
Security Analysis of Smartphone Point-of-Sale Systems

WesLee Frisby Benjamin Moench Benjamin Recht Thomas Ristenpart

University of Wisconsin–Madison

{wfrisby,bsmoench}@wisc.edu, {recht,rist}@cs.wisc.edu

Abstract
We experimentally investigate the security of sev-

eral smartphone point-of-sale (POS) systems that
consist of a software application combined with an
audio-jack magnetic stripe reader (AMSR). The lat-
ter is a small hardware dongle that reads magnetic
stripes on payment cards, (sometimes) encrypts the
sensitive card data, and transmits the result to the
application. Our main technical result is a complete
break of a feature-rich AMSR with encryption sup-
port. We show how an arbitrary application running
on the phone can permanently disable the AMSR,
extract the cryptographic keys it uses to protect
cardholder data, or gain the privileged access needed
to upload new firmware to it.

1 Introduction

The ubiquity of commodity smartphones has
prompted companies to leverage them as a platform
for replacing dedicated hardware computing devices.
In this work, we consider the security implications
of this trend for the case of smartphone-based point
of sale (POS) devices.

A POS device is responsible for collecting, trans-
mitting, and (sometimes) storing payment creden-
tials in order to facilitate the sale of some good or
service. While newer mechanisms for POS systems
exist (e.g., chip-and-pin [7], near-field communica-
tion [9], and radio-frequency identification [10]), the
predominant mechanism in North America [28] re-
mains plastic cards with credentials encoded onto a
magnetic-stripe. POS devices use a magnetic-stripe
reader (MSR) to conveniently read the encoded data
— typically a credit or debit card account number
and some supporting account details.

While there are a plethora of POS solutions, the
canonical contemporary system is an all-in-one stan-
dalone device with an MSR, number pad, small re-

ceipt printer, and network connection. (Tradition-
ally the telephone system, though increasingly via
the Internet.) These are reasonably expensive (e.g.,
hundreds of US dollars), and have significant secu-
rity features.

Recent years have seen growth in alternate POS
form factors. One such uses an inexpensive hardware
dongle MSR plugged into the audio jack of a smart-
phone; we refer to this component as an audio-jack
magnetic stripe reader (AMSR). A payment applica-
tion, colloquially called an “app”, is installed on the
phone via an app store associated with the phone,
e.g. the Apple App Store [6] or the Google Play
Android market [8]. Collecting payment credentials
proceeds by swiping a card through the AMSR, hav-
ing the app receive data from the AMSR via the au-
dio jack, and, finally, communicating this data over
the Internet to a payment processing service.

In this paper, we relay our experience performing
a security audit of a collection of smartphone POS
systems. This collection includes four AMSRs and a
larger set of apps (some AMSRs work with multiple
apps). The four AMSR devices range in complexity
and security features, from an analogue-only device
up to microcontrollers that encrypt payment card
data before transmission to the smartphone app.
Our main technical result is a complete break of one
of the latter AMSR systems, which implements an
extensive firmware API accessible from the phone.
We show how an arbitrary app running on the phone
can: (1) disable the AMSR (brick it); (2) turn off en-
cryption of card data; (3) extract secret keys used
to encrypt cardholder data; and (4) gain the neces-
sary credentials needed to upload new firmware to
the AMSR. These all stem from a handful of basic
software vulnerabilities in the firmware.

1

2 Background

We start with a brief overview of payment trans-
actions, using as an example credit card transac-
tions. A credit card number (CCN) is a 12-20 dec-
imal string. Most frequently CCNs are 16 digits.
The first 6 digits are the issuer identification num-
ber (IIN), which specifies the issuing bank. The re-
maining digits specify the primary account number
(PAN). The last 4 digits of the PAN are treated as
public values. Plastic credit cards encode data on
three tracks on the magnetic stripe. Track one data
includes the full CCN, the card holders name, expi-
ration date, service code and verification identifiers.
Track 2 contains the full CCN again, along with the
expiration date, service code and the card verifica-
tion value (CVV1) which should not be confused
with the CVV2 which is embossed on the back of
credit cards. Track 3 contains the full CCN number
along with additional security codes and identifiers
to assist the backend processor.

A card-in-hand transaction commences by gath-
ering the CCN from the card. This either occurs via
manual entry (typing the card into a keypad on a
POS device) or via swiping of the card through an
MSR. In most transactions, the CCN is transmit-
ted immediately to an acquiring bank, with which
the merchant has an account. The acquiring bank
makes an approval decision, but may consult further
upstream entities (e.g., the issuing bank). When
such online approvals cannot be made, the CCN and
other data may be stored until such communication
can be made. Approval decisions will sometimes re-
quire further information such as the CVV2.

Security of payment transaction handling is dic-
tated by an industry standard, the payment card
industry data security standard (PCI-DSS) [2]. Rel-
evant to this work, the standard requires that: track
2 data never be stored and that PANs must only be
stored in encrypted form with proper key manage-
ment practices.

A study [16] in 2008 estimated, that a CCN (with-
out CVV2) was worth $0.10 to $25 USD on the black
market. Adding the CVV2 number raises this esti-
mate from $0.12 to $50 USD. As such, there is direct
fiscal incentive to steal them, and numerous inci-
dents have been reported upon in which criminals
setup various kinds of card skimmers [31, 30, 22].
We use the term skimmer to refer to any mechanism
setup at the POS that captures card data during a
transaction.

3 Smartphone POS Systems

We focus on smartphone POS systems that combine
an audio-jack magnetic stripe reader (AMSR) don-
gle with a software payment application, colloquially
an “app”, that runs on the smartphone. We focus on
the Android platform, but are not aware of any pro-
tections on other platforms (e.g., the Apple iPhone)
that would render our attacks impossible.

