorithm @&(n + |M[?) wheren is the number of entries in the log
file. Note that the size oM is the number of hosts present in the log file. It is much simpler and
asymptotically faster than therlervaL-SyncuronizE algorithm. In the next section we will show
that it is also far more resistant to variable delay.

The algorithm iO(n +|M|?) wheren is the number of entries in the log file. Note that the
size of M is the number of hosts present in the log file. It is much simpler and faster thanttér

algorithms so far considered. In the next chapter we will see that it is feg azurate, in addition.

3.3 Reference Host Selection

All of our algorithms select a reference host from among the remote isenBloe meth-
ods for selection described are designed to choose a sensor that pafuly allow for a good
synchronization solution. The choice of reference host matters. feonghe, sensors that have a
small number of entries in the log file will intuitively not make good candidates. Aerttiorough

investigation of reference host selection is left to future work.

23

3.4 Non-negligible Drift

Our algorithms assume negligible drift. This simplifies the development of algorithms
greatly. Our experience indicates that negligible drift will be a safe asomim many settings.
Most common system clocks utilize quartz oscillators with drift rates of abautl@®, which
implies that they drift by no more than one second in a day [14, 30]. Tieeteof this drift on
approximations is relative to the scale considered. However, we ex@gectdtay will overshadow
drift as a source of error. Our experiments in Chapter 4 confirm thisaapon.

Still, there are techniques for handling non-negligible drift. Hofmann andarklgresent
a simple approach that involves partitioning a log file into portions of equaitidur [22]. Each
portion is ran through a synchronization algorithm separately. Regreasmlysis can be applied
to the resulting solutions to derive approximations for drift.

24

Chapter 4

Experiments

In this chapter, we test our algorithms experimentally using simulated log filesowe
firm that our algorithms perform well in settings with small delays. Additionally,sliow that our
minimal-delay algorithm for type-two log files is resistant to significant variabilitg apikes in

delay.

4.1 Simulating Log Files

Ideally we would like to test our algorithms using data collected from actualluisdd
sensors. To do this we would require extra timing information about the conslitinder which
the log files were collected. Particularly, we would need to know the coiafligur of the system
clocks involved. Without it we would have no way to measure the accurfaayrapproximations.
Unfortunately no such data is currently available. Instead we use simulatditekoto help gauge
each algorithm’s fectiveness. We wrote a log file simulator to generate log files with various

temporal characteristics.

4.1.1 Temporal Variables

Each host in our simulator has a set of variables associated with it;

e Arrival rate - The rate at which alerts are received at the log file lrost 2 sensor (equiva-
lently, the rate at which the sensor generates alerts). An exponentiamarariable controls
arrivals; the rate of this random variable is determined by a sinusoidetiftm The sinu-
soidal behavior of the rate gives the alerts a burstier distribution. Wedatanrtival rates
in the experiments via the amplitude of this sinusoid. We call the amplitude thel aatea

scaler. The default value is 1.

25

e Clock skew - The skew associated with a sensor’s system clock. Bultefavalue between
-300 and 300 will be chosen at random.

e Clock drift - The drift associated with a sensor’s system clock. For aeletkperiments, each
host had a drift chosen randomly betweet0f and 16.

e Constant delay - The minimum delay required to send an alert from therdertbe log file
host. The default is a value between 0 and 1 chosen at random.

e Variable delay - The variable portion of delay added to the constant detagaich host.
Variable delay is controlled by a sinusoid (to mimic the periodic fluctuations afriatédretic
density). The amplitude of this sinusoid is controlled to increase, or degréeesvariability
of the delay and is called the variable delay scaler. The default value is,On@.@ariable

delay).

Constant delay, variable delay, and arrival frequerftgrcathe accuracy of our time stamp synchro-
nization algorithms. Our simulations do not include clock drift. Times can be titaafgn terms

of seconds, though the simulations are independent of scale.

4.2 Experiments

We conducted several experiments with simulated log files to help understaliahitia-
tions of our algorithms. For each experiment, we specify a free variabiéténates over a set of
values. We generate one log file for each value in the set. The other gararoe each host are
fixed. Table 4.1 summarizes the parameters for each experiment. Therexpsrare split into cat-
egories based on the free variable. The first has varying arries véth constant delays (VAR), the
second varying arrival rates with variable delay (VARD), the third ragyconstant delays (CDC),
and the last varying delays (VD). The number in each label corresgoride number of hosts for
which the free variable is varied; the remaining hosts have the default fealtieat parameter (as
specified previously). The free variable is in bold and contains a rainigeap increment value (in
paranthesis). The rest of the parameters are either specified oreaisagigen from which a value
is chosen randomly. The experiments are designed to identify how chianges parameter impact
on the performance of the three algorithms considered.

