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Abstract

Heterogenous, distributed sensor systems utilize individual sensors (e.g., IDSs, firewalls,

and honeypots) that forward alerts to a central location where they are aggregated into log files.

Included in alerts are time stamps that record when the sensors observed the alert-triggering be-

havior. When the system clocks of the sensors are not synchronized,temporal relationships among

alerts cannot be directly determined from the time stamps. This impedes any useful analysis of the

alert data since even simple temporal relationships such as order might be unrecoverable. Although

practitioners have reported repeatedly dealing with such situations, no general solutions to this prob-

lem have been explored when a priori synchronization mechanisms (e.g., NTP) are unavailable or

misconfigured. This work investigates a completely general mechanism for synchronizing the time

stamps of collected alerts using only the data available in the log files. We show that general, pre-

cise a posteriori synchronization is impossible, but that simple approximation heuristics work well

in realistic settings.



2

Chapter 1

Introduction

1.1 Distributed Sensor Logs

Increasingly, security auditors must analyze log files containing alerts from a large number

of distributed, heterogeneous sensors. For example, enterprise-class organizations such as govern-

ment entities or large corporations have assets on numerous, large networks. Ensuring coverage of

such infrastructure requires a multitude of sensors, including Intrusion Detection Systems (IDS),

firewalls, and honeypots. Aggregating alert data from multiple sensors provides a broader view of

any malicious behaviors. In an even larger setting, sensors have been deployed across the Internet to

create so-called ‘Internet sensors’. Examples are the SANS InternetStorm Center [2], CAIDA [1],

and Symantec’s DeepSight [3]. These distributed Internet sensors collect alert data from numerous

locations across the Internet to allow for a very broad view of potentially malicious activities.

Numerous analysis techniques and algorithms have been developed for sensor alert data [6,

7, 11, 18, 19, 28, 29]. Recent work generalizes these analysis techniques for distributed sen-

sors [20, 26, 27]. These techniques and algorithms assist security auditors in the often overwhelming

task of assessing the relevance of various alerts. Some techniques attemptto infer attack patterns or

behaviors that span multiple alerts. Others correlate low-level alerts to create higher level incident

reports, reducing the number of items an analyst must investigate. All such approaches assume that

alerts includesynchronized time stamps: the time stamps share a common view of time and can be

used to determine temporal relationships (such as order). This assumption istrivially satisfied when

alerts are from a single sensor. In multiple sensor settings, the individual system clocks used by each

sensor may not have the same view of time. Clock drift (change in a clock’s view of time) and the

delays inherent in sending alert data across networks or the Internet complicate the determination

of temporal relationships. When given unsynchronized time stamps, the algorithms and techniques

utilized by security auditors might fail, or worse, yield misleading interpretationsof alert data.
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1.2 Possible approaches

Active mechanisms such as NTP [17] that perform a priori synchronization of system

clocks can be used to ensure time stamps are synchronized. In practice, itis sometimes difficult

to ensure such mechanisms are in use and correctly configured on all sensors. For example, secu-

rity auditors who passively collect alert data might not have direct control over the configuration of

sensors. It becomes an even more complicated issue of coordination whenmultiple large organiza-

tions contribute alerts to a common log file host (as with Internet sensors). Infact, this work was

originally motivated by a large security vendor’s recurring difficulty with several clients’ inability

to provide synchronized time stamps. It is therefore important to consider settings where a priori

clock synchronization mechanisms are unavailable.

Another possible approach is to adapt individual analysis techniques oralgorithms to

compensate for unsynchronized time stamps. Serrano suggested an approach where the constraints

used to determine temporal relationships are relaxed [26]. For example, multiple alert orderings

(besides the one found in the aggregate log file) are considered when correlating alerts. Such an

approach is not general; it requires updating individual algorithms. Additionally, it is difficult to

determine how much to relax the constraints. If the constraints are relaxed toomuch, erroneous

correlations might occur (false positives). If the constraints are not relaxed enough, correlations

might be missed (false negatives).

A previously unexplored approach for this problem is a posteriori time stampsynchro-

nization. With this method, time stamps are translated to a common time frame after the log filehas

been generated. This avoids the need for active system clock synchronization before time stamps

are generated. Successful translation of all time stamps to a common time frame would allow ac-

curate determination of temporal relationships. Because it requires no information beyond what is

contained within the aggregate log file and is completely independent of what analysis tools are

to be used, time stamp synchronization is a potentially powerful general approach for solving the

synchronization problem.

1.3 Contributions

This work rigorously explores time stamp synchronization of distributed sensor logs. Our

contributions include the following:

• We describe a model of aggregate log files and the temporal information in them.We focus

on two types of aggregate log files.Type-one log filesinclude only processing time stamps
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(when the remote sensor observed the alert).Type-two log filesadditionally have arrival time

stamps (when the log file host received the alert).

• We prove that precise time stamp synchronization is impossible for both type-one and type-

two aggregate log files. This is primarily due to not having enough temporal information to

bound message delay.

• We introduce two best-effort algorithms. For type-one log files, we give an interval-based

algorithm which leverages the order of alerts. For type-two log files, we give an algorithm that

synchronizes based on the temporal information of entries that are thought to have minimal

delay. Through simulation we show that both of these algorithms perform wellin realistic

settings, providing accurate synchronization solutions for distributed log files.

Additionally, we note that our model and algorithms are general: they can be applied to time stamps

generated by any many-to-one message passing system. Our results couldbe especially valuable

for synchronizating event notifications in sensor networks, where typical a priori synchronization

mechanisms utilize too much battery power [10, 13, 23].

1.4 Outline

In Chapter 2 we discuss in detail the settings assumed, a model of aggregate log files with

temporal information, and impossibility results. In Chapter 3 we present algorithms for approximate

synchronization of both type-one and type-two aggregate log files. In Chapter 4 we describe the

simulations used to judge the efficacy of our algorithms and the results of these simulations. In

Chapter 5 we present related work in more detail. In Chapter 6 we describefuture work and briefly

conclude.
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Chapter 2

Formal Framework and Impossibility

Results

In this chapter we develop a formal model of aggregate log files and use thismodel to

reason about the limitations of time stamp synchronization. Our main result is in Section 2.2: we

show that no log file has a precise time stamp synchronization solution. In Chapter 3 we utilize this

model to guide the development of approximation algorithms.

2.1 Log Files with Temporal Data

The aggregate log files we consider consist of merged alert streams frommultiple remote

sensors. A central host receives alerts from the remote sensors andcreates entries for each alert in a

log file. We call this central host the log file host and notate it withL. We refer to the remote sensors

interchangeably as ‘remote sensors’, ‘remote hosts’, or simply ‘hosts’.Our model thus captures any

log files created in a many-to-one message passing architecture.

2.1.1 Clocks and time stamps

LetH be the set of all remote sensors (hosts) of interest. Each hosth ∈ H has a local

system clockCh. A simple and sufficient model of a system clock is the linear equation

Ch(t) = t + Sh + Rht (2.1)

where the constantSh is the skew and the constantRh is the drift [22]. Heret is a time taken

from some global reference clock (we will refer to values taken from theglobal reference clock

as the ‘actual’ time).Skewis therefore the initial offset from actual time at time zero.Drift is the
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rate of change of the clock’s skew.1 Note that our model of system clocks implies that they are

monotonically increasing (there are no clock resets). Aconfigurationfor a set of system clocks is

simply a mapConf: H → R × R which assigns to each hosth ∈ H a skew valueSh ∈ R and a drift

value 0≤ Rh ∈ R (whereR is the set of all real numbers).