Payment Apps. Payment apps are smartphone
applications which have been designed specifically
to facilitate plastic card transactions. Card data can
be entered manually via a software keyboard inter-
face or through an AMSR which will be discussed
shortly. Android payment applications are installed
via the Internet using Google’s app Play Store. The
payment app must authenticate itself to an acquirer.
This is done using merchant credentials, e.g., a PIN
or password setup. These credentials are either en-
tered each time the app is started (or unsuspended)
or they are stored on the phone. While these would
not necessarily be the primary target of an attacker,
they are sensitive because they allow logging into the
acquirer using the merchants account.

We note that the protocol between the phone and
the acquirer is another potential weak link for secu-
rity. For example, we note that rampant logic vul-
nerabilities have been found in similar contexts such
as single sign on [26] and web cashier services [25].
However, we did not analyze these protocols.

AMSRs. An audio-jack magnetic stripe reader
(AMSR) is a hardware dongle that assists payment
applications with reading magnetic card data. The
audio jack provides a two-way communication chan-
nel. Unlike other interface options, like the docking
port of iPhones, AMSRs are an attractive design
point due to the fact that audio-jacks are standard-
ized across smartphones and provide sufficient power
that an AMSR need not have an internal power
source.

We investigated a range of AMSR design points.
Passive AMSRs do not accept messages from the
app, and instead only send data to it in response
to a card swipe. Active AMSRs implement an API
to which the app can make requests. Consequently,
the latter form of AMSR can provide more versa-
tile functionality, in particular allowing reconfigur-
ing the AMSR without special equipment.

A key differentiator for AMSRs is whether they
encrypt card data using embedded keys. A canonical
choice for key management is the derived unique key
per transaction (DUKPT) standard [11]. We discuss
relevant aspects of DUKPT in Section 6.

2

4 Smartphone POS Threat Models

With the transition from standalone devices to
smartphone-based POS systems comes a shift in se-
curity threats faced. We therefore provide an exten-
sive discussion of the threat landscape in the context
of AMSR systems, breaking them down in (roughly)
order of adversarial access.

Network Adversaries. Wireless communications
(WiFi, cellular data networks) are used by the POS
app in order to transmit payment information, mer-
chant credentials, and other sensitive data. A net-
work adversary is one that can intercept or even
modify communications to/from the app. In our
analysis of the applications, we found that all ap-
plications were protected from a network adversary
via use of TLS to encrypt card data.

Malicious Apps. While managed app stores, in-
cluding Google’s Play Store, monitor and attempt
to remove malicious software, users are nevertheless
often tricked into installing malware apps that make
it past censors [20, 19]. Thus phones running POS
systems could have malware apps installed. Here the
permissions model of Android becomes relevant. At
installation time, apps request a variety of permis-
sions. For example, the RECORD AUDIO permis-
sion enables reading from the audio-jack while the
INTERNET permission enables Internet access for
the app. We assume below that the malicious app
has arranged for needed permissions (e.g., by trick-
ing the user into giving them).

An attack vector here is spying on the communica-
tion channel between the AMSR and legitimate app.
Here security has (seemingly) serindipitously bene-
fited from the fact that Android allows only one app
to read from the audio-jack at a time. Parallel access
to the audio-jack —the typical case on PCs— would
enable malicious apps to listen in on communica-
tions between the AMSR and the legitimate app. In
the case of AMSRs without encryption this would
already be sufficient to perform software skimming.

Another vector for attack is globally readable stor-
age locations, such as the SDcard. A poorly written
payment app might write sensitive data to such a lo-
cation, that could then be read by a malicious app.

Android allows users to install and use custom
software keyboard applications, which can then be
set as the default to be used by other apps. If a
payment app uses a default keyboard, and it proves
to be malicious, then manually entered data will be
subject to theft. Looking ahead, the payment appli-
cations we studied used their own built-in software
keyboard for input of customer card data, but de-

fault keyboards for usernames, passwords, and ses-
sion login pins.

A final vector for attack is side channels over
shared hardware components. Recent smart phones
include, for example, accelerometers, which have
been reported to enable a malicious app to infer the
keys pressed on the screen with 78% accuracy [13].
This could reveal manually entered card informa-
tion.

Fake POS Apps. An embellishment on the prior
threat is to trick users into installing a fake version
of a legitimate app. This is facilitated by the fact
that an attacker can download the legitimate app,
modify it to contain malicious functionality, e.g., a
card skimmer, and republish it on the app market
under a new name. This would allow the fake app to
have the look and feel of the legitimate one. Typical
phishing techniques, such as making the name of
the new app close to that of the legitimate one, may
confuse users. Fake apps have already been found in
app stores [12, 32].

This would give the app immediate access to any
manually entered card data as well as swiped card
data should the AMSR not support encryption. A
complicating issue for the attacker arises should it
attempt to ensure that transactions are successfully
handled, lest the merchant become suspicious due to
failed transactions. While we have not investigated
existing payment protocols in detail, we suspect that
fake POS apps would not have too much difficulty
with this. For example, the ability of a processor
to remotely attest to the veracity of the smartphone
app is limited.

Malicious OS. Should the OS of the smartphone
be compromised, the attacker would have access to
all manually entered card data, card data from AM-
SRs that do not offer encryption, and possibly other
sensitive information such as merchant credentials.
Unfortunately, software vulnerabilities enabling root
exploits have been discovered in the Android oper-
ating system [18, 21]. One vector for rooting the
phone is via a privilege escalation attack by a ma-
licious app, and indeed malware apps that include
such attacks have been found in the app store [15].

