
Text Search in an NFS-Proxy: A Case Study in
Extensible File Systems

Kristen LeFevre Kevin Roundy

CS 736 Course Project
May 10, 2005

Abstract

This paper describes the design of an extensi-
ble 3-tiered semantic file system, backed by an
existing extensible object-relational database.
The system is designed to export the standard
NFS interface, while providing indexing and
query support for user-defined file types using
the virtual directory abstraction.

To illustrate the feasibility of the proposed ar-
chitecture, we describe its implementation for
one important file type, text. Indexing and
query support for text are implemented in the
database using a plug-in module, and support
for full-text queries, including boolean key-
word search and information retrieval rank,
are exported by the file system interface using
virtual directories.

1 Introduction

Every day millions of people use computers at work
and at home, creating millions of documents. Unfortu-
nately, as the quantity of stored documents increases,
it is often difficult to manage and organize them in an
understandable way. Indeed, a directory or file name
that once made sense (e.g., “Summer Pictures”) may
lose its meaning with time, making it difficult to locate
individual files.

One recent user-study found that the majority of
individuals surveyed (who were all experienced com-
puter users) were dissatisfied with the organization of
their personal documents and e-mail, and many indi-
cated that they did not have time to organize their
documents to their satisfaction [5].

This paper describes the design and implementa-
tion of a next-generation extensible file system that
provides an intuitive interface for associative file ac-
cess. In designing our prototype system, we had three
main goals:

1. Powerful Query Processing The system
should provide as much functionality as possible
for executing queries, using both the meta-data

associated with files, as well as the contents of
the files themselves. Queryable attributes should
be indexable, and query execution should be rea-
sonably efficient.

2. Ease of Extensibility Because personal file
management is an evolving problem, and the
prevalent file types are likely to change over time,
it should be relatively simple to extend the system
to handle new types of files, as well as indexing
and query processing for these new types.

3. Preserve Existing Client-Server Interface
Existing distributed file system interfaces, partic-
ularly NFS, have become ubiquitous, and count-
less user-level applications have been built to rely
on them. These interfaces are also attractive be-
cause of their simplicity. For these reasons, it
is important not to modify these interfaces more
than is absolutely necessary as we seek to achieve
the first two goals.

The first main contribution of this paper is a sim-
ple file system architecture designed to address each of
our stated goals. The proposed architecture has three
tiers, and is backed by an object-relational database
[3], which provides a simple uniform interface for defin-
ing and implementing new file types, as well as associ-
ated functions, indices, and access methods. Thus, we
are able to incorporate new types of files in a uniform
way, rather than writing ad-hoc functionality for each
new type.

The proposed architecture uses a proxy layer to ex-
port a traditional NFS interface, and queries are is-
sued using the virtual directory abstraction [6], which
extends the naming semantics of the existing tree-
structured file system, while otherwise preserving the
existing interface.

In addition to our three primary goals, the pro-
posed architecture has some other desirable implica-
tions, including support for atomic transactions and
recoverability. One key direction in database research
for many years has been in maintaining strong trans-
actional consistency semantics, even in the presence of



Client Client

NFS Front End

Custom Backend

...

Storage

M TS2

Storage

TS2M M M

Figure 1: Overview of system architecture

system crashes. Traditional file systems, in contrast,
provide only rudimentary guarantees about consis-
tency. Incorporating these techniques into a general-
purpose file system has several added benefits, such as
the ability to export consistent snapshots of files, and
the ability to recover file system data to a consistent
state following a crash.

To illustrate the feasibility of our proposed archi-
tecture, we focus on one important type of file: text.
The second main contribution of this paper is the im-
plementation of full-text query functionality inside our
proposed NFS proxy. Specifically, we implement two
important types of text queries, boolean keyword search
and information retrieval rank, using the virtual direc-
tory abstraction, inside a fully-functional NFS server
proxy.

1.1 Paper Overview

In Section 2 we provide an overview of our database-
backed NFS-proxy architecture, as well as an overview
of the architecture of the underlying object-relational
database. Our proposed architecture allows the file
system to be extended relatively easily to manage new
types of files. As an example of this extensibility,
we consider the problem of managing and searching
text documents based on content. In Section 3 we de-
tail how text search and rank functionality is exposed
through the NFS interface, using virtual directories.
The details of our prototype implementation are ex-
plained in Section 4.

An overview of related work is given in Section 5.
Finally, we describe our conclusions and future work
in Sections 6 and 7.

2 System Architecture

The bird’s-eye view of our architecture is that we have
replaced the back end of an NFS server with an object-
relational database, in this case Postgres [3]. As seen

in Figure 1, we have a 3-tier architecture with an
NFS client layer, a proxy layer, and a database layer.
Our implementation allows us to use unmodified NFS
clients, and while we add modules to Postgres, we do
not make any changes to the database itself.