The metric utilized to measure the correctness of an algorithm’s synchromnizafiation
for a given log file isaverage time stamp errorThis metric is simply a weighted average of the
differences between the actual relative skew of each host and thetauffsets as specified by
the synchronization solution. For each hbstlet Sy, represent the clock skew as given by the

26

Experiment VAR1 VAR5 VAR10 VARD5
Number of hosts 10 10 10 10
Hosts varied 1 5 10 5
Arrival scaler [.01,1] (.01)| [.01,2](.02) | [.01,2](.02) | [.01,1](.01)
Skew [-300,300] | [-300,300] [-300,300] [-300,300]
Constant delay [0,1] [0,1] [0,1] [0,1]
Variable delay scalef 0 0 0 [0,1000]
Experiment VARD10 CDC1 CDC5 VD1
Number of hosts 10 10 10 10
Hosts varied 10 1 5 1
Arrival scaler [.01,1] (.01) 1 1 1
Skew [-300,300] | [-300,300] [-300,300] [-300,300]
Constant delay [0,1] [0,1000] (10)| [0,1000] (10) [0,1]
Variable delay scalef 0 0 0 [0,1000] (10)
Experiment VD5 VD10
Number of hosts 10 10
Hosts varied 5 10
Arrival scaler 1 1
Skew [-300,300] [-300,300]
Constant delay [0,1] [0,1]
Variable delay scalef [0,1000] (10) | [0,1000] (10)

Table 4.1: Experiments conducted to analy§eds of various variables. Bold parameters represent
the free variable in the experiment with the increment given in parenthesis.

configuration in use when the log file was created. Qgt be the correction fiset as specified
by the algorithm’s synchronization solution relative to a reference hdsét n,, be the number of
entries in the log file that are from hdsand letn be the total number of entries in the log file. Then

the average error of the synchronization solution is
e = Z%IS = Sh = Onil
- n r r

where the summation is over all host# the log file.

4.3 Results

Figures 4.1 through 4.10 graphically display the results of running theriexgets. The
x-axis of each graph represents the free variable. The y-axissegethe average error of the log
file. Several of the results yield interesting conclusions. We discuss revesults reflect on the
effects of each free variable in turn.

27

ArrIvAL RATES (CONSTANT DELAY). Experiments VAR1, VAR5, and VAR10 measured tlieets of
differing arrival rates on the algorithms’ performance. Since we fix the nuofentries in each
simulated log file, changing the arrival rate has tvii@ets. First, it changes the time spanned by
the log file. For example, log files generated with an arrival rate scalei0df€panned over two
years while an arrival rate scaler of 2.0 generated log files spanning alitttedewo months. Since
drift accumulates over time, it adds significantly more error when loweranates are utilized. It's
apparent from the results of VAR1 and VARS that if only one, or a festsichave lower arrival rates
then synchronization is not significantlffected. In VAR5, the outliar for M-DELAY-SYNCHRONIZE
resulted from poor choice of reference host: the reference hostimalievent happened to be one
heavily dfected by drift (i.e., it was at the end of the log file). In VAR10, where altechave
lower arrival rates, we see a distinct trend that error decreases withfreguent arrivals. For the
type-two log file algorithms, this decrease in error is due to a decrease ififdoe @ drift. For
the type-one algorithm, this is due to an increase in the tightness of intervaléatett Drift does
not have as significant arffect on the hrervaL-SyncHrRONIZE algorithm since the good prior state

heuristic discards entries later entries that are heaffigcted by drift.

ARrrivAL RaTES (VARIABLE DELAY). EXperiments VARD5 and VARD10 measured thEeets of dif-
fering arrival rates when entries arffexcted by large variable delays. Both the type-one algorithm
and the stastical type-two algorithm do poorly regardless of arrival Taiis implies that the errors
due to variable delay greatly outweigh those from arrival rafiedinces. In this case, again, the

minimal-delay type-two algorithm performs excellently.