Another vector by which OS compromise can be
achieved is via physical access to the phone. A num-
ber of physical security vulnerabilities have been re-
ported upon [29]. A specific threat is that a mali-
cious recovery image can be flashed onto the phone
and be executed in a manner that preserves user
data. This holds true for many Android phones to-
day (for example, our Samsung Galaxy S2), as we
verified experimentally requiring only a USB cable.

3

Manufacturers are beginning to plug this vulnera-
bility: flashing a new recovery image will require
unlocking the bootloader, and this will erase exist-
ing data and apps. This, at least, provides some
forward security, and increases detectability of com-
promise by users.

Malicious firmware. All but the simplest AMSR
hardware devices are embedded systems running
firmware that could be compromised. Vulnerabili-
ties in the firmware code might be exploitable by
a malicious app, leading to take control over the
firmware, access to any cryptographic keys managed
by the firmware, and the ability to access card data.
Attackers in physical possession of the device could
abuse AMSRs that do not lock their memory from
external writes in order to install malicious firmware.
This might erase old data, including cryptographic
keys, and so the AMSR’s continued functionality
might depend on the attacker being able to install
appropriate keys. In either case, the attacker would
need a way in which to exfiltrate gathered data from
the AMSR. This could be facilitated by cooperating
with a malicious app or OS, or by setting up some
kind of covert channel (c.f., [27]).

Malicious hardware. Hardware skimmers are
a tried-and-true mechanism for gathering card
data [31, 30, 22]. This works because magnetic cards
do not store data in encrypted form. A motivated
attacker could add malicious hardware to individual
AMSR devices, or even the smartphone itself. The
form factor of either could be a barrier to attackers,
since it increases the difficulty of developing unno-
ticeable hardware skimmers. In the case of AMSRs
with encryption, the malicious hardware would have
to be inserted in a place that can access the bus be-
tween the microcontroller handling encryption and
the magnetic card analog to digital converter.

Hardware skimmers could be inserted anywhere in
the supply chain before it reaches the merchant or
at some point when the device is left unattended.

Given that AMSRs are inexpensive, criminals may
seek to mount replacement attacks, in which they
swap out one AMSR for a malicious one. Because
many AMSRs are commodity components with pro-
grammable firmware, the attacker could attempt to
pre-program the AMSR firmware with both legiti-
mate and malicious functionality. For AMSRs with
encryption, completing transactions by such a tro-
jan AMSR would require the attacker having access
to legitimate cryptographic keys.

As with malicious firmware, a hardware skimmer
would need some way to exfiltrate data. Coopera-
tion with a malicious app or OS would make this

work. An attacker might also insert a small wireless
transmitter in order to transmit data to a nearby
attacker.

Insider attacks. A significant fraction of credit
card fraud arises due to insider attacks, namely those
who are authorized users of the POS system. For
example, in the United States, where it is customary
for restaurant staff to handle card processing out of
the view of the card owner, a common ploy is for
staff to write down card details or double-charge the
customer.

Such insider attacks might be made easier in the
face of smartphone-based POS. AMSRs that do not
support encryption could be used in conjunction
with an easy-to-install app for skimming card data.

5 Analysis of POS Systems

We obtained four types of AMSR devices and a cor-
pus of compatible POS apps. A summary appears
in Figure 1. We will start our analysis with the apps
and then discuss the security of the individual AM-
SRs.

AMSR Passive Encryption Analyzed apps

Square v1 Yes No Square 2.2–2.2.5
Square v2 Yes Yes Square 2.2.5–2.2.7
Roamdata Yes Yes Intuit

GoPayment 2.5.0,
PhoneSwipe 1.4,
PayAnywhere 1.5

UniMag II No Yes Intuit
GoPayment 2.5.0,

Figure 1: Summary of systems studied.

5.1 App Analysis

We begun our investigations with an analysis of POS
apps. As discussed in prior sections, the app is a
security-critical component of smartphone POS sys-
tems. In terms of card data confidentiality, the app
(and OS) must remain uncompromised in the case of
AMSRs that do not support encryption. We begin
with a bit of background, and then discuss our anal-
ysis of POS apps. Our investigations here are not
exhaustive, but rather serve to form a baseline un-
derstanding of the security posture of these critical
components of smartphone POS systems.

Background. Android applications run within
Google’s Dalvik virtual machine and all are given
unique application user IDs (UIDs). Permissions are
then handled by standard Linux access-control lists

4

(ACLs). Applications can execute native code out-
side the Dalvik VM, but permissions are handled
in the same manner. Each application is provided
with a private directory where information can be
stored that cannot be read by other applications.
System permissions are configured when the appli-
cation is installed, in which case the user is presented
with a list of permissions that the application has re-
quested. It is up to the user to grant (install) or deny
(not install) the application. Additional permission
may be requested during an application update, but
not dynamically while the application is running.

Software accessibility and analysis. Gaining ac-
cess to smartphone POS apps and analyzing them is
straightforward. The apps are freely available from
app stores, and downloading them does not require
a merchant account. A merchant account may be
required to fully use the application but many ap-
plications contain a “demo” feature to test the ap-
plication menus and swipe cards but do not actually
allow someone to complete a transaction. The con-
siderable number of development tools available for
Android can then be brought to bear immediately
for reverse engineering efforts.

We performed three areas of analysis related to
the handling by apps of sensitive data such as cus-
tomer and merchant credentials.