System clocks are used to create time stamps to record the time of various eventsoccuring

within our sensor network. To simplify our treatment, we allow time stamps to be realnumbers. (In

implementations they are integral; restricting ourselves to integral time stamps doesnot change our

results.) We consider the time stamps of two events: the processing of an alertat a remote host and

the arrival of the alert data at the log file host. The time stampp records the time at which some alert

is processed at the remote host. The time stampa records the time at which the alert data arrived

at the log file host. Lettingh be the host where the alert was processed and utilizing the definition

of a system clock (Equation 2.1), we have thatp = Ch(p) = (1 + Rh)p + Sh wherep is the actual

time the event was processed. Similarly the arrival time stamp isa = CL(a) = (1+ RL)a+ SL with

actual arrival timea. Note that we floor the clock’s time to ensure that time stamps are integral. time

stamps are generally integral. Although time stamps are generally integral Between the processing

of an alert at a remote host and the reception at the log file host occurs potential delays due to

computation, queuing, and propagation. We define delay asd ≡ a− p.

Two subtelties of our model are worth mentioning. First, clocks in our model count

abstract units of time. This framework can therefore be utilized to reason about log files with

time stamps expressed in various granularities (e.g., seconds, microseconds, etc.). We worked with

time stamps measured in seconds and point out that synchronization is more difficult for higher

granularities. With higher granularities, drifts and other types of clock inaccuracy are larger relative

to the units used in the time stamps (and thus have larger impact on synchronization attempts).

Second, our model allows time stamps to be real numbers (infinitely precise). In implemented

systems time stamps are generally restricted to integral values. Our results do not change under

such a restriction and the abstraction to real numbers yields simplified exposition.

2.1.2 Log files

A log file is an ordered sequence of entries that correspond to alerts processed at remote

hosts. Entries are ordered based on their arrival time. An entry will include relevant time stamps

and an identifier for the remote host that generated the alert. In actual systems, there will be other

information included in entries. For full generality we assume such informationhas no temporal

1Although our model has drift as a constant, in reality there are always slight deviations in drift for a variety of
reasons (an example is temperature change when utilizing normal quartzoscillators). For our purposes these deviations
are negligible.
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significance.

For simplicity we assume all entries within a log file have the same number and variety

of time stamps. We consider two types of log files corresponding to the availabilityof time stamps.

The first type of log file has entries that include only the remote host processing time stampp for

each event. Formally, atype-one log fileis a finite, ordered list of triples (i, pi ,hi) wherei is the rank

of the triple in the list,pi is the time stamp of the event, andhi is the identifier of the host that sent

the event.

The second type of log file has entries that include bothp and the arrival time stampa in

each entry. Formally, atype-two log fileis a finite, ordered list of four-tuples (i, pi ,ai ,hi) wherei is

the rank of the triple in the list,pi is the processing time stamp of the event,ai is the reception time

stamp, andhi is the identifier of the host that sent the event.

For convenience we letHF ⊆ H be the set of all hosts that have at least one entry in a

type-one or type-two log fileF. Note that any type-two log file can be converted into a type-one log

file simply by removing all arrival time stamps. Whenever we do not specify which type of log file,

it is assumed that both types are being considered.

2.1.3 Causality

The events that are reported on by remote hosts in a distributed system may ormay not

have causal relationships. A simple example of a causal relationship is the happened-before re-

lation [14]: an eventA must have happened before an eventB. Any causal relationship suggests

constraints on the relative timings of events. In our example, the time at which eventA occured must

be before the time at which eventB occured. For full generality, we assume no external knowledge

about causal relationships between the alerts found in a log file (i.e., an alert of type B always

follows an alert of typeA).

On the other hand, we do make a few natural assumptions about causual relationships that

exist between events related to the generation of the log file. Let (i, pi ,ai ,hi) and (j, p j ,a j ,h j) be

any two entries in a log file such thati < j. Then the following statements hold:

1. ai ≤ a j (correct ordering of events),

2. pi ≤ p j wheneverhi = h j (order reflects processing times), and

3. pi ≤ ai (non-negative delay).

The first states that all entries are partially ordered by their arrival times;giving rise to the rank of

each entry (ties are handled arbitrarily). The second states that entries from each host arrive in the
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order of their processing times. Particularly, we assume for simplicity that event notifications are

sent to the log file host in the order that they are processed and that no delays are significant enough

to interfer with this ordering. Due to the fact that we assume system clocks are monotonically

increasing, this assumption is equivalent to assuming thatpi ≤ p j for entriesi < j with hi = h j . It is

trivial to detect when this is violated, and such entries can then be easily ignored. The last statement

ensures that delay cannot be negative—it takes at least zero time units to send an event notification

to the log file host. Allowing delays of zero will be useful in our formalisms, andin some settings

might not be a bad approximation for very small delays.

2.1.4 Time stamp synchronization

When all clocks involved are properly synchronized, temporal relationships can be accu-

rately inferred from time stamps within a log file. However, in our setting we assume that the clocks

are not synchronized a priori. Unsynchronized clocks may not agreedue to a variety of reasons,

incorrect configuration and differing time zones being two. Even if they are initially synchronized

by hand, clock drift will cause their view of time to diverge.

The goal of a posteriori time stamp synchronization mechanisms is to modify all time

stamps so that they accurately represent the temporal data of each alert as seen from a common time

frame. In our setting the common time frame will be the clock of some distinguished remote host,

which we will call thereference host. By translating all processing time stampsp to the common

time frame of the reference host, correct temporal relationships between events can be derived. To

accomplish this, any mechanism must calculate acorrection offsetfor each processing time stamp

in a log file. Consider an entry (i, pi ,ai ,hi) and an arbitrary reference hostr. The precise correction

offset to convertpi to the reference host’s clockCr is off r (i) ≡ (Rr − Rhi )pi + Sr − Shi . Adding this

correction offset to the time stamp yields

pi + off r (i) = Ch(pi) + (Rr − Rh)pi + Sr − Shi

= (1+ Rh)pi + Sh + (Rr − Rh)pi + Sr − Shi

= (1+ Rr )pi + Sr

= Cr (pi)

which is the the processing time stamp of the event relative to the reference host’s clock. For a log

file, we call the set of offsets that precisely translate each time stamp to any hostr ’s time frame a

synchronization solution.
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2.2 Limitations and Impossibility Results

An intrinsic limitation for time stamp synchronization of aggregate log files occurs due

to the interplay between skew and delay. Because messages (alert information) are sent in only one

direction, there is no way to give an upper bound on the delay a message encountered. We can

imagine two scenarios for a single message passed from a remote sensor. In the first scenario, we

imagine that the message containing the alert encountered little delay. This implies that the alert

was processed at the remote sensor recently. In the second scenario,we imagine that the message

containing the alert encountered significant delay. This implies that the alertwas processed at the

remote sensor long ago. Now for the key point: the processing time stamp of thealert could be the

same for both scenarios. Particularly, if the remote sensor’s system clockhas very small skew in the

first scenario and has very large skew in the second scenario, then theresulting time stamps could

be basically equal. Thus, in attempting a posteriori time stamp synchronization, we do not know

whether an alert was generated in the first scenario or the second.

