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ABSTRACT
Infrastructure-as-a-system compute clouds such as Amazon’s
EC2 allow users to pay a flat hourly rate to run their virtual
machine (VM) on a server providing some combination of
CPU access, storage, and network. But not all VM instances
are created equal: distinct underlying hardware differences,
contention, and other phenomena can result in vastly dif-
fering performance across supposedly equivalent instances.
The result is striking variability in the resources received for
the same price.

We initiate the study of customer-controlled placement
gaming : strategies by which customers exploit performance
heterogeneity to lower their costs. We start with a measure-
ment study of Amazon EC2. It confirms the (oft-reported)
performance differences between supposedly identical instances,
and leads us to identify fruitful targets for placement gam-
ing, such as CPU, network, and storage performance. We
then explore simple heterogeneity-aware placement strate-
gies that seek out better-performing instances. Our strate-
gies require no assistance from the cloud provider and are
therefore immediately deployable. We develop a formal model
for placement strategies and evaluate potential strategies via
simulation. Finally, we verify the efficacy of our strategies
by implementing them on EC2; our experiments show per-
formance improvements of 5% for a real-world CPU-bound
job and 34% for a bandwidth-intensive job.

Categories and Subject Descriptors
D.4.1 [Operating System]: Process Management—schedul-
ing ; J.7 [Computer Applications]: Computers in Other
Systems—process control

General Terms
Economics, Experimentation, Measurement, Performance
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1. INTRODUCTION
Cloud computing providers use a simple billing model in
which customers pay a flat hourly fee for a bundle of vir-
tualized resources. For example, Amazon’s Elastic Com-
pute Cloud (EC2) provides a variety of instance types [2]
that each offer a level of CPU power measured by abstract
units (EC2 Compute Units, or ECUs) together with storage,
memory, and either “low”, “moderate”, or “high” I/O perfor-
mance. Rackspace, Microsoft Azure, and other providers
are similar [21,24].

However, not all instances of a given type are created
equal. Data centers grow to contain multiple generations
of hardware (e.g., network switches, disks, and CPU archi-
tectures) as old components are replaced or new capacity
is added. Network topology may vary, with some routes
having lower latency or supporting higher bandwidth than
others. Multiplexing systems across customers with differ-
ent workloads can also lead to uneven resource contention
across the cloud. While a provider can try to render perfor-
mance uniform across all users of the same abstract instance
type, in practice this is untenable due the costs of maintain-
ing homogeneous infrastructure and enforcing rigid isolation
policies.

Prior work reports that performance variability is, indeed,
the common case in clouds today [7,16,18,20,22,28,29,34]:
a customer that runs the same application on two instances,
of the same abstract type, will often end up paying the same
amount for measurably different performance.

We therefore initiate the study of placement gaming : cust-
omer-controlled strategies for selecting instances in order to
exploit performance heterogeneity. The result of successful
gaming is improved efficiency, such as lowered cost for the
same amount of computation, or increased performance for
the same cost.

We start by addressing the following question: Do there
exist performance differences, in practice, large enough to
motivate placement gaming? To answer this, we perform
a preliminary evaluation of EC2 by measuring the perfor-
mance of a variety of resource-intensive benchmarks on a
pool of machines over the course of a week. We observe
variation due to different generations of processors, but,
perhaps more surprisingly, differences in performance even



when two instances use the same processor type. Our re-
sults, described in detail in Section 2, show moreover that
variation can be large, with performance varying by more
than a factor of three across different instances.

These findings motivate the development of strategies for
placement gaming. We focus on the practically relevant set-
ting in which clouds provide only coarse-grained control over
placement, i.e., one can start new instances or shutdown ex-
isting ones but cannot exert direct control over what physical
machines these instances are assigned to. It may seem that
this provides little ability to game placement, but in fact
even these rudimentary options give rise to a classic rein-
forcement learning [23] setting in which one seeks to find a
balance between exploitation (continued use of an instance)
and exploration (launching new instances).

We provide a preliminary formal model within which strate-
gies can be expressed and analyzed. We detail two sim-
ple mechanisms useful in building strategies. The first is
up-front exploration, in which a customer initially launches
more instances than needed and retains only ones predicted
to be high-performers. The second mechanism is opportunis-
tic replacement, in which a customer can choose to migrate
an instance (by shutting it down and launching a fresh copy)
based on projections of future performance for the instance.

Strategies require estimation of an instance’s future per-
formance. The simplest strategies we explore just look at
historical performance of the customer’s job, and will do
well when temporal variability on instances is relatively low.
They have the added advantage of being black box, mean-
ing their implementation requires no understanding of the
cloud infrastructure. We also explore gray-box strategies
that leverage partial knowledge of the provider’s infrastruc-
ture, such as known distributions of processor types, network
topology, or scheduling mechanisms.

We build a simulator to quickly explore gray-box and
black-box strategies using both synthetic and measured per-
formance models. This allows us to quickly compare a wide
range of strategies, and suggests that even easily-implem-
ented strategies can result in large speedups. To demon-
strate the deployability of such strategies in EC2, we imple-
ment controllers for a black-box, opportunistic-replacement
strategy for two parallelizable applications: NER [17, 32],
a compute-intensive natural language recognizer; and the
Apache web server [5] driven by a bandwidth-limited work-
load. We compare the efficiency—average throughput in
records per second or MB/s per instance hour—of this strat-
egy against a null strategy that simply uses the instances
provided by EC2. Overall, our experiments demonstrate ef-
ficiency improvements of 5% for NER and 34% for Apache,
which is in line with our simulation results.

2. PERFORMANCE ON EC2
Cloud computing environments can exhibit substantial per-
formance heterogeneity. Past research has demonstrated
variations in CPU [28], memory [28], network [20, 28, 34],
disk [20, 28], and application [22] performance. In order
to understand this heterogeneity, we perform a longitudi-
nal study of workloads to determine the range and nature
of variation.

The goals of our study are to quantify three types of het-
erogeneity:

1. Inter-architecture: differences due to processor archi-
tecture or system configuration.

Benchmark Measured resources
Slurp CPU percentage
NQueens CPU
mcf CPU+Memory
sphinx3 CPU+Memory
iperf Network bandwidth
Bonnie++ Local Disk / EBS

Table 1: Microbenchmarks for EC2 measurement
study.

2. Intra-architecture: differences within a processor ar-
chitecture or system configuration.

3. Temporal: differences within a single machine over
time.

The relative extent of these differences can motivate different
placement-gaming strategies.

2.1 Methodology
We performed our experiments in the US-East region of
Amazon’s Elastic Compute Cloud (EC2). This region con-
sists of four availability zones1, labeled as us-east-1a, us-
east-1b, us-east-1c, and us-east-1d (the implicit ordering
arising from the letters is arbitrary). For simplicity, we
focused on m1.small instances, which give a guest virtual
machine approximately 40% of a CPU based on our mea-
surements. Published results demonstrate similar variations
on other instance types [22].