Card data storage and transmission. We used
a combination of manual analysis and taint tracking
by way of TaintDroid [14]. The latter enables real-
time tracking of marked data items via identification
of sensitive data sources and dangerous sinks (e.g.,
network calls). A custom set of sources and sinks
were added to the TaintDroid framework for our
purposes and the payment applications were then
modified to hook in the TaintDroid add source func-
tions at the locations card data enters the applica-
tion. At the sinks TaintDroid monitored messages
to detect potential leaks. One question we sought to
answer was: Might apps accidentally leak card data
by transmitting it unencrypted over the network or
storing it unencrypted in locations on the phone that
malicious apps might access it?

Fortunately, all apps analyzed used HTTPS for
transmitting card data to processors. This is a tes-
tament to the benefit of Android’s API support for
TLS connections, in the form of the HttpsURLCon-
nection API call.

In terms of storage in vulnerable places, we discov-
ered that the Intuit GoPayment app stores Roam-
Data AMSR messages on the SDcard. This is world
readable, meaning that a malicious app could ac-
cess it. Fortunately, the RoamData AMSR encrypts

card data so this does not represent an immediate
vulnerability. Nevertheless the app would do better
to store such swipes in private memory. Some apps
were also found to store encrypted card data within
the application’s private storage, which seems less
damaging, but still might endanger forward security
of card holder data should other exploitable vulner-
abilities exist.

Handling of merchant credentials. Several of
the apps used software-based encryption mecha-
nisms in an attempt to protect merchant creden-
tials such as login names and passwords. The
PhoneSwipe, PayAnywhere, and Verifone apps all
use the same, non-standard and insecure encryption
scheme before storing data such as merchant login
PINs, usernames, passwords, and non-sensitive por-
tions of credit card numbers. The code for their
encryption mechanism appears to have been copied
from a contribution to the Android Snippets website
by one Ferenc Hechler in 2009 [17].

This code uses the Andriod/Java crypto API [5].
First an AES key is generated using the Java crypto
SHA-1 PRNG seeded with a password. Then an
AES mode of operation is used to encrypt the data.
The mode of operation is left unspecified. In all
three apps, the password used was hardcoded in the
app executable: “swipe” was used by two of the apps
and “V3RIfon3” for the third. We verified that for
the same app running on two different phones, the
same AES key were generated.

Several apps used bcrypt [1] to hash merchant cre-
dential passwords for comparison with future logins.
Like any password hashing scheme, an attacker that
obtains these hashes, e.g. via compromising a stolen
phone, would be able to mount offline brute-force
attacks.

We note that some payment apps never stored any
sensitive merchant credentials and instead used on-
line logins every time the app booted up. For exam-
ple, Square uses an HTTP session cookie.

Memory remanance. The payment apps consis-
tently use the Java String class for storing card data.
Use of the String class with sensitive data gives rise
to various well-known security risks [4], in particular
because the String class is immutable and consumer
credentials cannot be zeroed out by the app when
no longer needed. We verified the impact of this by
taking memory snapshots after entering card data,
waiting several minutes, and then killing the app
with the Android debugger. Card data frequently
remained in memory.

5

5.2 AMSR Analysis

We were able to obtain four different AMSRs at
varying quantities by ordering them online. Each
of the AMSRs were opened up to understand their
hardware layout, identify commodity parts as a first
step before further security analysis. Square V1 and
RoamData reads only track 1 while Square V2 and
the UniMag II reads tracks 1 and 2. We give more
details about each AMSR in turn.

Square v1. The first generation Square AMSR is
an analogue, passive device. It sends the included
MSR’s readings of a swipe directly, in analogue form,
through the audio jack to the Square app. The data
is decoded in software.

The lack of encryption on the AMSR renders
Square vulnerable to attacks by a malicious OS,
since the latter can likewise listen to the microphone
audio channel. If it were not for the fact that An-
droid disables parallel access to audio jack reads, a
malicious app would likewise have been able to spy
on transactions. The security implications of the
lack of encryption by Square’s AMSR was observed
previously [3], though in the context of concern over
criminals using AMSRs to record card details.

The Square v1 is a small device (2.5cm x 1.2cm),
with a sealed plastic encasing. This design would
make adding an unobservable hardware skimmer
challenging.

Square v2. The Square V2 is a passive AMSR
consisting of an analog magnetic strip reader, a bat-
tery, a TI MSP430G2412 microcontroller and an ad-
ditional IC to amplify the audio output signal. We
note that the JTAG fuse had been blown, which pre-
vents hardware attacks via JTAG. Interestingly, the
TI MSP430G2412 does not include basic bootstrap
functionality, meaning that one cannot install new
firmware onto the device. This prevents adversaries
from easily loading malicious firmware onto a device.

The second generation AMSR provides on-device
encryption, alleviating the security concerns sur-
rounding the first generation device. This was the
only AMSR to include a battery, and while this
might seem to be a potential vector for denial of ser-
vice (DoS) attacks, as far as we can tell the passive
nature of the device ensures that significant battery
drain only occurs during swipes.

The Square v2 is sealed with plastic encasing and
is only slightly larger than the Square v1 at (2.5cm x
1.4cm). Inserting a unobserving hardware skimmer
would still be challenging.

ROAM Data. The ROAM Data is a passive AMSR
consisting of an analogue magnetic stripe reader, an

analogue-to-digital converter (MagChip E424078J),
and a PIC microcontroller (PIC16LF19360) that en-
crypts magnetic card data. PIC microcontrollers are
known to protect code reads by using a code protect
(CP) bit set to one during programming. Earlier
versions of the PIC microcontroller allowed selective
portions of memory [23] to be replaced even when
the the CP bit is set to one. This would allow
a hardware attacker to load a small program into
the firmware’s memory that could dump the rest of
the firmware code, the firmware memory (including
cryptographic keys), and setup a firmware skimmer.