Constant DeLays. Experiments CDC1 and CDC5 measured thieats of increased constant delay.
In general, constant delay is going to translate directly into error sinceelkltjorithms take a
‘minimal delay’ approach (i.e., they assume minimal delay and thus lump the codstapin with
skew). The two graphs reflect this, showing error to grow linearly withstant delay. Figure 4.7
shows that the selection of reference host matters: it happened th#tisgcal algorithm (green)
chose as reference host the one host with constant delay. Thustierskews calculated against
it included that error (pushing these errors much higher than if anottstihlad been selected). The

other algorithms would have fared the same fate if they choose the ‘wrong’ reference host.

VariaBLE DeLAYs. Experiments VD1, VD5, and VD10 measured tlikeets of increasing the mag-
nitude of variable delay. When only one or five of the hosts had largeblarigelays, the type-one
algorithm and the stastical type-two algorithm performed similarly. When all éststhad large
variable delays, the stastical type-two algorithm performed much bettermirimal delay type-

two algorithm performed exceptionally in all cases, clearly doing better theaattter algorithms.

35 T T T T T T T T N T
Interval-Synchronize +
« ~_Stat-Synchronize O
Min-Delay-Synchronize ~ x
3F i
*
*
25 1
o *
—_ *¥ *x o
) 2 - * #
= nf «
= * +
m. + + [m] * o
=2} # O
z 15} i
.] O *
< & B % « X7 D " H a S oK
% oo
o o o o B o
* %D* %ﬁ:‘* . . » + e [a] ; - O oo
m *
1+ 8 T oo [n *m ml +Dm B EEFS B, o4
“he E+D¥D x " * * %DED** D%*f*umﬁ
px K oox ¥ 5 o * B X + T X0 o+ 2
" mo A g tox = WX x * %
* o+ o + o
o5 L © " *y @D * 7 o % N iéhr a} w O ot i
' * b + o e ** ok L ¥ ox
% +y @ +* * + * o4+ *
+ * + + - * * + 4
+ + T +
+ *
0 1 1 1 1 1 X 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival rate scaler

Figure 4.1: Results of experiment VAR1. In the experiment, arrival fatesne host is varied from
low to high. All hosts had constant delays.

12 T T T T T T T T N T
Interval-Synchronize +
« Stat-Synchronize ©
Min-Delay-Synchronize ~ *
10 | 1
8 - .
z
8
5 6 | i
=)
>
<
4+ i
o
*
B O o * *
5 o SR « ke x o * . A
o *]
K ® o ot myx_ 0 ,, © OmD M %, o x O
g =R 9o N :: N -+ * e X
ES s Hogn o g Oy gogor o0 T B S o o
*w‘%**%%ﬂ ZEQ’ﬁ D+>K+¥+ +[E+++ ﬁfﬁﬁgJ’ Dﬁj*@*%
%%*+++++*D *+++ * *‘f’ y&ﬂ +%E&KD§E’** if ;@E@J’ %’g*ﬁf
0 1 ko o+ U &K+ . b R Tt *
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Arrival rate scaler

Figure 4.2: Results of experiment VARS. In the experiment, arrival rfateBve hosts are varied
from low to high. All hosts had constant delays.

18 T T T T T

14
12

10
I

Avg. error (s)
[m]

Yo

L+

o X *
&

*x

Ilnterval-SylnchronizeI
Stat-Synchronize
Min-Delay-Synchronize

+
o
*

29

% o+
o T Rk a et @@ Eﬂ:tjﬁg 22
+ + + hs +++$+ﬂ%’f+§+ i %Wf g%f‘* &
0.6 0.8

0 0.2 0.4 1

Arrival rate scaler

Figure 4.3: Results of experiment VAR10. In the experiment, arrivasrfateten hosts are varied
from low to high. All hosts had constant delays.

600 T T T T T T T T N T
Interval-Synchronize ~ +
Stat-Synchronize ©
Min-Delay-Synchronize ~ *
+ +
500 1
+
+
+
+ + . +
[=a] + = N o
400 L . + 4 +0 ot o N PR
o +
o -) L o oo+ K . 4t oo
@ = o & LBy B = 0o
5 7 e D{buu = o Yo Dﬂﬁu%qﬂu P +o8 g o
= o
° 300 - Dﬁj”] +DEE+ o gL 7 8 oo, F " + o * BoT
2 @ ¥ N o of +
Z . N o® o o+ o N O
+ o+
+ Ty o o
200 [g’ :
+
* +
100 + * E
+
0 " " . e L . \ . ,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival rate scaler

Figure 4.4: Results of experiment VARDS. In the experiment, arrivabrétefive hosts are varied
from low to high. All hosts had large, variable delays.