Generalizing on this thought experiment, we can show formally that the interplay between

skew and delay allows for infinitely many ‘scenarios’. We begin by definingacorrect configuration.

Recall that a configuration is simply an assignment of skews and drifts to each clock in the system.

For a given log file, a correct configuration is one that could have beenin use when the log file was

generated, thus corresponding to the notion of a possible scenario.

Definition 1 [Correct configuration] Let F= (1, p1,a1,h1), . . . , (n, pn,an,hn) be a type-two log
file. We say that a configurationConf: H → R×R for the system clocks represented in F is correct
if and only if it yields a solution to the system of linear equations described by

pi = pi(1+ Rhi ) + Shi i ∈ [1..n] (2.2)

ai = ai(1+ RL) + SL i ∈ [1..n] (2.3)

ai ≤ a j i, j ∈ [1..n], i < j (2.4)

pi ≤ p j i, j ∈ [1..n], i < j,hi = h j (2.5)

pi ≤ ai i ∈ [1..n] (2.6)

which is implied by the time stamps and the ordering of entries within the log file.

The existence of multiple correct configurations for any log file implies that there is an inherent

ambiguity restricting the efficacy of time stamp synchronization mechanisms.

Theorem 1 Any log file with one correct configuration has many correct configurations.

Proof: Let F = (1, p1,a1,h1), . . . , (n, pn,an,hn) be a type-two log file. We assume that it has a

correct configurationConf: H → R × R. We show how to construct another configurationConf′
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that is distinct fromConf and also correct. We defineConf′ as follows

Conf′(h) = (Sh + δh,Rh)

whereδh is some positive real number (we choose one for each hosth ∈ HF). Now we must show

that this configuration is correct, which amounts to showing that there is a solution to the equations

listed in Definition 1. First we note that by assumptionConf was correct, and therefore has a solution

to its corresponding equations. Letpi ,ai for i ∈ [1..n] be that solution. Letp′i ,a
′
i be the solution we

seek forConf′. Then fori ∈ [1..n] we let

p′i = pi −
δhi

1+ Rhi

and a′i = ai .

Now we must show that these assignments actually solve the various equations. For eachi ∈ [1..n],

we have that

pi = p′i (1+ Rhi ) + Shi + δhi

=

(

pi −
δhi

1+ Rhi

)

(1+ Rhi ) + Shi + δhi

= pi(1+ Rhi ) + Shi

and thus all of the equations defined by Equation 2.2 are satisfied. It is trivial to verify that the

equations related to Equations 2.3, 2.4, and 2.5 are satisfied. Finally, the equations related to Equa-

tion 2.6 are satisfied since we restrictedδh to be positive for all hostsh. Sinceδh can take on any

positive value, we have shown that there are an infinite amount of possiblecorrect configurations.

�

A straightforward corollary of Theorem 1 is that log files with a correct configuration have

many synchronization solutions.

Corollary 1 Any log file that has a correct configuration has many synchronization solutions.

Proof: By Theorem 1 any log file with a correct configuration has many. For eachtime stamppi

and for arbitrary reference hostD, a precise correction offset is

(RD − Rhi )ti + SD − Shi

whereRD, Rhi , SD, andShi are given by any correct configuration. Since there are many possible

correct configurations, there are many precise correction offsets.�
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It is important to note that any log file created under our assumptions must have a correct

configuration: the one that was actually in use during the generation of the log file. Thus, for any

log file our model captures, there are many possible synchronization solutions. In turn, this implies

that the best a general algorithm can do is approximately synchronize all the time stamps.
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Chapter 3

Approximation Algorithms

In this chapter, we investigate algorithms for approximating synchronization solutions.

Recall that a synchronization solution is a set of correction offsets that translate all time stamps in a

log file to be on the time frame of a reference host’s clock. Furthermore, these correction offsets are

a function of drift, skew, and the actual time at which the time stamp was created.To simplify our

task, we assume that drifts are negligible and thereby reduce correction offsets to be a function of

(constant) skews. (Note that our impossibility result in the previous chapterstill applies to a setting

where we force restrictions on clock drift.) Consider some log file and arbitrary reference hostr.

For all hostsh assume thatRh = 0. Then, for each entry (i, pi ,ai ,h) with h , r, we have that the

correction offset is (Rr −Rh)ti +Sr −Sh = Sr −Sh. We call any difference in skews a relative skew.

We have thus reduced the problem of finding correction offsets to simply identifying the (constant)

relative skews of hosts to a reference host.

This chapter therefore focuses on developing algorithms for approximating relative skews

in both type-one and type-two log files with negligible drifts. We first investigatetype-one log files.

We show that under certain assumptions about delay, the ordering of events within a log file can be

utilized to create bounds on relative skews. We show that it is possible to sometimes detect when

these assumptions are violated and propose a heuristics-based approach for such situations. We then

turn to type-two log files and show how to utilize the extra temporal information provided by the

arrival time stamps. We propose two algorithms: a simple stastical one and one based on finding

entries with minimal delay. Finally, we discuss some considerations concerningall the algorithms,

particularly non-negligible drifts and the impact of reference host selection.
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3.1 Type-one Log Files

3.1.1 Utilizing Order

In our setting the order of entries within a log file is temporal information that we can

leverage to bound relative skews approximately. Particularly, the ordering gives us information

about the relative values of the arrival times of all the events. In turn, thisknowledge about the

arrival times allows us to calculate lower and upper bounds on relative skews.

We consider a type-one log fileF = (1, p1,h1), . . . , (n, pn,hn) with all drifts negligible

(Rh = 0 for all h ∈ HF). Let (i, pi ,g) and (j, p j ,h) be two entries such thati < j andg , h. Then,

we note that

pi − p j = (1+ Rg)pi + Sg − (1+ Rh)p j − Sh

= pi − p j + Sg − Sh (3.1)

where the second equation utilizes the negligible drift assumption. The definition of delay (see

Section 2.1) tells us thatpi = ai − di andp j = a j − d j . We can therefore cast Equation 3.1 in terms

of arrival times and delays:

pi − p j = ai − di − a j + d j + Sg − Sh

= ai − a j + (Sg − Sh) + (d j − di) . (3.2)

Sinceai ≤ a j , we know thatpi − p j is a lower bound onSg − Sh + (d j − dl).

We can similarly derive an upper bound. Let (k, pk,h) and (l, pl ,g) be two events in the

log file such thatk < l. Then,

pl − pk = (1+ Rg)pl + Sg − (1+ Rh)pk − Sh

= al − dl − ak + dk + (Sg − Sh)

= al − ak + (Sg − Sh) + (dk − dl) . (3.3)

Here we have thatal ≥ ak which implies thatal − ak ≥ 0. Thereforepl − pk is an upper bound on

Sg − Sh + (dk − dl). Notice that deriving these bounds does not require explicit knowledge of the

arrival times.

If we assume that the difference in delays for any two events is negligible, then we can

utilize the bounds described to guide our selection of correction offsets. We therefore make the

negligible delay assumption: for all events (i, pi ,g) and (j, p j ,h) we havedi − d j = 0. In other

words, all hosts’ delays were constant and equal when the log file was created.1 Note that the closer

1In the next section we show how to detect when this assumption is violated andsuggest approaches for handling such
situations.