Fortunately, the PIC microcontroller used in the
ROAM Data AMSR protects against read access
to the firmware. When the CP bit is set, all
firmware must be erased before the flash may be re-
programmed. This does not disable reprogramming,
and so an attacker could still load new firmware. But
in doing so the chip will erase its memory contents
so existing sensitive data is lost.

The device has no anti-tamper protection and has
sufficient space that a well-designed, small hardware
skimmer could be hidden inside the AMSR.

UniMag II. The IDTech UniMag II is an active
AMSR with an analog magnetic strip reader, an IC
to convert the analog magnetic card data to digital
signals, and a TI MSP430FR5728 microcontroller to
encrypt the card data. The UniMag II AMSRs we
analyzed were the version distributed by Intuit as
part of their Intuit GoPayment product. The JTAG
fuse on the microcontroller was blown, disallowing
this vector for hardware attacks. The UniMag II
card reader is a commodity component used within
several mobile payment products. The AMSR is
therefore designed to be highly configurable. The
TI chip includes a special bootloader mode which
is accessible from a smartphone via the audio jack.
This would support firmware updates in the field.
Using the bootloader mode requires authentication,
as discussed more in the next section.

Like the ROAM Data, the lack of anti-tamper pro-
tection and the form factor of the AMSR means
that a hardware skimmer could be hidden within.
Also like the ROAM Data, this AMSR encrypts card
swipes using DUKPT. In theory this should prevent
a malicious OS or app from compromising user data.

We will show in the next section that this is not
the case. The firmware implements a rich API that
provides smartphone-based software attackers with
a large surface area to explore. Manual inspection of
the binary of one of the apps that uses the UniMag II
AMSR revealed a portion of the API. Further infor-
mation was found within some public documentation

6

for a similar device on the manufacturer’s website.
(Detailed documentation of this AMSR was not pub-
licly available.) Several example commands are in-
cluded in Figure 2. In the next section we will report
on successful exploitation of these API commands in
order to completely compromise the AMSR.

6 Vulnerabilities in the UniMag II

We did not have access to the firmware used by
the UniMag II. To discover vulnerabilities, then, we
built a bare-bones smartphone app that leveraged
the IDTech SDK (contained within the Intuit Go-
Payment application) to enable issuing commands
of our choosing to the AMSR.

Lack of command authentication. For all com-
mands but the one used to enter bootloader mode,
the AMSR did not perform authentication of the
source of the commands. On Android an arbitrary
app can play audio, which is the same as sending a
message to the audio jack. One app can write to the
audio jack at a time on Android (other phones are
different: the iPhone allows multiple apps to access
the audio jack in parallel). The lack of authentica-
tion is therefore already a serious vulnerability, as
any malicious app can send commands to the de-
vice whenever the legitimate POS application is not
sending commands.

This already enables some attacks, such as a DoS
against an unsuspecting device. For example, one
seemingly benign command built into the API, but
which is not used by the payment apps we investi-
gated, can select which of the 3DES or AES block
ciphers to use during encryption. Since the app ex-
pects 3DES, if the encryption mode is changed to
AES, a merchant would not be able to process fu-
ture card swipes.

Using well-formed API commands in a malicious
manner, however, does not enable a full break of
the system, meaning the ability to skim card data
or, worse, extract the cryptographic keys used to en-
crypt card data. We therefore fuzz-tested the API to
search for software vulnerabilities in the firmware’s
implementation. To start with, we built a mutation-
based fuzzing protocol to automatically search for
inputs that would trip up bugs in the software. This
proved to be too slow to be of immediate help: the
round-trip response time for each command sent to
the AMSR was around 2 seconds. In order to ex-
haustively search a four byte command at this rate
would have taken 272 years.

To expedite testing, we targeted commands that
had variable lengths. Some of the commands we

explored are summarized in Figure 2.

SetPrePAN command. We began with a com-
mand documented in the public manual and used in
the app’s SDK, the SetPrePAN command. When a
swipe occurs, the AMSR sends both an encryption
of the track 1 and 2 data and also the track 1 and 2
data in the clear, but with sensitive portions masked
out with (replaced by) asterisks.

Recall that the first six digits of the PAN, the IIN,
identifies where the card was issued and the card
brand. The documentation states that the number
of the first PAN digits returned in the clear could
be any value less than or equal to six. The Set-
PrePAN command sets the value. The last four dig-
its of the PAN are also sent in the clear, and the rest
are masked out. The first row in the table of Figure 3
shows the returned value (modulo the ciphertext) af-
ter a swipe using a test card and a PrePAN value of
six.

The command has two arguments: a one byte
length value and a one byte value indicating the
number of characters to leave unmasked. Curious
to determine if the firmware was interpreting the
length byte as a signed or unsigned value, we set the
byte to 0x80 which would be -128 signed or 128 un-
signed. The AMSR responded with an ACK saying
that the command succeeded. When we swiped our
testing card we retrieved the data shown in Figure 3.
All of Track 2 was unmasked. Compare this with the
above swipe, where the correct number of digits were
unmasked.

Subsequent swipes caused the AMSR to reboot
and send out the initial powered-on message. The
AMSR would, however, still respond to commands.
A possible explanation for this behavior is that
the PrePAN masking function uses the SetPrePAN
length parameter as an offset into the track data
buffer. With the length parameter set to 0x80, it
is outside the bounds of that buffer, and forces the
PrePAN function to write “*” characters over some
other portion of memory, in turn causing the unpre-
dictable behavior.

This signed integer vulnerability here allows a lim-
ited attack against card data confidentiality and also
a DoS attack that renders the AMSR unusable.