We launched 20 EC2 m1.small instances in us-east-1a at
2pm UTC-6 on March 13, 2012 and 20 similar instances in
us-east-1c at 6pm on April 9, 2012. Every instance ran each
microbenchmark once per hour for 1 week. Part way through
the us-east-1c run, we were notified that one instance was on
a machine scheduled for replacement; thus, we report on a
total of 39 instances. Unless otherwise indicated, we analyze
performance across all 39 instances and do not distinguish
between zones.

Table 1 details a set of benchmarks we use to evaluate in-
stance performance. These benchmarks focus on three main
resources: CPU, network, and storage. For CPU, we used
a mix of micro- and macro-level benchmarks. Slurp and
NQueens are custom benchmarks designed to stress purely
the CPU. Slurp measures CPU time given to an instance,
while NQueens solves the classic n-queens problem for n =
14. We also used two memory-intensive benchmarks from
the SPEC CPU 2006 [12] benchmark suite (mcf and sphinx3)
that stress the last-level cache [14], which varies widely in
size across architectures and is shared across guests. For net-
work, we used iperf [33] to measure the outbound bandwidth
of instances to another EC2 instance in the same zone. For
storage, we used the Bonnie++ benchmark suite [8] to mea-
sure the performance of two storage options, Elastic Block
Store (EBS) [3] volumes and local disk, using block reads
(BRD) and block writes (BWR).

In the next three sections we will report on aggregate
statistics derived from all 39 launches.

1“Availability Zones are distinct locations that are engi-
neered to be insulated from failures in other Availability
Zones and provide inexpensive, low latency network connec-
tivity to other Availability Zones in the same Region.” [1]
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Figure 1: Inter-architecture performance variation of benchmarks. Speedups are relative to the worst-
performing architecture.

CPU Count Freq. Cache Introduced
AMD 2218 HE 4 2.6 GHz 1 MB Q1 2007
Intel E5430 9 2.66 GHz 6 MB Q4 2007
Intel E5507 7 2.26 GHz 4 MB Q1 2010
Intel E5645 19 2.4 GHz 12 MB Q1 2010

Table 2: Frequency of observed CPUs (as reported
in /proc/cpuinfo) in the measurement study and their
processor frequency, last-level cache capacity, and
when they were introduced by AMD or Intel.

2.2 Heterogeneity Across Processor Architec-
tures

A major source of heterogeneity in cloud environments is
physically different processor architectures. This can oc-
cur either when a mix of machines is purchased initially or
when a data center adds machines of a different type. We
identified four processor types in use by our EC2 instances,
shown in Table 2. Differences between processors directly
affect performance, as newer generations typically incorpo-
rate more advanced pipelines and memory systems. Fur-
thermore, in our experiments EC2 does not penalize virtual
machines using newer processors with reduced CPU time.
Charts in Figure 1 show the variation in performance for
CPU-intensive workloads, network bandwidth, disk band-
width, and network storage bandwidth across the four ar-
chitectures.

Across all four resources, these results show significant
differences in performance across the four processor archi-
tectures. Furthermore, the magnitude of performance dif-
ference varies widely by workload. For the CPU workloads,
programs that stress the memory system, such as mcf and
sphinx3 show much wider performance ranges (280% im-
provement of E5645 over AMD for mcf). The larger cache on
the Intel CPU (4–12 MB versus 1 MB for AMD) greatly im-
proves its performance. Local disk performance is similarly
variable. As with the CPU tests, the performance varies by
workload: for read, the E5645 performed best (67% faster

1a 1b 1c 1d All
AMD 134 0 343 0 477
E5430 521 0 469 33 1024
E5507 191 4 660 113 968
E5645 224 195 418 90 928

Table 3: Counts of architectures seen in the four
us-east zones.

than the worst type) while for write, these machines were
3% slower than the E5430s. EBS also shows variations by
processor type.

Overall, these results demonstrate substantial performance
variation across system architectures, and that relative per-
formance varies by workload. Thus, many applications may
benefit substantially if they can run on the best architecture
for their needs. We note that availability zones differ in their
distribution of CPU architectures. Table 3 gives the distri-
bution of CPU architectures across zones, as determined by
aggregating all EC2 instances our group launched over 9
months up to the time of writing.

2.3 Heterogeneity Within Processor Architec-
tures

There is also substantial variation across systems with the
same architecture. This can arise from different system-
level components, such as memory and peripherals, and from
long-term interference from other workloads on the same
node. In our experiments, we found such intra-architecture
variation to be quite common. Figure 2 shows some exam-
ples of variation for CPU, network, and EBS.

Table 4 shows the speedup of the best performing instance
of a given architecture type over the worst performing. Over-
all, CPU performance shows the least variability (0.5–15%),
and the NQueens workload shows the least variability within
the CPU tests. This program has a very small working
set, and thus its performance is dominated by the processor
pipeline and frequency, which vary little across machines.
For CPU-sensitive applications the variation within a pro-



Res. Benchmark AMD E5430 E5507 E5645

CPU

Slurp 3.7% 7% 2.2% 2.7%
NQueens 3.5% 7% 1% 0.5%
mcf 8.2% 13.6% 4.9% 10.6%
sphinx3 9.6% 8.5% 6% 14.8%

Net iperf 12.1% 125% 11.2% 11.5%

Disk

Local-BRD 12.6% 15.6% 33.9% 37.7%
Local-BWR 66.5% 32.7% 269% 109%
EBS-BRD 23.4% 106% 29.3% 45.4%
EBS-BWR 18.7% 87.2% 11% 40.5%

Table 4: Speedup of the fastest instance’s average
performance over the slowest instance’s average per-
formance for each architecture.

cessor type tends to be smaller than that between different
processor types, while for disk and network the opposite is
true. These results demonstrate that, in particular, CPU
architecture by itself may not be a sufficient indicator of
performance.

2.4 Temporal Heterogeneity
The performance of a single instance can vary over time
due primarily to competing workloads. As shown in the
examples from Figure 2, the performance of a single machine
can be very flat, e.g., the network bandwidth of machine
E5430-1 in graph (b). For comparison, machine E5430-2 in
the same plot exhibits bandwidth variations between 20s to
75MB/s.

Thus, the stability of a workload depends highly on the
machine on which an instance is placed, as well as the re-
sources it uses. We report the minimum, maximum, and
average coefficient of variation (CoV) for all workloads in
Table 5. CPU performance is the most stable: the average
of the CoV for all CPU benchmarks is 1.7%. On the other
hand, the average of the CoV across all the storage bench-
marks is 9.8%. These results demonstrate that the hyper-
visor’s ability to isolate competing workloads varies by the
resources used; for example, we can conclude from this that
Xen is much better at fairly sharing CPU time than disk
access. This fits well with previous studies of isolation in
Xen [11].

Res. Benchmark Min Max Average

CPU

Slurp 0.12% 3.3% 1.1%
NQueens 0.13% 3.6% 0.92%
mcf 0.75% 13.3% 2.4%
sphinx3 0.6% 13.0% 2.8%

Net iperf 0.35% 25.4% 4.4%

Disk

Local-BRD 0.5% 10.2% 4.0%
Local-BWR 4.9% 20.3% 10.7%
EBS-BRD 4.0% 40.9% 12.1%
EBS-BWR 2.7% 24.9% 12.5%

Table 5: The minimum, maximum, and average co-
efficient of variation (CoV) for each benchmark.