900 T T T T T T T T N T
" + Interval-Synchronize +
~_Stat-Synchronize O
800 - N X Min-Delay-Synchronize ~ x i
+
700 + + i
+ + . o
+
+ + + +
600 | = + + T o, L
+ . . + o oo+t " - . + g RS
D Yoo ot ! H v P o + +lj:‘ + o . 0
T 500 | 0o o PPy UPTELY w? T op w A .
S oo 8 o 0o g + o + = o g o
= ul +0 o E + o+ o + B g H o 0o oip O
o o} E| o = o 4 oo 0o ol o o O
g 400 o o = + + 4+ B
Z ++ + + O [m] ﬁ o o
+ * + +
+
300 |- o + + +
+ +
+
+ +
200 - + + i
+
i
100 4
0 [KexK, ok . ! , , , , .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Arrival rate scaler

Figure 4.5: Results of experiment VARD10. In the experiment, arrivabkréor ten hosts are varied

from low to high. All hosts had large, variable delays.

1000 T T T T
Interval-Synchronize ~ + !
Stat-Synchronize © e
900 | Min-Delay-Synchronize * Y]
E!:DDD .
[m]
800 | e .
m
700 og 00 N
[m]
B
[m]
—. 600 [mto o N
@’ m]
8 8§ o
5. 500 - o0 o dﬂ* B
[=2] [m]
z o
400 | My N
o EPDD:D
300 | Balehe g
d] O
A ol
200 | t -
Et‘lj:d B
i m B 5 8
100 + ane *$%**%*** s % *%t%-
¥ K% ox x5 ¥ * * Fx %k X K &
OE&@@_@% K *%j*’%**’%* R 2K K, ** ﬁé.j XX
0 200 400 600 800 1000

Constant delay (s)

Figure 4.6: Results of experiment CDCL1. In the experiment, the constagtfideone host is varied

from low to high.

30

800 T T T

Interval-Syhchronize +
Stat-Synchronize O
Min-Delay-Synchronize ~ x

700 | =
600 |- SRR
Og
o o
O O
|

500 o o
@ : + ’ *o ¥ " D*D% 5 =
<) ¥ % x X
£ 400 \ L
. o T+]
2 8 Tk * oK *
< oy 6 mEy =

300 |- ® ooy #

+ [l % * *
s T dj%mﬁ e T Ea g
*
200 - DDD oo o x w i
+# KK = ¥
o+ &% 2
100 | + g e & = i
e e x B
ller®
0 1 1 1 1
0 200 400 600 800 1000

Constant delay (s)

Figure 4.7: Results of experiment CDCS5. In the experiment, the consthayt fbe five hosts is
varied from low to high.

180 T T T T -
Interval-Synchronize ~ +]
Stat-Synchronize ©
160 - Min-Delay-Synchronize x|
140 n i
]
+
o
120 —
o
o g ?
= 100 : ToB+ i
g + O =]
CD. B (] T +
2 80 o N i
z E g ¢
=] [=2]
@ + o o +EI o} + #
60 - : o o n o . .
T @ g o —_ o o O o
ul N 8
40 "Lw g " S n ° 1
@ - g
¥ 3] E T8 oog
=]
20 @ 2 . H o o
g ob o + 5y
g w o
B o @ H o y T
= i o = «
0 w " S K A Vo K K , KK v Kk S
0 200 400 600 800 1000

Variable delay scaler

Figure 4.8: Results of experiment VD1. In the experiment, the magnituderiabl@delay spikes
for one host is varied from low to high.

32

600 T T T T
Interval-Synchronize ~ +
Stat—Sy%hronizg -
Min-Delay-Syrichronize
oy
500 1
n] oo g
th ¥
o7 +
(]
400 | o T o 7
s o +
+ED Eﬂﬁ + +
@ + o O H
5 o . = fiul 1
;,3. 300 o o, o o , B
[=2) + [} g o+
> + 2
< o = + T =
QD B DD
200 | SR R I . .
+
oo O+ B 5 T on
o Qm+aﬂﬁ ml H
] +
g
100 angoe 7 N
g U Jmt E
G
e
0 " el \ " }
0 200 400 600 800 1000

Variable delay scaler

Figure 4.9: Results of experiment VD5. In the experiment, the magnituderiabl@ delay spikes
for five hosts is varied from low to high.