SetPreamble. With the initial success of writing
into the memory of the AMSR, we searched for other
commands with length parameters that we might
modify. Unfortunately, no command beside Set-
PrePan seemed to allow us to write into an arbitrary
memory location. The ReviewSettings command
proved helpful. It returned a sequence of byte strings
that are, in fact, a list of settings from which one can

7

Command Description Vulnerability Implications

Review device serial number Returns the device’s serial number n/a Leaks serial
number

Review KSN Returns the devices current key serial
number

n/a Leaks KSN

Review Settings The review settings command returned
the settings for a number of commands
that could be controlled by applica-
tion.

– Reveals undoc-
umented com-
mands

SetPrePAN Controls the number of the beginning
account number digits that are not
masked, up to a max of 6 digits.

Signed in-
teger logic
vulnerability

PAN sent in
the clear ; DoS

SetPreamble An undocumented command that sets
the preamble header appended to each
message sent by the AMSR to the
phone. Used by the SDK to synchro-
nize decoding of the waveform.

No bounds
checking

Device key re-
covery

Enter bootloader mode Command uses a challenge-response
mechanism to enter into bootload
mode and update the AMSR’s
firmware.

n/a Firmware may
be replaced

Figure 2: Example IDTech SDK commands, inferred software vulnerabilities in their implementation, and
implications.

SetPrePAN Command (length) Result

02 53 49 01 06 03

Track 1

601056******5410^CHIPOTLE/VL^2501***************************?*;

Track 2

601056******5410=2501****************?*

02 53 49 01 80 03

Track 1

6010568266865410^CHIPOTLE/VL^2501***************************?*;

Track 2

6010568266865410=25010004000060057887?8

Figure 3: Unencrypted data returned in response to a swipe for different SetPrePAN values.

infer sufficient information to reconstruct the com-
mands used to change the settings. So, for example,
portions of the SetPrePAN command were returned
as an entry. All of these returned strings matched
documented commands except one, for which the
byte string, in hex, was

D1 10 0F 55 55 · · · 55 66

and where there are 14 repetitions of the byte value
0x55. The byte 0x10 (as in other API commands)
specifies the length of the argument. The argument,
in turn, starts with a length given as a byte, the 0x0F
byte above, followed by a string of that length. With
further experimentation, we realized this is a com-
mand we will call SetPreamble, because the string
specified in it (0x55· · · 0x66) above is the preamble
for all subsequent messages from the AMSR to the
phone.

For an initial test we set the length bytes to 0xFF
and 0xFE and sent in 255 bytes of machine code

that, if executed with proper alignment, would exe-
cute a jump to the lowest address of the code. This
would test whether we could perform a trivial code
injection attack.

Upon submitting this command, however, the de-
vice never responded. The device, furthermore, no
longer responded to any control commands from the
phone. That is, it was bricked. We believe that we
overwrote crucial memory in the device preventing
any further communication with the device. This
therefore gave a more drastic DoS attack than that
offered by the SetPrePAN (which disabled swipes
but not, seemingly, the firmware’s other function-
ality). We reiterate that any app can write to the
audio port and so brick the device.

On a fresh device, we explored further this bounds
checking vulnerability. We issued SetPreamble but
with length bytes 0x11 and 0x10, but only a fol-
lowing string of length 0x0F. When we re-executed
the Review Settings command an extra byte was re-

8

turned from the memory in the card reader, and the
same extra byte was present in the preamble. This
suggested that the extra byte was leftover in a buffer
from a previously submitted command.

We iterated this approach to find the maximum
lengths we could indicate that would not overflow
the buffer and cause the device to stop functioning,
while minimizing the length of the actual preamble.
This then maximized the gap between indicated and
actual lengths. This lead us to the following Set-
Preamble command

D1 3C 3B 55 55 55 55 55 55 55 55 66

Executing Review Settings after this command ex-
posed most of a previously executed command and,
strangely, the entire response for that command. It
is unclear why this command’s response was found
immediately after it in the buffer; these bytes were
not overwritten when new responses were sent by the
device. On another fresh device, this previous com-
mand turned out to be the Key Load command as
indicated by the response code found in the buffer.
This command is used to provision the device with
the initial key used with the derived unique key per
transaction (DUKPT) protocol. This indicates that
the command buffer being used here is on the non-
volatile flash memory, since otherwise it would have
been lost after powering off.

DUKPT and Key Recovery. The DUKPT stan-
dard specifies a way in which to use a block cipher
as a pseudorandom number generator in order to
safely derive new encryption keys for each transac-
tion. It is used frequently in the banking sector.
This AMSR supported use of DUKPT with either
AES or 3DES, the latter was used by our devices.
Keying option two of 3DES is used [24], meaning two
56-bit keys K1 and K2 are used to encipher a 64-bit
plaintext M via DES(K1,DES

−1(K2,DES(K1,M)).
Decryption of cyphertext C is simply the reverse:
DES−1(K1,DES(K2,DES

−1(K1, C)).
The key loading command loads a 128-bit key that

can be used for either AES or 3DES. The key is en-
coded as ASCII encodings of hex digits, so each byte
encodes four bits of key material. In the case for
3DES, the least significant bit of each byte is used
only within the DUKPT key derivations, and the re-
maining 112 bits are used as the keys K1 and K2.
In the response to the Load Key command is a key
check value: the first three bytes of ciphertext re-
sulting from evaluating 3DES using the just-loaded
key and the all zeros message.