14

together arrivals are at the log file host (i.e., as the difference in arrival times approaches zero) the

tighter these bounds become.

Every pair of events in a log file contributes a potential lower and upper bound. We scan

a log file and produce two sets of bounds for each pair of hosts. For each distinct pair of hostsg and

h in a log file let

Bg h = { pi − p j | i < j ∧ (i, pi ,g), ( j, p j ,h) ∈ F }

and

Tg h = { p j − pi | i < j ∧ (i, pi ,h), ( j, p j ,g) ∈ F }

be the sets of all lower bounds and upper bounds on the relative skew and delay. Then, by the

negligible delay assumption we get that max{Bg h} ≤ Sg − Sh ≤ min{Tg h}. In other words, the

interval [max{Bg h},min{Tg h}] is guaranteed to contain the relative skew. We can not naively pick

values from these intervals as correction offsets, lest we end up with an inconsistent synchronization

solution, in the following sense. Consider distinctg,h, r ∈ HF wherer is the reference host. When

we pick valuesoff r (g) ∈ [max{Bg r},min{Tg r}] andoff r (h) ∈ [max{Bh r},min{Th r}], we should have

that

off r (g) − off r (h) ≈ Sr − Sg − (Sr − Sh)

= Sh − Sg

and thus if our selections are good we should have that max{Bg h} ≤ off r (g) − off r (h) ≤ min{Tg h}.

3.1.2 Determining Tight Intervals

Our problem has a natural graph-theoretic representation that handlesthis consistency

issue via shortest-path analysis. We view our problem as a Simple Temporal Problem (STP), as

described by Dechter et al. [8]. An STP consists of a set of temporal variables with bounds on their

differences. In our case the temporal variables are the skews of each host and the differences are

the relative skews that we seek. Formally, given a log fileF we create a directed, weighted graph

G = (V,E,w) for which

• V = {Sh | h ∈ H}

• E = {(g,h) |h,g ∈ H}

• w(g,h) =



















min{Tg h} if Ug h , ∅

∞ otherwise
.
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We call any such graphG a constraint graph. Each node represents a host’s skew and an edge

weight w(g,h) corresponds to the boundSg − Sh ≤ min{Tg h}.2 We utilize infinite weightings to

represent when there is insufficient entries to give us even a single data point for a pair of hosts.

Note that a pathS1,S2, . . . ,Sk implies a constraint

S1 − Sk ≤

k−1
∑

h=1

w(Sh,Sh+1)

which captures the constraints for a consistent solution. Thus, the tightestupper bound on the

relative skews associated with two hostsg andh is the value of the shortest path fromg to h. Letδg h

represent the shortest path from nodeSg to nodeSh. Then,

−δh g ≤ Sg − Sh ≤ δg h

represents the bounds that allow for a consistent synchronization solution. These are minimal in the

sense that they include the only possible choices ofSg −Sh that do not violate some constraint. We

will therefore utilize the graphG′ = (V,E, δ) where we give each edge (g,h) the weightδg h.

We will not be able to createG′ if there exists a negative-weight cycle inG [5]. A negative-

weight cycle is simply a cycleS1,S2, . . . ,Sk = v1 such that
∑k−1

h=1 w(Sh,Sh+1) < 0. Dechter et al.

showed that a STP has a solution if and only if the graphG has no negative-weight cycles [8].

Furthermore, we can show that a negative-weight cycle will only occur when the negligible delay

assumption has been violated.

Theorem 2 Let G = (V,E,w) be the constraint graph associated with some type-one log file F

with which Rh = 0 for all h ∈ HF . If the negligible delay assumption holds, then there are no

negative-weight cycles in G.

Proof: Assume the negligible delay assumption holds and that there exists a cycleS1,S2, . . . ,Sk =

S1 in G which has negative weight:

k
∑

h=1

w(Sh,Sh+1) < 0 .

We now derive a contradiction. We have that

w(Sh,Sh+1) = p j − pi

= a j − d j + Sh+1 − ai + di − Sh

= (a j − ai) + Sh+1 − Sh

2For clarity we slightly abuse notation and simply use the name of the host as input for the weighting function.
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whereai ≤ a j are the arrival times associated with entries from hosth andh+ 1, respectively. Thus,

a j − ai ≥ 0. Returning to our summation and utilizing this fact that all arrival time differences are

greater than or equal to zero we have that

k
∑

h=1

w(Sh,Sh+1) ≥
k−1
∑

h=1

Sh+1 − Sh

= 0 .

This contradicts the assumption that the cycle’s weight is negative. There can therefore be no

negative-weight cycle inG. �

Thus, with the negligible delay assumption we are guaranteed that all constraints can be

satisfied by some assignment of values to the relative skews. Finding such an assignment entails a

simple backtrack-free search through the constraints given inG′. We first pick some hostr to be the

reference host, effectively settingSr = 0. We then iterate over all other hostsh, choosing a value

Sr − Sh ∈ [−δr h, δh r] such that

−δh g ≤ Sr − Sh − (Sr − Sg) ≤ δg h

for all hostsg that have already had a value assigned toSr − Sg. Dechter et al. show that whenG

contains no negative-weight cycles, such a backtrack-free searchwill always succeed.

3.1.3 Detecting Variable Delay

If remote hosts are spread across large geographical distances and connected to the log file

host via the Internet, large variations in delay will almost certainly affect temporal data in a log file.

Under these circumstances, the negligible delay assumption will not hold and the initial algorithm

will probably fail. In this section we explore the effects of variable delay. Under certain conditions

we show that variations in delay can be detected. With this in mind, we propose heuristics to assist

the initial algorithm in finding correction offsets even in this difficult setting.

When the negligible delay assumption does not hold, variations in delay can cause prob-

lems for the initial algorithm. Variations in delay imply that we can not be assured that max{Bg h} ≤

min{Tg h} holds for all hostsh,g. More formally, if max{Bg h} > min{Tg h}, then there exist four

events (i, pi ,h), ( j, p j ,g), (k, pk,g), and (l, pl ,h) such thati < j andk < l and pi − p j > pl − pk.

Then, by inspecting Equations 3.2 and 3.3 we can see that

ai − a j + di − d j > ak − al + dk − dl .
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(1,1,h1)
(2,0,h2)
(3,1,h1)
(4,3,h3)
(5,2,h1)
(6,5,h2)
(7,3,h3)

Sh2 − Sh1 ∈ [−1,−1]
Sh1 − Sh2 ∈ [1,1]
Sh3 − Sh1 ∈ [1,1]
Sh1 − Sh3 ∈ [−1,−1]
Sh3 − Sh2 ∈ [−2,−2]
Sh2 − Sh3 ∈ [2,2]

−1
1

−1

2

1

−2
h2

h1

h3

Figure 3.1: Example type-one log file that has an no intersection failures buta negative cycle in the
associated difference graph.

Sinceai − a j ≤ 0 ≤ ak − al , the delays involved must have changed. A graphG constructed with

any such interval will necessarily have a negative weight cycle. We have that

−w(h,g) > w(g,h)

w(h,g) < −w(g,h)

w(h,g) + w(g,h) < 0

Thus, the cycleSg,Sh,Sg must have negative weight.