2.5 Summary
Overall, these experiments demonstrate significant variation
between architectures, individual machines, and over time.
Table 6 summarizes the result. The variation between archi-
tectures demonstrates that cloud customers may want to se-
lect specific processor types to optimize performance. How-
ever, the performance variation within a processor type fur-
ther shows that this may be insufficient for I/O performance,

as there is similarly high variation within a single processor
type. Furthermore, the variation of individual nodes over
time indicates that workloads may prefer nodes with more
stable performance and benefit from migrating away from
congestion.

Resource Inter-arch. Intra-arch. Intra-node
CPU 282% 15% 13%
Network 88% 125% 25%
Local Disk 67% 269% 20%
EBS 33% 106% 41%

Table 6: The maximum speedup, in percent, of best
performance over worst performance across nodes
with different architectures (Inter-arch.), nodes with
the same architecture (Intra-arch.), and time peri-
ods on the same node (Intra-node).

3. PLACEMENT GAMING
As shown in the preceding section, certain machines may
give much better performance than others in a cloud. The
goal of our work is to show how customers can guide the
placement of their tasks onto machines with good perfor-
mance, which can lower the cost of a task, reduce its com-
pletion time, or otherwise improve efficiency.

Our setting, then, is that of a customer, the tenant, run-
ning a job denoted by J on a public cloud such as Amazon’s
EC2. The objective of placement gaming is to schedule J ,
using only the provider’s legitimate API, in a manner that
optimizes performance relative to cost. Making this difficult
is the fact that cloud providers, not the customers, control
assignment of VMs to physical machines. Typical provider
APIs allow a tenant only to start and stop instances of vari-
ous types in a particular portion of the cloud (i.e., availabil-
ity zone or region).

In some cases, this API already admits trivial gaming
strategies. One would have the tenant choose an availabil-
ity zone with a known-larger fraction of newer CPU archi-
tectures. But such a strategy is not always sufficient: not
all workloads benefit from faster CPUs (see the previous
section), customers may prefer to use multiple availability
zones to improve reliability, or the number of available in-
stances in a given zone may be limited. Similarly, a cus-
tomer may achieve different efficiencies from different in-
stances types, such as small (shared core) or large (dedicated
multiple cores) instances. As with the choice of availability
zone, choice of instance type provides only a limited oppor-
tunity for gaming. We focus, therefore, on strategies that
exploit the heterogeneity within a particular zone and in-
stance type; our strategies can be easily adapted to take
advantage of targeted zones or instance types.

The strategies we develop exploit several features of cloud
computing. First, cloud providers often bill for usage on fine
time scales; for example, EC2 charges by the hour. Thus,
it is possible to use a machine for an hour and give it up if
it is too slow. Second, cloud providers allow programmatic
control over launching virtual machines. This allows con-
trol software to dynamically launch additional instances in
the hope of improving performance. Third, cloud workloads
are often cost-associative and can use varying numbers of
machines; this allows the productive use of extra machines
for short periods. Finally, many cloud workloads store their
persistent state in networked storage, such as Amazon’s EBS
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Figure 2: Examples of intra-architecture performance variation.

network blockstore. Thus, moving a workload from one ma-
chine to another need not entail migration of the entire data
set. In addition, applications run in distributed systems like
EC2 are often intentionally optimized to be able to shut
down and restart quickly.

3.1 A Placement Model
We begin by describing a general model for the placement
problem that abstracts the problem away from specific ap-
plications or cloud providers. For simplicity, we assume that
the tenant launches servers synchronously, and that servers
are scheduled with a minimum granularity that we refer
to as a quantum. In EC2, for example, the most natural
job quantum is one hour, since this is the minimum billing
unit. Job time is organized into integral quanta, denoted by
t = 1, 2, . . ..

The provider draws servers from some pool. There is vari-
ation across servers in the amount of job-specific work they
perform within a time quantum (cross-instance heterogene-
ity). There is also variation across the amount of work per-
formed by a single instance across time quanta (temporal
heterogeneity). Thus, we denote the rate of job execution of
a given server S during a time quantum t as rt(S) ∈ [0,∞].

We emphasize that a server’s rate is job-specific, as dif-
ferent jobs leverage different blends of resources. Looking
ahead, our case studies use rates representing the number of
records processed per unit time for a natural-language pro-
cessing task and the throughput of a cluster of web servers.

We assume for simplicity that the performance of each
server is dictated according to a probability distribution S.
Thus the sequence of rates r1(S), r2(S), . . . is drawn inde-
pendently from S for each S.

A placement schedule P is a sequence of sets of servers
denoting job placement across time. Let P [t] be the set of
servers assigned to a job in time quantum t. For a placement
schedule P of duration T , the cost is

c(P ) =

T∑
t=1

|P [t]| ,

i.e., the total number of server-quanta units it consumes. We
model overheads associated with launching an instance by
a time penalty m, which is the fraction of the first quantum
consumed by overhead. For example, our simulations will
use a very conservative estimate of m = .05, which is 180
seconds if the quantum is an hour. We do not model any
other costs of migration, such as data transfer fees. Let
first(S) ∈ {1, . . . , T} denote the quantum at which the job
was launched on S. The achieved rate of S is

r̃t(S) =

{
rt(S) · (1−m) if t = first(S)
rt(S) otherwise

.

Then the work yielded by a placement schedule P is

w(P ) =

T∑
t=1

∑
S∈P [t]

r̃t(S) .

In addition, let w(P [t]) =
∑

S∈P [t] r̃(S) denote the work

output by a placement schedule in quantum t, and c(P [t]) =
|P [t]|, similarly, denote the cost.

It is also useful to define the support of a placement sched-
ule P as supp(P ) = minT

t=1|P [t]|. This is the minimum
number of servers executing J in any quantum.

3.2 Placement Strategies
A tenant employs a placement strategy σ, which is a scheme
that guides the construction of a placement schedule as a
job executes. Tenants can control placement only indirectly,
by starting and stopping instances. We therefore focus on
strategies σ that, at the end of any quantum t > 0, deter-
mine: (1) which servers in P [t] to terminate and thus which
servers in P [t] to retain, i.e., continue running in quantum
t + 1; and (2) how many fresh servers to request from the
provider in quantum t + 1. More formally, at the end of
quantum t, a placement strategy determines:

1. A set of servers K[t+ 1] ⊆ P [t] to keep, i.e., to include
in P [t + 1]. All other servers are terminated. Let
k[t] = |K[t]|.

2. A number f [t] of fresh servers to invoke in the next



quantum, i.e., to add to P [t + 1]. We denote the re-
sulting set of fresh servers F [t+ 1].

Thus, P [t + 1] = K[t + 1] ∪ F [t + 1]. Note that for t = 1,
all servers are fresh instances, i.e., P [1] = F [1]. Before
job execution, at the end of quantum t = 0, the strategy σ
determines the number of initial servers to spin up by setting
f [1]. As there are no servers to retain at the beginning of a
job, K[1] = 0.

Formally, then, a strategy σ takes as input the current
time t, the so-far placement schedule P [1 . . . t], and the so-
far observed rates. It outputs (K[t+ 1], f(t+ 1)).