The memory leaked by the combination of Set-
Preamble and Review Settings commands reveals
15.5 bytes of the 16 byte initial DUKPT key along

with the three byte key check value. The remain-
ing four bits of the key are not revealed because the
first byte of key material is overwritten by the Set-
Preamble string argument. (Each key byte is hex
encoded, so losing one byte of the encoding loses
four bits of the key.) The key check value provides
a plaintext-ciphertext pair. Other API commands
conveniently provided the key serial number and de-
vice serial number; the message sent in response to
a swipe also contains these values. At this stage we
have everything needed to brute force the remaining
four bits of the initial DUKPT key, and from there
derive any past or future key used by the AMSR.

To confirm this, we generated new keys from the
initial DUKPT key we retrieved from the device.
We then swiped our card, matched the key serial
number sent in the swipe to one of the generated
keys, and decrypted the first track with 3DES in
CBC mode using the first 8 bytes of the encrypted
data as the IV. The second track was encrypted in
the same manner with a new 8 byte IV from the
data. The decrypted card data matched our test
card:

8266865410^CHIPOTLE/VL^25010004000060057887

266865410=25010004000060057887?8

Entering bootloader mode. As a final security
issue, we investigated the possibility of loading new
firmware onto the device. Recall that the Enter
Bootloader command is the only API command that
requires authentication from the phone. In the au-
thentication request message, a key serial number
is indicated; this matched the one just extracted
from the device. Thus, the next derived DUKPT
key also enables administrative access to update the
firmware. We were able to upload new firmware
to the device in blocks; after each block uploaded
the device responded affirmatively with the ACK re-
sponse. However, the firmware did not run properly.
The device requires it to be in a specific format that
is not published in the specifications. With further
effort and knowledge (i.e., access to a copy of the
current firmware of the AMSR), we suspect that an
attacker would be able to craft a runnable malicious
firmware.

Summary. In summary, we found several glaring
vulnerabilities in this widely used AMSR:

1. API commands are not authenticated, so arbi-
trary applications can send commands (the au-
dio port is world writable on Android).

2. The implementation of the only documented
API command with a length value as a param-

9

eter suffered from a signed integer vulnerability
allowing one to turn off masking of the PAN
and also disable the device from being used for
future transactions.

3. The implementation of an undocumented API
command contained a bounds checking vulner-
ability that enables an arbitrary application on
the device to either brick the device, or extract
information sufficient to decrypt all past and
future card data encrypted by the device.

4. An arbitrary application on the phone can, us-
ing the extracted key material, enter privileged
mode on the device. This may enable malicious
firmware to be installed on the AMSR.

7 Discussion: the Verifone vx670

As a point of comparison, we also performed a
cursory investigation of a Verifone vx670 all-in-one
standalone POS device. The contrast in terms
of security engineering could not be starker. The
vx670 has several layers of tamper-response coun-
termeasures. Tamper-response can render more ex-
pensive the types of hardware attacks seen in the
wild [31, 30, 22]. The AMSRs we investigated have
no specific hardware attack countermeasures: in-
stead, they appear to rely upon the small form factor
to prevent use of hardware skimmers. The vx670’s
payment software is difficult to obtain from a de-
vice (we were able to extract a portion of it via
a difficult-to-access open JTAG port). This slows
down, but does not prevent, analysis of the soft-
ware for vulnerabilities. In comparison, the apps of
smartphone POS devices were trivial to download
and reverse engineer. The vx670 uses public-key
cryptography; all payment applications we looked at
used either no cryptography, poor software cryptog-
raphy within apps, or symmetric encryption on the
AMSR to protect card data and other credentials.
The only AMSR that implemented a rich firmware
API fell over easily and repeatedly in the face of a
malicious app running on the smartphone.

Our experiences provide anecdotal evidence of a
marked decrease in security precautions with the
newer smartphone POS solutions. Our cursory in-
spection certainly does not rule out vulnerabilities in
the vx670 (let alone other standalone POS devices),
but does show that new smartphone POS systems
represent lower hanging fruit for attackers.

8 Conclusion

The ubiquity of smartphones has lead to widespread
deployment of smartphone-based POS systems.
This represents a significant architectural shift from
prior commodity standalone POS devices, and one
that seems to have, in notable cases, left security
engineering struggling to keep up.

Our analysis suggests some general issues under-
lying the (in)security of smartphone POS systems.
First, the audio port is being used in unenvisioned,
security-critical ways. Some of the POS systems ap-
pear to (at least implicitly) consider it to be a se-
cure channel, even though there is no fine-grained ac-
cess control offered by the smartphone OS. Second,
passive AMSRs (that include encryption) proved,
at least in our investigations, a significantly less
vulnerable design point compared to active AM-
SRs. Future work might clarify whether there is a
need for active AMSRs in this context at all, or if
there are deployable architectures that will encour-
age improved security engineering for active AM-
SRs. Third, the proprietary nature of the payment
industry stands in the way of proper security audit-
ing. For example, the vulnerabilities we found would
likely be easily caught via a source-code review.

Finally we note that the issues uncovered here are
unlikely to be unique to the payment domain. The
move to use mobile phones as a platform for hosting
special-purpose embedded devices will arise in other
settings, and there may be overarching security en-
gineering principles that will apply equally well to
POS systems and beyond.

Disclosures and vendor response. The most se-
vere vulnerabilities (discussed in Section 6) we un-
covered were reported to the companies involved (In-
tuit and IDTech), and with approximately 90 days
of lead time before public disclosure would occur.
Both companies responded quickly; worked together
to develop a firmware patch; allowed us to verify the
patch prevented all the attacks we had uncovered;
and have scheduled an upgrade to occur before pub-
lic release of this paper. We note that this was only
possible because of the active nature of the AMSR.
We thank the employees of the companies for their
professionalism and for their successful efforts to im-
prove their customers’ security.