800 T T T T "
Interval-Synchronize ~ +
Stat-Synchronize ©
Min-Delay-Synchronize *,
700 B
+
600 i
+
500 " + i
z
5 .
5 400 | B
=)
>
<
[m]
300 | - LA
+
+ + +
+ + + + + +
200 - . T R
+ * * - + +
+
+ . * + E
100 | 4+ + - ++ - + + + 4+ n . + O o
+ n + o ot +
i N + * 5 + * . o o
+ + + + + M =ha] O T O
e e n e T, Db o oo
400 600 800 1000

Variable delay scaler

Figure 4.10: Results of experiment VD10. In the experiment, the magnitudegiable delay spikes
for ten hosts is varied from low to high.

Chapter 5

Related Work

Prior work can be divided into several broad categories: sensaraalalysis, clock syn-

chronization algorithms, and time stamp synchronization algorithms.

5.1 Sensor Alert Analysis

An important theme in IDS research has been in reducing the number of sdettsty
auditors must handle [28, 11, 6, 19, 7, 29, 18]. Particularly, state @frtHhBS systems report alerts
for “low-level” events (e.qg., specific network activity), and in practice tesults in alert explosion:
security auditors are faced with an overwhelming number of alerts (manyichvare most likely
false positives). Researchers have developed methods for groalgirtg that are redundant in
some wayt In addition, methods for creating synthetic alerts based on the inferrebneslaips of
multiple low-level alerts (correlation) have been explored. Algorithms fouging and correlating
alerts require correct temporal information: in all prior work we're a@afrat least order is essential
for proper functioning. When only one IDS’s alerts are consideredgect temporal information is
trivially acquired.

Another vein of research has been in utilizing distributed, possibly hetamg IDS’s to
acheive better intrusion incident detection [27, 26, 20]. In these setafers explosion is an even
larger problem since multiple IDS’s will generate distinct alerts for the sarserebd events. Thus,
correlation and grouping of alerts is also very important. Again correct aemhfinformation is
required for grouping and correlation, but not trivially acheived ah@previous setting. Serrano
identified this problem and briefly addressed it by loosening the temponstraints within his
correlation algorithms [26]. In other works, correct temporal informaisamplicitly assumed.

!In the literature, this is often referred to as aggregation of alerts. Hayweeealready utilize the term aggregation to
describe the collection of alerts from multiple sources. We therefore stigking the term grouping.

33

34

5.2 Clock synchronization

Message timing in distributed systems was first considered in Lamport’s semairia]14].
Particularly important are his discussion of logical clocks and causalityné¥ous other projects
followed; most had proposed mechanisms (such as vector and matrix)dimcéietermining causal
relationships [12, 21].

We utilize intervals to estimate temporal information. Marzullo and Owicki and later
Schmid and Schossmaier developed interval-based clock synchronialgmithms [16, 24, 25].
Instead of representing local time by a single integral value they repriéséth an accuracy inter-
val that contains the actual time at which the event occurred. This pawegresentation of local
time allows for more accurate and precise synchronization. They intrddageiori clock syn-
chronization mechanisms for distributed systems utilizing these local intengkscl@he popular
Network Time Protocol utilizes such accuracy intervals in its clock synépation algorithm [17].
In [15], Liebig et al. describe methods for event composition in time-degmrdistributed systems.
They use accuracy intervals provided by NTP as time stamps within their syatehtiscuss the
ramifications of this approach. Although our approaches are similar in thatse utilize intervals
to estimate temporal information, their intervals are defined using more precasuraeents of
error only available when performing a priori synchronization. Theypoloconsider the settings in
which time stamp synchronization is needed.

5.3 Time stamp synchronization

Previous research in time stamp synchronization stems mostly from the distrilysted s
tems community. In their settings, one is given access to a number of locdltexvess created at
distinct systems. These event traces are given time stamps from locahsylsteks that are not
synchronized. The event traces are aggregated after they amaigehend the goal is then to de-
termine a global time base for them. One application is distributed monitoring: a matilies
such algorithms to help developers temporally relate debugging events instieensyout without
the need for a priori clock synchronization.

Duda et al. first proposed algorithms for tackling this problem [9]. Tresume that the
event traces contain pairs of time stampg)() wheret; is the time a message was sent from a host
andg; is the time the message was received on another host. In this; easeld be in one event
trace and); in another. This sefreceive semantics yielded convenient causal dependencies between
such pairs. With such pairs of points, regression analysis or conyesstimates can be utilized to
approximate the initial skews and the drift rate between the two hosts’ cléskson later built on

35

this work by adding estimates for minimum delay between the two hosts and a tatoapethod
for calculating the initial skew and drift rate [4].