Of course, there can still be negative-weight cycles even if all intervalsare well-defined.

Figure 3.1 illustrates an example. The first column gives an example type-onelog file. The second

column specifies the bounds [max{Bg h},min{Tg h}] for the relative skews of each pair of hostsh,g ∈

{h1,h2,h3}. For example, the relative skewSh1 − Sh2 must be within [1,1]. The lower bound is due

to entries one and two while the lower bound is due to entries two and three. Thelast column gives

the associated constraint graphG for the log file. It clearly has a negative-weight cycle although all

intervals are well-defined. Thus, a more sensitive mechanism for detectingvariations in delay is the

existence of negative weight cycles inG.

Whether there are even more sensitive methods for detecting variations in delay is an open

question. However there is an intrinsic limitation based on the inter-arrival times- small variations

in delay will be masked by larger gaps in arrivals.

3.1.4 Heuristics

Now that variations in delay can potentially be detected, the question becomes what to

do about it. An insufficient solution is to simply give up whenever delay variations are detected;

variations that trip our detection mechanisms will most likely occur frequently in actual log files.

Another approach would be to attempt to insulate the effects of variable delay from our correction
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offset calculations as much as possible.

We propose a simple heuristic for accomplishing this, which we call the good prior state

heuristic. First we modify our algorithm so that it is on-line: for each new entry in the log file we

calculate all bounds that it implies (with previous entries), update the STP graph, and run the APSP

algorithm. If the algorithm succeeds, we continue. If the algorithm fails, thenwe simply ignore the

entry’s temporal data entirely and remove its effects from the current state. As the name implies,

this heuristic basically assumes that temporal data earlier in a log file is less likely tobe poor than

data later in a log file. One can easily imagine other potential heuristics; we leaveanalysis of them

to future work.

3.1.5 Algorithm I-S

Figure 3.2 gives pseudocode for the proposed algorithm for type-onelog files. It begins

by initializing a complete, weighted graphG′ = (V,E, δ) whereV contains a node for each remote

host represented in the log file andδ is a weighting function that labels each edge with the shortest

path between any two nodes. All edges initially have infinitely large weight. Thealgorithm iterates

over all entries within the log file. The setR includes the most recent entry (relative to the current

entry) for all hosts. In each iteration, the graph weights are updated with the shortest paths between

each pair of nodes. The subroutine APSP is any all-pairs shortest-path algorithm that returns true

when the graph has no negative-weight cycles. Floyd’s APSP [5] algorithm is simple and suitable

and is utilized in our implementation. It suffices to simply maintain the shortest-path graphG′ (as

opposed to maintainingG and running APSP from scratch each iteration), since only weights that

are smaller than the current shortest path value between any two nodes willhave an effect onG′. If

an entry causes the graph to contain a negative-weight cycle, we drop the entry as per the good-prior

state heuristic. Of course, if the entries are handled in some order other than the one presented in the

log file then another heuristic would be utilized. The subroutine P-R-H chooses a reference

host. In our implementation this routine simply chooses the host which has the tightest constraints

relative to all the other hosts. The subroutine F-S does a backtrack-free search of the

constraints in order to generate an array of correction offsets, one per host.

The correctness of the algorithm follows from our previous developmentof the relation-

ships between time stamps and shortest paths. As per our impossibility results ofChapter 2, the

algorithm is best-effort and there are no guarantee that the synchronization solution is correct. In

the next chapter we evaluate it experimentally through simulation. The runningtime is O(n|V|3)

wheren is the number of entries in the log file. Note that|V| is the number of hosts found in the log

file.
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Algorithm I-S(F)
V ← HF

E← {(h,g) | h,g ∈ V ∧ h , g}
δ(h,g)← ∞ ∀h,g ∈ V
R← ∅
foreach ( j, p j ,h j) ∈ F

stillFeasible← true
δ′ ← δ

foreach (i, pi ,hi) ∈ Rs.t. hi , h j

d← p j − pi
if d < δ(hb,hc) then
δ′(hb,hc)← d
stillFeasible← APSP(V,E, δ′)

if stillFeasible= true then
δ← δ′

R← R \ {(k, pk,hk) | hk = h j}

R← R∪ {( j, p j ,h j)}
r ← P-R-H(F,V,E, δ)
S ← F-S(V,E, δ, r)
return S

Subroutine P-R-H(F,V,E, δ)
y = ∞
foreach h ∈ HF

x = 0
foreach g ∈ HF s.t. g , h

x = x+ |w(h,g) − (−w(g,h))|
if x < y then

y← x
r ← h

return r

Subroutine F-S(V,E, δ, r)
S ← ∅

foreach h ∈ V s.t. h , r
Pick x ∈ [−δ(h,h), δ(h, r)] s.t.
∀(g, s) ∈ S, x− s ∈ [−δ(h,g), δ(g,h)]

S ← S ∪ (h, x)
return S

Figure 3.2: Algorithm for determining a synchronization solution for a type-one log file. The
function APSP is any all points-shortest path algorithm that outputs false whenever the graph has
negative-weight cycles (it also updatesδ′ to reflect the new shortest paths).

3.2 Type-two Log Files

Type-two log files include the arrival time stamps for each entry. This extra temporal

information specifies, according to the log file host’s clock, when the alert was received. Even with

this extra temporal information our impossibility results from Chapter 2 still apply.In attempting

to approximate solutions, we could utilize the approach given for type-one log files, but this would

ignore the arrival time stamps. Instead, we propose two algorithms that utilize this extra temporal

information: one using a simple statistical approach and the other based on finding entries with

minimal delay.

3.2.1 Utilizing Arrival Time Stamps

Let (i, pi ,ai ,h) and (j, p j ,a j ,g) be two time stamps from a type-two log file. First we look

at what is given by the difference of the two arrival time stamps:

a j − ai = (1+ RL)a j + SL − (1+ RL)ai − SL

= a j − ai + (a j − ai)RL
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whereL is the log file host. If we make the negligible drift assumption thena j − ai = a j − ai . We

can thus utilize this information in combination with the difference in processing time stamps:

p j − pi = p j − p j + Sg − Sh

p j − pi = a j − ai + di − d j + Sg − Sh

p j − pi − (a j − ai) = di − d j + Sg − Sh . (3.4)

For every pair of hosts we can now easily calculate the relative skew plus relative delay. If in the

aboveh = g, then the right hand side of Equation 3.4 simplifes todi − d j .

3.2.2 A Stastical Approach: Algorithm S-S

If we view each host’s delay as a random variable, then we can utilize statistics to guide

our search for relative skews. A very simple approach would be to assume that the difference in

delays is uniformly distributed. Consider two hostsh,g and letci j = p j − pi − (a j −ai) for all entries

(i, pi ,ai ,h) and (j, p j ,a j ,g). A uniform distribution on delay differences implies that the mean of

all theci j values is an approximation ofSh − Sg. Of course, if these differences are not uniformly

distributed this estimation will be wrong. Perhaps other assumptions regardingthe distribution of

the delay (and also their differences) could be utilized; we leave this to future work.