There are several natural performance objectives for a
placement strategy. A tenant may wish to minimize the cost
or the latency of executing a job J . Or the tenant may wish
to bound the cost of its execution of job J , but maximize
the amount of achieved work. Additionally, as a placement
strategy σ generates schedules P probabilistically based on
the distribution S of available machines,“maximization”may
be defined in any of a number of ways: In terms of expected
work w(P ), in terms of the probability of w(P ) exceeding a
certain threshold, etc.

For simplicity, we focus on the objective of maximizing the
efficiency e(P ) of a job J . This is the work per unit cost av-

eraged across the entire execution: e(P ) = w(P )
c(P )

where c(P )

incorporates both the time spent executing the workload as
well as time for testing the performance of instances and for
migrating an application between instances.

3.3 Types of Strategies
A placement strategy embodies a trade-off between explo-
ration and exploitation. It may be beneficial to retain and
repeatedly use a “good” server S, i.e., one with high rates.
Conversely, though, launching additional servers offers the
possibility of discovering new servers with higher rates than
retained ones.

The problem of job placement may be viewed as a Markov
decision process (MDP) [36], in which the set of servers P [t]
at time t is the system state, and specification of (K[t +
1], f(t + 1)) is an action. However, for complex distribu-
tions S of performance and large number of servers, the state
space is quite large. Solution approaches such as dynamic
programming may be computationally costly, and also have
the drawback of yielding complicated placement strategies
and cost structures.

Instead, we consider a restricted space of placement strate-
gies Σ(A,B) that we call (A,B)-strategies. These run at
least A servers in every quantum and launch an additional B
“exploratory” instances for one quantum each at some point
during the execution. This model covers a wide variety of
strategies that either launch additional instances solely for
the purpose of evaluating their performance as well as strate-
gies that replace executing instances.

More formally we have:

Definition 3.1. For fixed number T of quanta, an (A,B)-
strategy σ ∈ Σ(A,B) is one that always yields a placement

schedule P in which supp(P ) ≥ A and
∑t

i=1 f [i] = A + B.
An (A,B)-strategy has fixed cost c(P ) = TA+B.

An example is the (A, 0)-strategy σnull, the null strat-
egy, that launches A instances in the first quantum and uses
them for the remainder of the schedule. In fact this strategy
is optimal should all servers offer precisely the same per-
formance. When heterogeneous performance is the norm,

though, the class of Σ(A,B) allows more refined strategies.
We will explore two general mechanisms useful in building
(A,B)-strategies:

• Up-front exploration: We would like to find high-
performing instances early so that we can use them
for longer. An (A,B)-strategy that uses up-front ex-
ploration launches all B “exploratory” instances at the
start of a job, i.e. at time t = 1. At t = 2 the highest
performing A instances are retained and the other B
instances are shut down.

• Opportunistic replacement: By migrating an instance—
shutting it down and replacing it by a fresh one to
continue its work—we can seek out better perform-
ing instances or adapt to slow-downs in performance.
An (A,B)-strategy that uses opportunistic replacement
will retain from time t any instance that is deemed a
high performer and migrate any instance that is a low
performer.

These mechanisms rely upon accurate judgments about in-
stance performance: up-front exploration must rank server
performance and opportunistic replacement must distinguish
between low and high performance. Here we find a natural
dichotomy exists between strategies that do so by exploiting
partial knowledge about the infrastructure and those that
do not:

• Gray-box (GB) strategies make decisions based in
part on partial knowledge of the provider’s infrastruc-
ture, such as hardware architectures, network topol-
ogy, provider scheduler, or historical performance of
instances. For example, we will explore strategies that
leverage the distribution of CPU architectures histor-
ically observed in EC2.

• Black-box (BB) strategies use only the measured
performance (rate) of the tenant’s instances.

While gray-box strategies are potentially more powerful,
black-box strategies can be simpler and more portable. For
example, they can work for more causes of heterogeneity and
for unknown machine distributions.

We will explore several (A,B)-strategies later in the pa-
per. Here we make all the above concrete by detailing our
simplest black-box strategy, called PERF-M, which combines
up-front exploration (when B > 0) with opportunistic re-
placement. At a high level, the strategy uses the up-front
exploration stage to estimate average performance of the job,
and then in the remainder of the run the strategy attempts
to beat that average. PERF-M ranks instances at the end of
t = 1 based solely on their performance during t = 1.

For opportunistic replacement, PERF-M migrates an in-
stance if its recent performance drops sufficiently below the
average performance of all instances that ran in the first
quantum. To define “sufficiently”, we set a heuristic thresh-
old that estimates the expected cost of the migrations needed
to achieve above-average performance, amortized across the
remaining time of the run. Formally, the replacement rule
is that a server S will be migrated should

avg1 − rt(S) > δ =
2m

T − t (1)

where avg1 =
∑A+B

i=1 r1(S)/(A + B). (Recall that m is the
time penalty of migration and T is the total duration of
computation).

In detail the strategy works as follows.



(1) Launch A+B instances at t = 0. The set of instances
is P [1].

(2) At the end of the first time quantum, measure the rate
r1(S) for each instance S ∈ P [1]. Compute the mean

performance as avg1 =
∑A+B

i=1 r1(S)/(A + B). Let
the retained set K[2] ⊆ P [1] include instances S such
that both: (i) S is one of the top A performers within
P [1] and (ii) avg1 − r1(S) ≤ δ. Shut down all other
instances, i.e. P [1]\K[2], and launch A − |k[2]| fresh
instances to maintain a minimum of A instances in
every period.

(3) At the end of each quantum 2 ≤ t < T and for each
instance S ∈ P [t], put S in K[t+1] if avg1−rt(S) ≤ δ.
Shut down all other instances P [t]\K[t+1] and launch
A− |k[t+ 1]| fresh instances.

Thus, the strategy starts more than the necessary number of
instances and shuts down the slowest B of them at the end
of the first period. In addition, in every period it shuts down
all machines with below-average performance and replaces
them.

We note that an embellishment on PERF-M would be to
use moving estimates of both the average performance and
each server’s performance, for example by using exponen-
tially weighted moving averages.

4. STRATEGY SIMULATIONS
We evaluate various configurations of the two basic place-
ment strategies, up-front exploration and opportunistic re-
placement, using a simulator. This allows us to quickly eval-
uate the impact of different cloud provider configurations,
such as the mix of fast and slow machines, performance vari-
ability (due to performance isolation or lack thereof), and
of various workloads.

These simulations help us predict the expected behavior of
various strategies, as well as understand the effect of work-
load or configuration on the possible speedup from place-
ment gaming.

4.1 Methodology
We construct a simulator that takes as input a distribution
of machines and of machine performance. The distribution
can be purely synthetic, to explore the design space, or taken
from measurements, and it is specified by indicating a set of
instance types. Each type has associated to it a distribution
fraction in [0, 1] representing the prevalence of this type, as
well as a mean rate and a standard deviation for rates. The
distribution fractions of all types should sum to one. To se-
lect a new instance, then, the simulator randomly chooses
an instance using weights indicated by the distribution frac-
tions. Then, the instance’s per-quantum performances are
selected as independent normal random variables with the
mean and standard deviation of the type.