Hofmann and Hilgers [22] proposed a more general algorithm for deterghanglobal
time base from such traces. Generalizing on Duda et al. 's assumptiopgasthieme knowledge
of some set of causal dependencies between events in the variousdoesl Using these depen-
dencies, they create intervals which are guaranteed to include thetmorreftset between the two
involved host clocks. This is very similar to our approach for type-ondileg: our approach can
be viewed as an adaptation of their algorithm to a type-one setting where we otitiering as
approximate causal dependencies. They likewise utilize shortest-pdifsiartia refine the inter-
vals. Because of their exact causal dependencies, however,ithegtdiave to deal with infeasible
shortest-paths and thus our exploration of the ties between feasibility éndisi@ovel. They also
describe how to utilize simple linear regression analysis to approximate drift.

In all of this prior work, the algorithms require temporal information aboutsagss
passed both to and from a pair of hosts. In Duda et al. the messages massbd directly between
the pair of hosts; in Hofmann and Hilgers the messages can be indirectgdp&sther way, if the
communication architecture is many hosts to a single one (many-to-one), witbnmounication
in the other direction, then these algorithms will not be applicable.

Chapter 6

Conclusion

6.1 Future Work

Several aspects of time stamp synchronization would benefit from figtidy. To begin
with, a more extensive analysis of how to best choose a referencedwdtyield even more accu-
rate synchronization. Extending the model to include more general tengd@abmena could in-
crease the robustness of our approach. For example, including nootonacally increasing clocks
(i.e., allowing clock resets) could be very important. Allowing knowledge osehdependencies
between alerts might benefit synchronization algorithms in some settings. Finadistigating the

usefulness of this approach in orthogonal areas, such as sehsorks is left as open work.

6.2 Conclusion

State of the art analysis techniques and algorithms for distributed senssrralguire
synchronized temporal data. In practice synchronization canfbeutli to achieve: even if a pri-
ori clock synchronization algorithms are supposed to be utilized, miscoafign or poor oversight
can result in time stamps that are not tightly synchronized. This probleneteised little attention
from the research community even though it can render a large bodwlys@itechniques and al-
gorithms essentially useless. The only previous work addressing thieprobquires modification
of existing analysis algorithms.

We proposed using a posteriori time stamp synchronization to solve this prabid
rigorously investigate the approach. We described a model of temporaindditetributed sensor
logs, that can also be applied to any many-to-one message passing systermodel gives us
insight into the inherent ambiguity between delay and skew: we showeddlggneral algorithm

can precisely synchronize time stamps. In spite of this general result, veet@ya best-&ort

36

37

approximation algorithms that can synchronize time stamps accurately in reaisiigs. Even
though our algorithms were developed under the assumption of negligilesimilation shows
that typical clock drifts do not significantlyfi@ct accuracy. Our simulations show that a posteriori

synchronization can be a valuable tool for security auditors.

Bibliography

[1] CAIDA, the Cooperative Association for Internet Data AnalysiQ2tttp: //www.caida.
org/.

[2] SANS Internet Storm Center, 200bttp://isc.sans.org/.
[3] Symantec DeepSight, 200http://tms.symantec.comn/.

[4] P. Ashton. Algorithms for &-line clock synchronizationTechnical Report TR COSC 852
Department of Computer Sciences University of Canterlddecember 1995.

[5] Thomas T. Cormen, Charles E. Leiserson, and Ronald L. Rivesbduction to algorithms
MIT Press, Cambridge, MA, USA, 1990.

[6] F. Cuppens. Managing alerts in a multi-intrusion detection environmentAQSAC '01:
Proceedings of the 17th Annual Computer Security Applications Comieneage 22, Wash-
ington, DC, USA, 2001. IEEE Computer Society.

[7] Herv Debar and Andreas Wespi. Aggregation and correlation afsian-detection alerts. In
RAID '00: Proceedings of the 4th International Symposium on RecgvairAces in Intrusion
Detection pages 85-103, London, UK, 2001. Springer-Verlag.

[8] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraintorksvArtif. Intell., 49(1-
3):61-95, 1991.