Figure 3.3 gives pseudocode for a simple stastical algorithm called S-S that

approximates relative skews. Ifr is a reference host then the offset calculated for every other hosth

is equal to

∑

i, j

[

pi − ai − (p j − a j)
]

/
∑

i, j

1

where the summations are over all event entries of the form (i, pi ,ai ,h) and (j, p j ,a j , r). In our

implementation the reference host is chosen to be the host with the minimal sum of variances relative

to the other hosts. The asymptotic complexity isO(n2).

3.2.3 A Minimal Delay Approach: Algorithm M -D-S

Another approach revolves around finding entries from each host which have minimal

delay. When both entries are from the same host, Equation 3.4 gives us values that are equal to the

difference in two delays. This hints that between arrival time stamps and processing time stamps

we have enough information to analyze the delays that were involved when entries were created.

Particularly, we would like to find the entry from each host which has the smallest delay associated

with it. Although we can not know the exact delays, we can determine which entry has the least

delay.
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Algorithm SS(F)
Dh g← 0 for all g,h ∈ HF

Vh g← ∅ for all g,h ∈ HF

nh g← 0 for all g,h ∈ HF

foreach (i, pi ,ai ,h) ∈ F
foreach ( j, p j ,a j ,g) ∈ F s.t. i < j ∧ g , h

Dh g← Dh g+ pi − ai − (p j − a j)
Vh g← Vh g∪ {pi − ai − (p j − a j)}
nh g← nh g+ 1

foreach h ∈ HF

foreach g ∈ HF s.t. g , h
Ah g← Dh g/nh g

r ← PRH(F,A,V,n)
S ← FS(HF ,A, r)
return S

Subroutine PRH(F,A,V,n)
m← ∞
foreach h ∈ HF

s← 0
foreach g ∈ HF s.t. g , h

foreach x ∈ Vh g

σ2← (x− Ah g)2/nh g

s← s+ σ2

if s< m then
m← s
r ← h

return r

Subroutine FS(HF ,A, r)
S ← ∅

foreach h ∈ HF s.t. h , r
x← Ah r

S ← S ∪ (h, x)
return S

Figure 3.3: A simple stastical algorithm for finding a synchronization solution for type-two log files

Let (i, pi ,ai ,h) be an entry for a hosth. Under the negligible drift assumption, we have

that

pi = pi + Sh⇔

pi = ai − di + Sh⇔

pi = ai + SL − di + Sh⇔

pi − ai = SL + Sh − di .

Recall that bothSL andSh are constants anddi ≥ 0. By comparing the valuespi − ai for all entries

from the same host, we can see that the largest such value will be from the entry with the smallest

delay. We’ll call any such entry aminimal-delay entry.

To find relative skews, we first identify a minimal-delay entry from each host. Then, for

each pair of minimal-delay entries (i, pi ,ai ,h) and (j, p j ,a j ,g) we calculate the relative skew

p j − a j − (pi − ai) = di − d j + Sg − Sh .

Since the two valuesdi andd j are minimal, we should get a good approximation ofSg − Sh (at the

limit, when both delays are zero, then we know the exact relative skew).

Figure 3.4 gives the pseudocode implementing the M-D-S algorithm.

The main loop iterates over all the entries in a log file, maintaining a setM of minimal-delay events
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Algorithm
M-D-S(F)

M ← ∅
nh← 0 for all h,g ∈ HF

foreach (i, pi ,ai ,h) ∈ F
nh← nh + 1
if ( j, p j ,a j ,h) ∈ M then

if p j − a j < pi − ai then
M ← M \ {( j, p j ,a j ,h)}
M ← M ∪ {(i, pi ,ai ,h)}

else
M ← M ∪ (i, pi ,ai ,h)

r ← P-R-H(F,n,M)
S ← F-S(M, r)
return S

Subroutine P-R-H(F,n,M)
x← 0
foreach h ∈ HF

if nh > x then
x← nh

r ← h
return r

Subroutine F-S(M, r)
S ← ∅

(i, pi ,ai , r) ∈ M
foreach ( j, p j ,a j ,h) ∈ M s.t. h , r

x← pi − ai − (p j − a j)
S ← S ∪ (h, x)

return S

Figure 3.4: Algorithm for finding a synchronization solution for a type-two log file. By the end of
the main loop, the setM contains a minimal-delay event for each host.

(one per host). After this a reference host is chosen. In our implementation we simply chose the

host with the most entries in the log file. Finally, a synchronization solution is created utilizing the

minimal-delay events. The algorithm isO(n + |M|2) wheren is the number of entries in the log

file. Note that the size ofM is the number of hosts present in the log file. It is much simpler and

asymptotically faster than the I-S algorithm. In the next section we will show

that it is also far more resistant to variable delay.

The algorithm isO(n+ |M|2) wheren is the number of entries in the log file. Note that the

size ofM is the number of hosts present in the log file. It is much simpler and faster than the other

algorithms so far considered. In the next chapter we will see that it is far more accurate, in addition.

3.3 Reference Host Selection

All of our algorithms select a reference host from among the remote sensors. The meth-

ods for selection described are designed to choose a sensor that will hopefully allow for a good

synchronization solution. The choice of reference host matters. For example, sensors that have a

small number of entries in the log file will intuitively not make good candidates. A more thorough

investigation of reference host selection is left to future work.
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3.4 Non-negligible Drift

Our algorithms assume negligible drift. This simplifies the development of algorithms

greatly. Our experience indicates that negligible drift will be a safe assumption in many settings.

Most common system clocks utilize quartz oscillators with drift rates of about 1± 10−6, which

implies that they drift by no more than one second in a day [14, 30]. The effect of this drift on

approximations is relative to the scale considered. However, we expect that delay will overshadow

drift as a source of error. Our experiments in Chapter 4 confirm this expectation.

Still, there are techniques for handling non-negligible drift. Hofmann and Hilgers present

a simple approach that involves partitioning a log file into portions of equal duration [22]. Each

portion is ran through a synchronization algorithm separately. Regression analysis can be applied

to the resulting solutions to derive approximations for drift.
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Chapter 4

Experiments

In this chapter, we test our algorithms experimentally using simulated log files. Wecon-

firm that our algorithms perform well in settings with small delays. Additionally, we show that our

minimal-delay algorithm for type-two log files is resistant to significant variability and spikes in

delay.

4.1 Simulating Log Files

Ideally we would like to test our algorithms using data collected from actual distributed

sensors. To do this we would require extra timing information about the conditions under which

the log files were collected. Particularly, we would need to know the configuration of the system

clocks involved. Without it we would have no way to measure the accuracy of our approximations.

Unfortunately no such data is currently available. Instead we use simulated log files to help gauge

each algorithm’s effectiveness. We wrote a log file simulator to generate log files with various

temporal characteristics.

4.1.1 Temporal Variables

Each host in our simulator has a set of variables associated with it:

• Arrival rate - The rate at which alerts are received at the log file host from a sensor (equiva-

lently, the rate at which the sensor generates alerts). An exponential random variable controls

arrivals; the rate of this random variable is determined by a sinusoidal function. The sinu-

soidal behavior of the rate gives the alerts a burstier distribution. We control arrival rates

in the experiments via the amplitude of this sinusoid. We call the amplitude the arrival rate

scaler. The default value is 1.
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• Clock skew - The skew associated with a sensor’s system clock. By default, a value between

-300 and 300 will be chosen at random.