The simulator also takes as inputs what strategy to run
and the necessary related parameters, i.e., A, B, T , and m.

The simulation uses the indicated strategy and parame-
ters. Any time an instance is launched, its rates are selected
as described above. The rates this selects are used for the
strategy’s scheduling decisions and also to calculate total
work accomplished. In every run we also simulate the null
strategy σnull using the first A instances launched. This al-
lows us to directly compute the speedup offered by a place-
ment schedule P arising from a strategy and the placement

schedule Pnull for the null strategy by

spd(P, Pnull) =
e(P )

e(Pnull)
=

w(P ) ·T ·A
w(Pnull) ·(T ·A+B)

where we have substituted in for the costs of the two place-
ment schedules, c(P ) = T ·A+B and c(Pnull) = TA. Work
completed is calculated using the achieved rate (which sub-
tracts time lost due to migration) times the total number of
instance hours.

4.2 Synthetic Simulations
Three major features of the cloud environment affect the
achievable speedup from placement gaming: the magnitude
of the difference in performance between machines, the per-
formance variability observed by applications, and the dis-
tribution of differently performing machines. The size of the
differences between machine performance essentially deter-
mines the cost of running on a slow machine (or conversely,
the benefit of being on a fast machine). Performance vari-
ability affects the ability of a placement strategy to accu-
rately predict future performance from a small number of
measurements, while the distribution of machines affects the
likelihood of improving performance by migrating to a new
instance.

To limit the scope of our parameter search, we fixed T =
24 and A = 10 to indicate a workload that ran for 24
hours with 10 instances computing at all times. We ex-
plored a range of values for B and evaluated both up-front
exploration and opportunistic replacement strategies. While
holding other variables constant we varied (in turn), the dif-
ference between mean architecture performance, variability
within an architecture, and the distribution of machines be-
tween the two architectures. For simplicity, we here look at
a distribution S of only two types of machines, “good” ma-
chines and “bad” machines with an even likelihood of each.
As these are only synthetic results, we present a qualitative
description of the results.

Architecture variation. First, we perform an experiment
in which we hold the performance variability (standard de-
viation) steady at 5% of the average performance (a number
chosen to match what we observed in our testing of EC2)
and evenly spread machines between the two distributions.
We then varied the gap between “good” machines and “bad”
machines from 10% to 50%.

Up-front exploration strategies do significantly better as
the separation between“good”and“bad”instances increases.
When the separation is small, the two distributions over-
lap so much that intra-instance variation is nearly as large
as inter-instance variation. An up-front strategy measuring
performance during the first time quantum cannot deter-
mine which instance will perform best in the long run. Re-
placement strategies do better than the up-front strategies
in all cases, and the effect of larger separation is seen most
as B increases.

Instance variability. Next we looked at the impact of vari-
ability within a machine’s performance by holding steady the
average performance difference between “good” and “bad”
instances at 30% (again, a number we derived from results
we’ve seen in our testing of EC2) and varying instead the
standard deviation of performance within that instance type.
We vary the standard deviation from 2.5% up to 10%.

What we found, not surprisingly, is that performance vari-
ability does not have much impact on the upfront strategies,



but does impact the gains seen by our replacement strate-
gies. The upfront strategies merely sample from the com-
bined distribution, whose average remains constant. Widen-
ing of the distributions allows for a few slightly better in-
stances, which are canceled out by a few slightly worse in-
stances available and the larger number of average instances.
If we were able to raise B significantly, we could sample more
of the space and potentially do better with wider distribu-
tions, but this would require a much longer time horizon to
recoup the cost of a larger initial search.

In a replacement strategy, however, the tighter the distri-
bution, the better the performance achieved. This is partic-
ularly visible when B = 0. In this case, we are not launching
any extra instances at the start and relying solely on migra-
tions to improve performance. When the distributions are
tight, all of the “bad” instances will perform significantly
worse than the average, causing an attempted migration.
When this migration is successful in moving that instance
to the “good” distribution, the performance improvement
will be significant. Two things happen as the distributions
widen and overlap: 1) some of the “bad” instances move
close enough to the average to avoid migration, 2) success-
ful migrations may be only a slight improvement.

Architecture mix. Lastly we look at how the distribution
of machines affects each strategy. So far we have been ana-
lyzing a 50/50 split, but it is important to understand how
each strategy fares when the cards are stacked in its favor,
or against it. Again, we test a number of distributions.

Up-front strategies naturally perform best when the frac-
tion of “good” machines is high. For a low fraction of “good”
machines, the performance of up-front strategies increases
linearly as B increases, and increases faster the higher the
fraction of “good” machines, eventually topping out once the
total number of instances started (A + B) is enough to en-
sure that at least A of them are in the “good” distribution.
As the fraction of “good” machines goes up, a smaller B is
needed to achieve the same performance, which lowers total
cost.

For replacement strategies, the analysis is a little more
complex. If the number of “good” machines is too small, the
initial instances may all land in the “bad” distribution and
the existence of better machines may be missed. If the num-
ber of “good” machines is small, the difficulty migrating to
a “good” machine may outweigh the benefit of getting there,
especially if the length of the workload is short. Perfor-
mance of the replacement strategies increases as the fraction
of good machines increases until roughly 1/3rd of the ma-
chines are “good”. Above that point, replacement strategies
continue to outperform both the null and up-front strategies,
but the percentage improvement over a null strategy starts
to go down as the null strategy begins to improve. The op-
portunity for improvement over a null placement strategy
seems optimal around the point where 1/3 of the machines
perform better than the rest.

5. APPLICATIONS
We next demonstrate the real-world efficiency benefits of
placement gaming on EC2. We focus on two workloads, one
CPU-bound and one bandwidth-bound.

To stress CPU performance, we use the Stanford Named
Entity Recognizer (NER) tool [32]. This tool performs per-
fectly parallelizable natural language processing tasks and is

CPU Fraction Mean StDev
AMD 0.18 9.07 0.29
E5430 0.25 10.47 0.44
E5507 0.35 10.38 0.62
E5645 0.22 11.94 0.47

Table 7: Performance statistics for NER broken
down by architecture. The fraction column indi-
cates the percentage of such CPUs in us-east-1c.
The means and standard deviations are in records
per second.

used by several research groups at the University of Wiscon-
sin [30,38,41]. NER operates on short strings of text called
records, which are batched together into chunks. For our ex-
periments, we obtained a data set, used locally [41], consist-
ing of approximately 12 million records. We split this data
set up into 4 MB chunks; each invocation of NER processes
one of these chunks and produces a 20 MB file of annotated
text.

To stress network bandwidth, we use the Apache web
server. Each instance runs Apache version 2.4.2 hosting a
single 100 MB file. For each web server, we launch two sep-
arate client instances that repeatedly request the file with a
concurrency level of ten using ApacheBench version 2.3 [4].
The rate for a server is the sum of the bandwidth measured
by both clients. By using two clients, we create a bottle-
neck at the server and ensure that we are not unintention-
ally measuring other network characteristics, such as client
bandwidth.