[9] A. Duda, G. Harrus, Y. Haddad, and G. Bernard. Estimating gltiba in distributed sys-
tems. 7th International Conference on Distributed Computing Systems (ICDQ,S3&ptem-
ber 1987.

[10] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grainedar&ttime synchronization
using reference broadcas8lGOPS Oper. Syst. Re86(SI):147-163, 2002.

[11] F. Cuppens and A. Miege. Alert Correlation in a Cooperative Bitn Detection Framework.
In SP '02: Proceedings of the 2002 IEEE Symposium on Security anddyripage 202,
Washington, DC, USA, 2002. IEEE Computer Society.

[12] Colin Fidge. Logical time in distributed computing syster@amputer 24(8):28—-33, 1991.

[13] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Tinymg-grotocol for sensor
networks. InProceedings of the first international conference on Embedded neteisensor
systemgspages 138-149. ACM Press, 2003.

38

39

[14] Leslie Lamport. Time, clocks, and the ordering of events in a distribsyetem. Communi-
cations of the ACM21(7):558-565, July 1978.

[15] C. Liebig, M. Cilia, and A. Buchmann. Event composition in time-dependkstributed
systems. IrProceedings of the Fourth IECIS International Conference on Caaiper Infor-
mation Systemgage 70. IEEE Computer Society, 1999.

[16] Keith Marzullo and Susan Owicki. Maintaining the time in a distributed systemPro-
ceedings of the second annual ACM symposium on Principles of disttibateputingpages
295-305. ACM Press, 1983.

[17] David L. Mills. Improved algorithms for synchronizing computer netkwolocks. [EEE/ACM
Trans. Netw.3(3):245-254, 1995.

[18] Peng Ning, Yun Cui, Douglas S. Reeves, and Dingbang Xu. Tgaba and tools for analyzing
intrusion alerts ACM Trans. Inf. Syst. Secur.(2):274-318, 2004.

[19] Peng Ning and Dingbang Xu. Learning attack strategies from intnuslierts. InCCS '03:
Proceedings of the 10th ACM conference on Computer and communiatonrity pages
200-209, New York, NY, USA, 2003. ACM Press.

[20] O. Dain and R.K. Cunningham. Building scenarios from a heteragenalert stream. In
Proc. of the 2001 IEEE Workshop on Info. Assurance and Secafigi.

[21] Michel Raynal and Mukesh Singhal. Logical time: Capturing causatlitistributed systems.
Computer 29(2):49-56, 1996.

[22] Richard Hofmann and Ursula Hilgers. Theory and tool for estimatinbal time in parallel
and distributed systems. Proceedings of the Sixth Euromicro Workshop on Parrallel and
Distributed Computing, PDP’98ages 173-179, January 1998.

[23] Kay Romer. Time synchronization in ad hoc networks. Pimceedings of the 2nd ACM
international symposium on Mobile ad hoc networkihgcomputing pages 173-182. ACM
Press, 2001.

[24] Ulrich Schmid and Klaus Schossmaier. Interval-based clock spnitation.Real-Time Syst.
12(2):173-228, 1997.

[25] Ulrich Schmid and Klaus Schossmaier. Interval-based clock sgnctation with optimal
precision.Inf. Comput,. 186(1):36—77, 2003.

[26] Alfredo Serrano. Integrating Alerts from Multiple Homogeneoususimn Detection Systems.
Master’s thesis, North Carolina State University, May 2003.

[27] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J.nkral. Hoagland, K. Levitt,
C. Wee, R. Yip, and D. GrIDS - a graph based intrusion detection systelare networks.
In In Proceedings of the 19th National Information Systems Security Coctereolume 1,
pages 361-370, 1996.

[28] Steven J. Templeton and Karl Levitt. A requi@®vides model for computer attacks. In
NSPW '00: Proceedings of the 2000 workshop on New security parediages 31-38, New
York, NY, USA, 2000. ACM Press.

40

[29] Bo Sun, Kui Wu, and Udo W. Pooch. Alert aggregation in mobile adretworks. InWiSe
'03: Proceedings of the 2003 ACM workshop on Wireless seqgunitges 69—78, New York,

NY, USA, 2003. ACM Press.

[30] John R. Vig. Introduction to quartz frequency standards. TieehReport Technical Report
SLCET-TR-92-1, Army Research Laboratory, Electronics and P8wearces Directorate, Oc-
tober 1992. Available at httppwww.ieee-ufc.orgfreqcontrolquartzvig/vigtoc.htm.