• Clock drift - The drift associated with a sensor’s system clock. For all the experiments, each

host had a drift chosen randomly between−106 and 106.

• Constant delay - The minimum delay required to send an alert from the sensor to the log file

host. The default is a value between 0 and 1 chosen at random.

• Variable delay - The variable portion of delay added to the constant delay for each host.

Variable delay is controlled by a sinusoid (to mimic the periodic fluctuations of Internet traffic

density). The amplitude of this sinusoid is controlled to increase, or decrease, the variability

of the delay and is called the variable delay scaler. The default value is 0 (i.e., no variable

delay).

Constant delay, variable delay, and arrival frequency affect the accuracy of our time stamp synchro-

nization algorithms. Our simulations do not include clock drift. Times can be thought of in terms

of seconds, though the simulations are independent of scale.

4.2 Experiments

We conducted several experiments with simulated log files to help understand the limita-

tions of our algorithms. For each experiment, we specify a free variable that iterates over a set of

values. We generate one log file for each value in the set. The other parameters for each host are

fixed. Table 4.1 summarizes the parameters for each experiment. The experiments are split into cat-

egories based on the free variable. The first has varying arrival rates with constant delays (VAR), the

second varying arrival rates with variable delay (VARD), the third varying constant delays (CDC),

and the last varying delays (VD). The number in each label correspondsto the number of hosts for

which the free variable is varied; the remaining hosts have the default valuefor that parameter (as

specified previously). The free variable is in bold and contains a range plus an increment value (in

paranthesis). The rest of the parameters are either specified or a range is given from which a value

is chosen randomly. The experiments are designed to identify how changesin one parameter impact

on the performance of the three algorithms considered.

The metric utilized to measure the correctness of an algorithm’s synchronization solution

for a given log file isaverage time stamp error. This metric is simply a weighted average of the

differences between the actual relative skew of each host and the correct offsets as specified by

the synchronization solution. For each hosth, let Sh represent the clock skew as given by the
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Experiment VAR1 VAR5 VAR10 VARD5

Number of hosts 10 10 10 10
Hosts varied 1 5 10 5
Arrival scaler [.01,1] (.01) [.01,2] (.02) [.01,2] (.02) [.01,1] (.01)

Skew [-300,300] [-300,300] [-300,300] [-300,300]
Constant delay [0,1] [0,1] [0,1] [0,1]

Variable delay scaler 0 0 0 [0,1000]

Experiment VARD10 CDC1 CDC5 VD1

Number of hosts 10 10 10 10
Hosts varied 10 1 5 1
Arrival scaler [.01,1] (.01) 1 1 1

Skew [-300,300] [-300,300] [-300,300] [-300,300]
Constant delay [0,1] [0,1000] (10) [0,1000] (10) [0,1]

Variable delay scaler 0 0 0 [0,1000] (10)

Experiment VD5 VD10

Number of hosts 10 10
Hosts varied 5 10
Arrival scaler 1 1

Skew [-300,300] [-300,300]
Constant delay [0,1] [0,1]

Variable delay scaler [0,1000] (10) [0,1000] (10)

Table 4.1: Experiments conducted to analyse affects of various variables. Bold parameters represent
the free variable in the experiment with the increment given in parenthesis.

configuration in use when the log file was created. LetOh r be the correction offset as specified

by the algorithm’s synchronization solution relative to a reference hostr. Let nh be the number of

entries in the log file that are from hosth and letn be the total number of entries in the log file. Then

the average error of the synchronization solution is

e =
∑

h

nh

n
|Sr − Sh −Oh r |

where the summation is over all hostsh in the log file.

4.3 Results

Figures 4.1 through 4.10 graphically display the results of running the experiments. The

x-axis of each graph represents the free variable. The y-axis represents the average error of the log

file. Several of the results yield interesting conclusions. We discuss how the results reflect on the

effects of each free variable in turn.
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A R ( ). Experiments VAR1, VAR5, and VAR10 measured the effects of

differing arrival rates on the algorithms’ performance. Since we fix the number of entries in each

simulated log file, changing the arrival rate has two affects. First, it changes the time spanned by

the log file. For example, log files generated with an arrival rate scaler of 0.01 spanned over two

years while an arrival rate scaler of 2.0 generated log files spanning a littleover two months. Since

drift accumulates over time, it adds significantly more error when lower arrival rates are utilized. It’s

apparent from the results of VAR1 and VAR5 that if only one, or a few hosts, have lower arrival rates

then synchronization is not significantly affected. In VAR5, the outliar for M-D-S

resulted from poor choice of reference host: the reference host’s minimal event happened to be one

heavily affected by drift (i.e., it was at the end of the log file). In VAR10, where all hosts have

lower arrival rates, we see a distinct trend that error decreases with more frequent arrivals. For the

type-two log file algorithms, this decrease in error is due to a decrease in the effect of drift. For

the type-one algorithm, this is due to an increase in the tightness of intervals calculated. Drift does

not have as significant an effect on the I-S algorithm since the good prior state

heuristic discards entries later entries that are heavily affected by drift.

A R ( ). Experiments VARD5 and VARD10 measured the effects of dif-

fering arrival rates when entries are affected by large variable delays. Both the type-one algorithm

and the stastical type-two algorithm do poorly regardless of arrival rate. This implies that the errors

due to variable delay greatly outweigh those from arrival rate differences. In this case, again, the

minimal-delay type-two algorithm performs excellently.

C D. Experiments CDC1 and CDC5 measured the effects of increased constant delay.

In general, constant delay is going to translate directly into error since all the algorithms take a

‘minimal delay’ approach (i.e., they assume minimal delay and thus lump the constant delay in with

skew). The two graphs reflect this, showing error to grow linearly with constant delay. Figure 4.7

shows that the selection of reference host matters: it happened that the statistical algorithm (green)

chose as reference host the one host with constant delay. Thus all relative skews calculated against

it included that error (pushing these errors much higher than if another host had been selected). The

other algorithms would have suffered the same fate if they choose the ‘wrong’ reference host.

V D. Experiments VD1, VD5, and VD10 measured the effects of increasing the mag-

nitude of variable delay. When only one or five of the hosts had large variable delays, the type-one

algorithm and the stastical type-two algorithm performed similarly. When all ten hosts had large

variable delays, the stastical type-two algorithm performed much better. Theminimal delay type-

two algorithm performed exceptionally in all cases, clearly doing better than the other algorithms.
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Figure 4.1: Results of experiment VAR1. In the experiment, arrival ratesfor one host is varied from
low to high. All hosts had constant delays.
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Figure 4.2: Results of experiment VAR5. In the experiment, arrival ratesfor five hosts are varied
from low to high. All hosts had constant delays.
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Figure 4.3: Results of experiment VAR10. In the experiment, arrival rates for ten hosts are varied
from low to high. All hosts had constant delays.
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Figure 4.4: Results of experiment VARD5. In the experiment, arrival rates for five hosts are varied
from low to high. All hosts had large, variable delays.
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Figure 4.5: Results of experiment VARD10. In the experiment, arrival rates for ten hosts are varied
from low to high. All hosts had large, variable delays.
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Figure 4.6: Results of experiment CDC1. In the experiment, the constant delay for one host is varied
from low to high.
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Figure 4.7: Results of experiment CDC5. In the experiment, the constant delay for five hosts is
varied from low to high.
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Figure 4.8: Results of experiment VD1. In the experiment, the magnitude of variable delay spikes
for one host is varied from low to high.
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Figure 4.9: Results of experiment VD5. In the experiment, the magnitude of variable delay spikes
for five hosts is varied from low to high.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  200  400  600  800  1000

A
vg

. e
rr

or
 (

s)

Variable delay scaler

Interval-Synchronize
Stat-Synchronize

Min-Delay-Synchronize

Figure 4.10: Results of experiment VD10. In the experiment, the magnitude ofvariable delay spikes
for ten hosts is varied from low to high.
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Chapter 5

Related Work

Prior work can be divided into several broad categories: sensor alert analysis, clock syn-

chronization algorithms, and time stamp synchronization algorithms.