In the preceding sections we reported per-quantum rates.
Here, we instead use application-specific metrics (records/sec
and MB/s), and convert to per-quantum rates only when
needed.

5.1 Performance Measurements
In order to verify the possibility of improving performance
through placement gaming, we performed an initial round
of performance heterogeneity measurements. For both NER
and Apache, we ran 40 m1.small EC2 instances for 24 hours.

Figure 3 (top) depicts a time series of performance while
Table 7 gives a breakdown, by CPU architecture, of the
performance in records per second of NER. As expected,
certain architectures perform better than others: the best-
performing architecture, E5645, performs 31% faster than
the slowest, AMD. The temporal variation for NER is quite
low, meaning the performance over time is stable and pre-
dictable.

For Apache, the measurement study revealed more com-
plex behavior. Figure 3 (bottom) depicts a time series, drawn
as connected lines, of the instances’ performance. Compared
to NER, there is a wider range of performances, with over
a 270% difference between the best and worst performers.
Significantly, many instances underwent large, rapid shifts
in throughput. Unlike NER, performance is only loosely
correlated with architecture, with AMDs and E5430s per-
forming better in general (but not always) than E5507s and
E5645s. There are also clear performance bands: on the low
end near 35 MB/s and a slightly larger band between 70
MB/s and 90 MB/s. We do not know the exact reasons for
these bands, but clearly EC2 is shaping traffic, perhaps due
to contention or topology. Past research has shown that up
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Figure 3: Performance over a 24 hour period for
NER (top) and Apache (bottom), each using 40 in-
stances.

to eight m1.small instances may reside on the same system,
which could lead to contention for bandwidth [26]. In fur-
ther experiments with a client external to EC2 we observed
similar behavior, suggesting that this phenomenon is not an
artifact of sending traffic only within EC2.

5.2 Concrete Strategies
We begin with several gray-box (A,B)-strategies for NER.
These rely on a one-time measurement phase that correlates
performance of the NER task with different architectures (as
reported by CPUID) and, implicitly, on the distribution of
architectures available in a zone. In our experiments, we
will use measurement study in the preceding section as this
one-time measurement.

The CPU strategy performs up-front exploration using
A + B instances, retains the A instances with the fastest
CPUs for NER, and subsequently performs no migrations.
The CPU-M strategy performs the same up-front exploration
as CPU and performs a migration using a thresholding equa-
tion similar to Equation 1. Particularly, let cpu(S) be the
rate of the architecture of S, as measured in the one-time
measurement phase. Let C be the average performance
across all instances. Then, a server S will be migrated if

C − cpu(S) > δ ,

where δ is as defined in Section 3.
We also fix an opportunistic (A,B)-strategy that simply

seeks out the best architecture as reported by the measure-
ment phase. The CPU-MAX strategy performs the same up-
front exploration as CPU and then performs migration when-

Up-front Opportunistic
Strategy Exploration replacement rule

CPU CPU Never

CPU-M CPU C − cpu(S) ≥ δ
CPU-MAX CPU cpu(S) 6= maxi{cpu(Si)}

PERF Performance Never

PERF-M Performance avg1 − rt(S) ≥ δ

Table 8: Gray-box (first three rows) and black-box
(last two rows) strategies.

ever an instance’s CPU is not the best performing. Table 8
summarizes these three CPU strategies. These strategies are
not useful for the Apache workload, which our measurements
show does not have strong correlation with architecture.

We also explore two black-box strategies that apply both
to NER and Apache. The PERF strategy executes an up-
front exploration: run A+B instances for the first quantum
and then shut down the B worst-performing ones. The last
strategy is PERF-M (detailed in Section 3), which uses the
same up-front exploration as PERF but also performs oppor-
tunistic replacement by migrating any instance whose recent
performance was below the first quantum’s average.

5.3 Simulation of the Strategies
We first use simulation as informed by the initial NER and
Apache measurements to evaluate the strategies. This re-
quires fixing suitable job-specific approximations of S, the
distribution from which new instances are drawn. We let
Sner be defined by the following sampling procedure: (1) se-
lect CPU types uniformly according to the fractions of their
occurrence in our measurements of us-east-1c and (2) choose
their per-quantum performances rt(S) as independent, nor-
mally distributed random variables with mean and standard
deviation as measured for that architecture in the above ex-
periments. Table 7 therefore provides the data defining S.
Our simulator can be used as-is with Sner.

The sampling procedure for Sapache is more involved, be-
cause we would like to capture the observed large shifts in
performance. Rather than clustering by CPU type, we visu-
ally identify four performance ranges and then calculate the
fraction of machines within those ranges. In addition, to in-
clude the effect of performance shifts, we assign probabilities
of a one-time shift pairwise between those ranges. Overall,
there is a 25% chance of a shift for a given instance. We
then pick a random shift time for those instances selected
for a shift.

We modify our simulator to support Sapache in addition to
Sner. This allows us to explore (potential) speedups across
a wide range of settings. We conservatively set migration
cost to m = .05 (3 minutes/hour) in all the following exper-
iments.

Figures 4 and 5 show the results of our simulations. The
two charts in Figure 4 show the average performance over
100 trials of the various strategies applied to NER and Apache
for A ∈ {10, 20}, for B ∈ {0, 0.5A,A, 2A, 4A, 6A}, and for
T = 24. The error bars indicate one standard deviation.
Note that with B = 0 the CPU and PERF strategies are
equivalent to the null strategy (marked by the dark line
drawn across the graphs), and hence have no speedup. We
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Figure 6: Average number of migrations in simula-
tions for A = 10, T = 24, and varying B.

highlight two trends. First, as A + B increases, the CPU,
CPU-MAX, PERF, and PERF-M strategies converge in per-
formance. Second, we note that the best performing GB
strategy is CPU-MAX, which seeks to place all instances
on high-performing architectures. Surprisingly, the best BB
strategy PERF-M performs almost as well.

The two charts in Figure 5 show speedups as a function
of T . The results show that performance improves with
increasing T . Also, opportunistic replacement strategies,
except CPU-M, fare better in the long run when compared
to the up-front exploration strategies. Since CPU-M looks
only at the average performance of each CPU type for taking
migration decisions, it ends up overlooking the performance
variability of each CPU.

Finally, the average numbers of migrations for strategies
using opportunistic replacement are shown in Figure 6. The
error bars show one standard deviation. The number of
migrations with PERF-M for Apache is much less than for
NER. This is due to the much higher performance gap ob-
served in Apache, whereas in NER temporal variation can
occasionally overwhelm the performance gap between CPUs
of different types, inducing more migrations.

5.4 Simulation of Gaming Contention
The prior simulations only address the situation in which one
tenant’s placement gaming does not impact the distribution
of performance obtained by other tenants. Here we turn to
analyzing the performance of placement gaming when there
are a limited number of high-performing machines.