References

[1] bcrypt, 2002. http://bcrypt.sourceforge.

net/.

10

[2] PCI Data Security Standard v 2.0, 2010.
https://www.pcisecuritystandards.org/

security_standards/documents.php.

[3] An Open Letter to the Industry and Con-
sumers, 2011. www.sq-skim.com.

[4] Java cryptography architecture reference guide,
2011. http://docs.oracle.com/javase/6/

docs/technotes/guides/security/crypto/

CryptoSpec.html#PBEEx.

[5] Android javax.crypto API, 2012. http:

//developer.android.com/reference/

javax/crypto/package-summary.html.

[6] Apple App Store, 2012. http://www.apple.

com/itunes.

[7] Chip and PIN, 2012. Homepage: http://www.
chipandpin.co.uk/.

[8] Google Play, 2012. https://play.google.

com/store.

[9] NFC Forum, 2012. http://www.nfc-forum.

org/.

[10] RFID, 2012. Homepage: http://www.rfid.

org/.

[11] ANSI X9.24-1992. Financial Services Retail
Key Management, 1992.

[12] T. Armstrong. Stealing apps, installing ads,
2011. http://www.securelist.com/en/blog/
208193251/Stealing_apps_installing_ads.

[13] L. Cai and H. Chen. TouchLogger: inferring
keystrokes on touch screen from smartphone
motion. In Proceedings of the 6th USENIX
conference on Hot topics in security (Hot-
Sec’11). USENIX Association, Berkeley, CA,
USA, pages 9–9, 2011.

[14] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: an
information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceed-
ings of the 9th USENIX conference on Operat-
ing systems design and implementation, pages
1–6. USENIX Association, 2010.

[15] A. Felt, M. Finifter, E. Chin, S. Hanna, and
D. Wagner. A survey of mobile malware in
the wild. In Proceedings of the 1st ACM work-
shop on Security and privacy in smartphones
and mobile devices, pages 3–14. ACM, 2011.

[16] M. Fossi. Symantec report on the underground
economy, 2008. Symantec Corporation.

[17] F. Hechler. Encrypt/decrypt strings,
2009. http://www.androidsnippets.com/

encryptdecrypt-strings.

[18] X. Jiang. GingerMaster: First Android Mal-
ware Utilizing a Root Exploit on Android 2.3
(Gingerbread), 2011. http://www.csc.ncsu.

edu/faculty/jiang/GingerMaster.

[19] X. Jiang. Security Alert: New Android
SMS Trojan – YZHCSMS – Found in Offi-
cial Android Market and Alternative Markets,
2011. http://www.csc.ncsu.edu/faculty/

jiang/YZHCSMS/.

[20] X. Jiang. Security Alert: New Stealthy An-
droid Spyware – Plankton – Found in Official
Android Market, 2011. http://www.csc.ncsu.
edu/faculty/jiang/Plankton/.

[21] X. Jiang. Security Alert: New RootSmart An-
droid Malware Utilizes the GingerBreak Root
Exploit, 2012. http://www.csc.ncsu.edu/

faculty/jiang/RootSmart.

[22] Kevin McCallum. Losses mount from skim-
ming scam at Lucky store in Petaluma, 2011.
http://www.pressdemocrat.com/article/

20111205/ARTICLES/111209763/1350?Title=

Losses-mount-from-skimming-scam-at

-Lucky-store-in-Petaluma.

[23] M. Meriac and H. Plötz. Analyzing a modern
cryptographic RFID system, 2010. Presenta-
tion at the 27th Chaos Computer Congress.

[24] National Institute of Standards and Technol-
ogy. FIPS PUB 46-3: Data Encryption Stan-
dard (DES). Oct. 1999. supersedes FIPS 46-2.

[25] R. Wang and S. Chen and X. Wang and S.
Qadeer. How to Shop for Free Online – Secu-
rity Analysis of Cashier-as-a-Service Based Web
Stores. In Proceedings of the 32nd IEEE Sym-
posium on Security and Privacy, 2011.

[26] Rui Wang and Shuo Chen and XiaoFeng Wang.
Signing Me onto Your Accounts through Face-
book and Google: a Traffic-Guided Security
Study of Commercially Deployed Single-Sign-
On Web Services. In Proceedings of the 33rd
IEEE Symposium on Security and Privacy,
2012.

11

[27] G. Shah, A. Molina, and M. Blaze. Keyboards
and covert channels. In Proceedings of the 15th
conference on USENIX Security Symposium,
volume 15, 2006.

[28] Smart Card Alliance. Card Payments Roadmap
in the United States: How Will EMV Im-
pact the Future Payments Infrastructure?,
2011. http://www.smartcardalliance.org/

resources/pdf/Payments_Roadmap_in_the_

US_020111.pdf.

[29] T. Vidas, D. Votipka, and N. Christin. All
your droid are belong to us: A survey of cur-
rent android attacks. In Proceedings of the 5th
USENIX conference on Offensive technologies,
pages 10–10. USENIX Association, 2011.

[30] Waterloo Region Record. Police warn against
newest scam, 2009. http://www.sparkfun.

com/tutorial/news/SparkFun-PINScam.pdf.

[31] J. Winters. Credit card skimmers discov-
ered inside local gasoline pumps, 2012.
http://www.times-herald.com/Local/

Credit-card-skimmers-discovered-in

-gasoline-pumps-2119062.

[32] W. Zhou, Y. Zhou, X. Jiang, and P. Ning.
Detecting repackaged smartphone applications
in third-party android marketplaces. In Pro-
ceedings of 2nd ACM Conference on Data and
Application Security and Privacy (CODASPY
2012), 2012.

12