5.1 Sensor Alert Analysis

An important theme in IDS research has been in reducing the number of alertssecurity

auditors must handle [28, 11, 6, 19, 7, 29, 18]. Particularly, state of theart IDS systems report alerts

for “low-level” events (e.g., specific network activity), and in practice thisresults in alert explosion:

security auditors are faced with an overwhelming number of alerts (many of which are most likely

false positives). Researchers have developed methods for groupingalerts that are redundant in

some way.1 In addition, methods for creating synthetic alerts based on the inferred relationships of

multiple low-level alerts (correlation) have been explored. Algorithms for grouping and correlating

alerts require correct temporal information: in all prior work we’re aware of at least order is essential

for proper functioning. When only one IDS’s alerts are considered, correct temporal information is

trivially acquired.

Another vein of research has been in utilizing distributed, possibly heterogenous IDS’s to

acheive better intrusion incident detection [27, 26, 20]. In these settings,alert explosion is an even

larger problem since multiple IDS’s will generate distinct alerts for the same observed events. Thus,

correlation and grouping of alerts is also very important. Again correct temporal information is

required for grouping and correlation, but not trivially acheived as inthe previous setting. Serrano

identified this problem and briefly addressed it by loosening the temporal constraints within his

correlation algorithms [26]. In other works, correct temporal informationis implicitly assumed.

1In the literature, this is often referred to as aggregation of alerts. However, we already utilize the term aggregation to
describe the collection of alerts from multiple sources. We therefore stick tousing the term grouping.
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5.2 Clock synchronization

Message timing in distributed systems was first considered in Lamport’s seminalwork [14].

Particularly important are his discussion of logical clocks and causality. Numerous other projects

followed; most had proposed mechanisms (such as vector and matrix clocks) for determining causal

relationships [12, 21].

We utilize intervals to estimate temporal information. Marzullo and Owicki and later

Schmid and Schossmaier developed interval-based clock synchronizationalgorithms [16, 24, 25].

Instead of representing local time by a single integral value they represent it with an accuracy inter-

val that contains the actual time at which the event occurred. This powerful representation of local

time allows for more accurate and precise synchronization. They introduced a priori clock syn-

chronization mechanisms for distributed systems utilizing these local interval clocks. The popular

Network Time Protocol utilizes such accuracy intervals in its clock synchronization algorithm [17].

In [15], Liebig et al. describe methods for event composition in time-dependent distributed systems.

They use accuracy intervals provided by NTP as time stamps within their system,and discuss the

ramifications of this approach. Although our approaches are similar in that we also utilize intervals

to estimate temporal information, their intervals are defined using more precise measurements of

error only available when performing a priori synchronization. They donot consider the settings in

which time stamp synchronization is needed.

5.3 Time stamp synchronization

Previous research in time stamp synchronization stems mostly from the distributed sys-

tems community. In their settings, one is given access to a number of local event traces created at

distinct systems. These event traces are given time stamps from local system clocks that are not

synchronized. The event traces are aggregated after they are generated, and the goal is then to de-

termine a global time base for them. One application is distributed monitoring: a monitorutilizes

such algorithms to help developers temporally relate debugging events in the system, but without

the need for a priori clock synchronization.

Duda et al. first proposed algorithms for tackling this problem [9]. They assume that the

event traces contain pairs of time stamps (ti , θi) whereti is the time a message was sent from a host

andθi is the time the message was received on another host. In this caseti would be in one event

trace andθi in another. This sent/receive semantics yielded convenient causal dependencies between

such pairs. With such pairs of points, regression analysis or convex hull estimates can be utilized to

approximate the initial skews and the drift rate between the two hosts’ clocks.Ashton later built on
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this work by adding estimates for minimum delay between the two hosts and a two-point method

for calculating the initial skew and drift rate [4].

Hofmann and Hilgers [22] proposed a more general algorithm for determining a global

time base from such traces. Generalizing on Duda et al. ’s assumptions, they assume knowledge

of some set of causal dependencies between events in the various localtraces. Using these depen-

dencies, they create intervals which are guaranteed to include the correction offset between the two

involved host clocks. This is very similar to our approach for type-one logfiles: our approach can

be viewed as an adaptation of their algorithm to a type-one setting where we utilize ordering as

approximate causal dependencies. They likewise utilize shortest-path analysis to refine the inter-

vals. Because of their exact causal dependencies, however, they did not have to deal with infeasible

shortest-paths and thus our exploration of the ties between feasibility and delay is novel. They also

describe how to utilize simple linear regression analysis to approximate drift.

In all of this prior work, the algorithms require temporal information about messages

passed both to and from a pair of hosts. In Duda et al. the messages must bepassed directly between

the pair of hosts; in Hofmann and Hilgers the messages can be indirectly passed. Either way, if the

communication architecture is many hosts to a single one (many-to-one), with no communication

in the other direction, then these algorithms will not be applicable.
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Chapter 6

Conclusion

6.1 Future Work

Several aspects of time stamp synchronization would benefit from furtherstudy. To begin

with, a more extensive analysis of how to best choose a reference hostcould yield even more accu-

rate synchronization. Extending the model to include more general temporalphenomena could in-

crease the robustness of our approach. For example, including non-monotonically increasing clocks

(i.e., allowing clock resets) could be very important. Allowing knowledge of causal dependencies

between alerts might benefit synchronization algorithms in some settings. Finally, investigating the

usefulness of this approach in orthogonal areas, such as sensor networks, is left as open work.

6.2 Conclusion

State of the art analysis techniques and algorithms for distributed sensor alerts require

synchronized temporal data. In practice synchronization can be difficult to achieve: even if a pri-

ori clock synchronization algorithms are supposed to be utilized, misconfiguration or poor oversight

can result in time stamps that are not tightly synchronized. This problem has received little attention

from the research community even though it can render a large body of analysis techniques and al-

gorithms essentially useless. The only previous work addressing this problem requires modification

of existing analysis algorithms.

We proposed using a posteriori time stamp synchronization to solve this problem and

rigorously investigate the approach. We described a model of temporal datain distributed sensor

logs, that can also be applied to any many-to-one message passing system. The model gives us

insight into the inherent ambiguity between delay and skew: we showed that no general algorithm

can precisely synchronize time stamps. In spite of this general result, we gave two best-effort
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approximation algorithms that can synchronize time stamps accurately in realistic settings. Even

though our algorithms were developed under the assumption of negligible drift, simulation shows

that typical clock drifts do not significantly affect accuracy. Our simulations show that a posteriori

synchronization can be a valuable tool for security auditors.
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