We modify the simulator to enable the following simula-
tion. We set a fixed number s of total systems. Each system
is given per-quantum rate as distributed by the appropriate
distribution, Sner or Sapache. Note that, for Sner, the total
number of E5645 machines (the high performers) will be .22s
on average. We set s = 1024. The absolute value of s is not
particularly significant, as we will see. Lets assume there
are m tenants in the system. A group of m/2 tenants are

launched at t = 0 and run for T = 18 quantums. At t = 6,
a second group of m/2 tenants are launched and run for
T = 18 quantums, thereby overlapping with the first group
for 50% of their run. All tenants from a group either use
PERF-M or the null strategy. When the former, each tenant
uses A = 20 and B = 10; for the latter A = 20 and B = 0.

Figure 7 shows the results of running the simulations,
for two combinations of strategies, as m varies. In each
chart, “PERF-M-1” (resp. “PERF-M-2”) labels the average
(over all runs and all nodes) effective performance for the
first (resp. second) group when using the PERF-M strategy;
“Null-2” labels the average effective performance of the sec-
ond group running the null strategy; and “Baseline” labels
the baseline performance when all tenants use the null strat-
egy. The top two charts are for NER and the bottom two
charts are for Apache.

As can be seen, the first group achieves a “first-mover” ad-
vantage over the second group, particularly as m increases
and the total number of requested machines is larger than
the total number of high-performing machines. The first
group’s performance decreases as m increases in the NER
case because the fraction of good machines is small; for
Apache the fraction of higher performers is larger and so
performance of the first group is flat as m increases.

Moreover, gaming by the first group decreases the per-
formance of the second group. When the number of good
machines is larger than the total number of machines re-
quested, the second group can match performance of the
first group by way of placement gaming. When the number
of good machines is not larger, the second group’s perfor-
mance suffers.

6. EXPERIMENTS ON EC2
The prior section laid out strategies for use with the NER
and Apache workloads and showed that, in theory, they will
provide speedups. In this section we develop a proof of con-
cept controller implementing the PERF-M strategy for use
with EC2. We chose PERF-M due to its applicability to
both NER and Apache, and to assess the overheads of op-
portunistic replacement in contemporary clouds.

6.1 Cost and Performance Model
The goal of placement gaming is to improve the efficiency,
the work accomplished per unit price. For NER, the work
is the number of unique records processed across the experi-
ment. This accounts for migration costs, as periods when an
instance started or stopped will process fewer records. For
Apache, where we measure bandwidth periodically, we in-
stead compute work as the total number of bytes that could
have been delivered at that bandwidth for the portion of
the hours that Apache was running. If the instance neither
started nor stopped during the hour, then it is the full hour.
Otherwise we conservatively estimate, for the purposes of
measuring migration costs, that stopping takes one minute,
to ensure we stop before the next hour starts, and that start-
ing takes two minutes to boot the operating system, start
Apache, and fetch the data file from EBS. In practice, we
often see Apache starting much more quickly.

EC2 bills contain only coarse-grained information. We
therefore approximate cost as the number of hours for which
we ran instances for a particular experiment. We assume
that we shut them down before triggering another hour of
billing. We do not include the cost of the controller, which
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Figure 4: Simulated NER (top) and Apache (bottom) performance for various strategies as A and B vary.
The dark line on the graphs mark the performance for the null strategy.

runs for the duration of the experiments, because it is a
fixed cost independent of the number of instances. In ad-
dition, we did not include the storage cost of launching an
instance. Amazon charges $0.10 per million I/O requests
to EBS, which stores the virtual disks for our instances.
However, we were unable to directly measure the number of
requests performed during system startup. Should this cost
be prohibitive, one can also use Amazon’s Instance Store,
which does not charge transfer costs but is slightly slower to
launch an instance.

6.2 Experiments with PERF-M
As a proof of concept to show that the ideas we have dis-
cussed can be put into practice, we created a system that
implements the PERF-M strategy for both the NER and
Apache jobs. To do so, we implement a prototype con-
troller that initially launches the desired number of worker
instances and forks off threads for each instance in order
to monitor instance performance and make migration deci-
sions. For NER, workers used a shared queue hosted on the
controller (via NFS) to coordinate which records need to be
processed.

To analyze the efficacy of PERF-M in the setting of EC2,
we use the following experimental procedure. First we launch
the target number of instances and run the appropriate
workload using the null strategy (i.e., no migrations). For
NER, we run for as long as it takes to complete processing
of the data set (approximately 12 hours with A = 10), while
for Apache we run for 12 hours. When the null strategy
finishes, rather than shutting the instances down, we retain
them in order to perform an execution using the PERF-M

strategy (i.e., with migrations). This allows us to measure
the performance of both strategies for the same set of initial
A instances. We repeat this three separate times for NER
and for Apache.

Table 9 summarizes the results of the 6 experiments, giv-
ing the speedups achieved by PERF-M, the number of mi-
grations, and the total migration cost (in seconds). As we
would expect from the simulations in the last section, we see
significant variability in speedups. For NER speedups range
from 1.5% to 5.7%. For Apache the range is even wider,
and we see here the potential for significant speedups, up to
35%. The variability in both cases arises from the makeup
of the first A instances: if these end up, by chance, to be
high performers, then the null strategy will perform well.

We can also calculate the actual cost savings for NER.
(For Apache, we achieve more throughput for the same price.)
If we include in the calculation paying for both hours and
partial hours of the workers, then the cost savings varied be-
tween 2% and 4% across the experiments. We expect that
improvements to our (unoptimized) implementation, not to
mention further strategy refinement, will surface increases
in cost savings.

7. RELATED WORK
Our work draws on past work looking at performance het-
erogeneity in cloud computing and in scheduling for hetero-
geneous systems. Most similar is the just-published work of
Ou et al. [22]. They similarly observe the mix of architec-
tures with different performance characteristics. However,
they show small differences between instances of the same
architecture, while we observe much larger differences. Fur-
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Figure 5: Simulated NER (left column) and Apache (right column) speedups for various strategies as T
increases with A = 10 and B = 10.

Runs Speedup # Migrations Total migration
cost (sec)

NER 1 5.7% 13 376
NER 2 1.5% 12 402
NER 3 3.8% 16 472

Apache 1 3.7% 10 283
Apache 2 23% 7 296
Apache 3 35% 16 472

Table 9: Experiments on EC2 for NER and Apache
with PERF-M strategy.

thermore, this work presents only analytic results indicating
possible speedups, while we present the benefit of specific
strategies together with simulations and experiments.

Evidence of heterogeneity. Many works offer evidence of
performance heterogeneity in cloud providers [7,16,18,20,28,
29, 34]. Most of these works focus on variability over time,
which often arises from competing workloads [25]. Several
works break down the variations by type and show long-term
patterns, such as periods of stability [9, 13], which can be
used to predict performance for better scheduling. Similar
studies of heterogeneity have been performed for data-center
workloads such as Hadoop [15].

In contrast to these works, our research shows discernible
long-term patterns in performance between architectures,
within an architecture, and within a node. Thus, it presents
a unified view of performance heterogeneity as compared to
a select instance of heterogeneity.

Scheduling for heterogeneity. Several past works focus
on levering heterogeneity in scheduling. Recent interest in
asymmetric multicore processors raises the issue within the
OS (e.g., [27]), while others have looked at accommodating
heterogeneity in MapReduce clusters [37,40]. One approach
is to benchmark machines initially, then use this information
for load balancing or job placement [10]. However, these
systems all assume that an application must use the set of
machines it is given and cope with the heterogeneity. Fur-
thermore, much of the focus is on performance differences
leading to stragglers. In contrast, our work focuses on drop-
ping poor performing machines rather than adjusting their
workload. This is possible in a cloud environment, but may

not make sense in cluster environment, where the machines
have already been paid for.

Other efforts at managing heterogeneity include improved
isolation (e.g., [31]). While this can address temporal varia-
tion, it does not address inherent performance difference be-
tween machines. Other works evaluate using virtual-machine
migration for job scheduling [19] in the cloud, but rely on
the cloud provider. In contrast, we present mechanisms for
cloud customers to manage their own scheduling.

Formal models. Recent work [39] builds models to show
the effects of heterogeneity and demonstrates limits on the
useful range of performance. Their work demonstrates that
many applications perform poorly when performance differ-
ences grow too large, which motivates the use of our tech-
niques to ensure a more uniform pool of machines.

The scheduling problem we address is related to the multi-
armed bandit problem [6,35], in which a player must choose
which slot machines to play based on the unique rewards of
each machine. Our scheduling model in Section 3 is inspired
by this work, but we use it largely as a framework for devel-
oping strategies rather than to analyze their outcomes.

8. CONCLUSION
Cloud computing environments will inevitably demonstrate
some level of performance heterogeneity due to hardware
variation and competing workloads. Our work shows how
cloud customers, by means of placement gaming, can delib-
erately guide the placement of their workloads to improve
performance by selectively switching workloads off poorly
performing machines. We have presented illustrative gam-
ing strategies, characterized their benefits in simulations,
and demonstrated their efficacy in the real-world environ-
ment of Amazon EC2.

While our work initiates the study of placement gaming,
it is far from the final word on the topic. Indeed, our simple
strategies are likely to be improved upon. We expect that
our work will spark future research not only on improved
gaming strategies, but also: developing new models that
take into account more cost structures or customer goals
(e.g., improving stability instead of maximizing efficiency),
building controllers to support further applications, and re-
visiting provider-defined abstractions and pricing structures
in light of gaming.
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Figure 7: Comparison of average performance of two groups of tenants contending for limited high-performing
machines.

Our work also opens up a host of interesting and chal-
lenging questions regarding the dynamics of gaming within
communities of tenants. Given a diversity of workloads, with
either complementary or overlapping resource requirements,
do gaming optimizations by individual tenants improve over-
all resource utilization within a cloud? Or does a “tragedy
of the commons” instead result in contention for shared re-
sources that degrades collective resource utilization? Such
questions would seem to lend themselves to game-theoretic
exploration, and could lead to cooperative (or competitive)
multi-tenant gaming strategies.

The cloud-provider perspective on placement gaming is
another important line of exploration. Should placement
gaming become prevalent, can providers prevent or, con-
versely, better facilitate customer-controlled placement gam-
ing? Widespread gaming might disrupt a provider’s opera-
tions by introducing extraneous load, such as use of network-
storage bandwidth to launch additional short-lived instances.
Providers might respond with added fees for the first hour
or raising the minimum instance lifetime beyond an hour to
render gaming more expensive. Alternatively, cloud providers
could recognize the interests of customers and provide ex-
plicit support for placement, such as hints about the desired
architectures or resources needed (disk, network) so as to
remove the need for customers to game the system.

Public clouds are occupying an ever increasing fraction

of information technology budgets. They will always be
marked, at the same time, by heterogeneous customer-facing
resources. We expect placement gaming to be a topic of en-
during interest.

9. REFERENCES
[1] Amazon Ltd. Amazon elastic compute cloud (EC2).

http://aws.amazon.com/ec2/.

[2] Amazon Web Services. Amazon EC2 instance types.
http://aws.amazon.com/ec2/instance-types/.

[3] Amazon Web Services. Amazon Elastic Block Store
(EBS). http://aws.amazon.com/ebs/.

[4] Apache Software Foundation. ab - apache http server
benchmarking tool. http:
//httpd.apache.org/docs/2.0/programs/ab.html.

[5] Apache Software Foundation. Apache HTTP server
project. http://httpd.apache.org/.

[6] Manjari Asawa and Demosthenis Teneketzis.
Multi-armed bandits with switching penalties. IEEE
Transactions on Automatic Control, 41(3), March
1996.

[7] Sean Kenneth Barker and Prashant Shenoy. Empirical
evaluation of latency-sensitive application performance
in the cloud. In MMsys, pages 35–46, 2010.

[8] Russker Coker. Bonnie++ benchmark version 1.03e.
http://www.coker.com.au/bonnie++/, 2008.



[9] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi.
Ec2 performance analysis for resource provisioning of
service-oriented applications. In Proceedings of the
2009 international conference on Service-oriented
computing, pages 197–207, 2009.

[10] Jiang Dejun, Guillaume Pierre, and Chi-Hung Chi.
Resource provisioning of web applications in
heterogeneous clouds. In Proceedings of the 2nd
USENIX conference on Web application development,
pages 5–5, 2011.

[11] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner,
and Amin Vahdat. Enforcing performance isolation
across virtual machines in xen. In Middleware, 2006.

[12] J. L. Henning. Spec cpu2006 benchmark descriptions.
In SIGARCH Computer Architecture News, 2006.

[13] Alexandru Iosup, Nezih Yigitbasi, and Dick H. J.
Epema. On the performance variability of production
cloud services. In 11th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pages 104–113, 2011.

[14] Aamer Jaleel, Hashem H. Najaf-abadi, Samantika
Subramaniam, Simon C. Steely, and Joel Emer.
Cruise: cache replacement and utility-aware
scheduling. In ASPLOS, 2012.

[15] Vivek Kale, Jayanta Mukherjee, and Indranil Gupta.
Hadoopjitter: The ghost in the machine and how to
tame it. http://hdl.handle.net/2142/17084, 2010.

[16] Yaakoub El Khamra, Hyunjoo Kim, Shantenu Jha,
and Manish Parashar. Exploring the performance
fluctuations of hpc workloads on clouds. In CloudCom,
pages 383–387, 2010.

[17] Dan Klein, Joseph Smarr, Huy Nguyen, and
Christopher D. Manning. Named entity recognition
with character-level models. In Proceedings the
Seventh Conference on Natural Language Learning,
pages 180–183, 2003.

[18] A. Li, X. Yang, S. Kandula, and M. Zhang. Cloudcmp:
Comparing public cloud providers. In IMC, 2010.

[19] Seung-Hwan Lim, Jae-Seok Huh, Youngjae Kim, and
Chita R. Das. Migration, assignment, and scheduling
of jobs in virtualized environment. In HotCloud, 2010.

[20] Dave Mangot. EC2 variability: The numbers revealed.
http://tech.mangot.com/roller/dave/entry/ec2_

variability_the_numbers_revealed, May 2009.

[21] Microsoft Corp. Windows azure: Pricing details. http:
//www.windowsazure.com/en-us/pricing/details/.

[22] Zhonghong Ou, Hao Zhuang, Jukka K. Nurminen,
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