We are not the first to realize the benefits inherent
in using a database as a filesystem component. Olson’s
Inversion File System [9] creates a file system on top
of the Postgres database, using Postgres to allow for
the use of advanced functionality through user-defined
types. Halverson and Samios also used Postgres in
their file system [7], but strived to make its presence
completely transparent by utilizing it as the back end
of an NFS server and utilizing unmodified NFS clients.
Our system architecture is closely tied to theirs, and in
fact we used their source code as a starting point, but
we utilize the capabilities of the database more fully by
exploiting the database’s query power in certain ways.
The immediate use for the database’s query power is
for search, and our prototype implements search over
text files.

2.1 Why NFS?

The use of standard NFS clients serves several pur-
poses, the most important of which are portability and
transparency. Portability has two facets, the first and
most obvious being the ability overcome geographical
distance between an NFS client and NFS server. The
second notion of portability requires the existence of
compatible NFS clients from various operating systems
platforms. Happily, both of these portability goals are
readily met by NFS, which is available on most OS
platforms thanks to its many open-source implemen-
tations.

Transparency is also a key motivator for our use
of NFS, as it provides existing code support and the
familiar semantics of Unix. This frees our end users
from the frustration of learning a new interface and
allows them to focus on using the new functionality,
which is also remarkably easy to use, and is explained
further in section 3.

In keeping with Halverson’s system we use a user-
space implementation of NFS [8]. This kept debugging
simple and allowed us to leverage the existing proxy
code written by Halverson, which is closely intertwined
with the User-Space NFS source code. There are of
course other file systems that work over a network and
that offer similar functionality to NFS (such as AFS)
but the NFS protocol is particularly nice to work with
because of the statelessness of the NFS server. This
keeps the requirements of the server side very simple
and made it very easy to replace the existing NFS
server with Postgres while staying true to the NFS
protocol.



2.2 The Database Back End

There are several reasons why the use of a database
is powerful and desirable as a filesystem component.
Both [7] and [9] realize the benefits of solid data se-
mantics, transactions, and quick crash recovery. In
addition to this, our prototype incorporates search ca-
pabilities for text files by using the query power of
the underlying database. This is all done without any
modifications to the NFS client.

The essential properties of an NFS server are met
in our architecture. The NFS protocol demands that
writes can only be cached on the client side and that
system calls must be idempotent. These two require-
ments were easy to satisfy in our system thanks to
the machinery provided by Postgres. All NFS calls
that perform updates wrap their filesystem modifica-
tions in database transactions and do not inform the
client of success until the transaction-end log entry
has reached stable storage. For example, if the server
crashes while creating a file it will roll back the par-
tially completed transaction. This allows the server to
re-start the transaction when the client re-sends the
request without any ill consequences.

The use of an object-relational database is essen-
tial to our architecture. Object-relational databases
such as Postgres are extensible in that they allow a
user to create and plug in new objects (modules) that
consist of types and associated functions and indexes.
Many such modules are readily available for Postgres
and they serve a wide range of purposes, the most
popular of which are packaged with the Postgres dis-
tribution. Postgres makes it easy to create new mod-
ules, and our architecture allows us to leverage them
by customizing the NFS proxy. In [7], the use of an
object-relational database was not fully justified, as a
simpler performance-tuned relational database would
have met their needs, but for our implementation the
extensible nature of such a database is critical as it
is the means through which we provide search func-
tionality and other features. Our prototype uses the
tsearch2 module [4] which enables text search through
the types, indexes, and functions that we discuss in
section 4.1.

2.3 The Proxy Layer

The importance of the proxy layer is that it allows us
to selectively expose the database’s functionality and
grants us significant flexibility. As seen in Figure 1, the
proxy translate NFS system calls into SQL statements
that query the database and responds with messages
formatted according to the NFS protocol. We avoid
having to change the NFS client implementation by
funneling all requests through this layer. We encode
requests for the additional functionality that we pro-
vide by using using special syntax in conjunction with
the mkdir command and storing the results in the re-
sulting directory. The proxy layer is responsible for

identifying such special requests, issuing the appropri-
ate database queries, and creating and storing the re-
sults in the new directory. Section 3 details the syntax
and semantics of these commands.

This proxy approach allows us to expose database
functionality in addition to text search. For example,
we could address concerns with NFS’ lack of concur-
rency control by allowing users to designate certain
files as “shared”. The database would treat these files
specially and disallow non-serializable access to them.
In such a case the proxy would select an appropriate
database schema and utilize Postgres transactions and
locking to ensure that safe concurrent access occurred
to the requested files.

3 Virtual Directories and Text Search

One of our main goals in designing this prototype
system was to expose database functionality to NFS
clients, with little or no modification to the existing
interface. An interesting abstraction that has been
proposed in the literature for this purpose is the vir-
tual directory, which was introduced for “semantic file
systems” [6].

The main idea is to extend the naming semantics
of existing tree-structured file systems in order to sup-
port query-based access. The names of virtual directo-
ries, specified using a special syntax, are interpreted as
queries. Otherwise, the interface remains compatible
with existing applications. Virtual directories can be
implemented using a number of semantic paradigms,
and we discuss the potential tradeoffs in Section 3.1.
In Section 3.2, we describe how virtual directories can
be used for the specific purpose of querying text.

3.1 Semantics of Virtual Directories

We encountered a number of tradeoffs in choosing the
exact semantics of virtual directories in our prototype.
In this section, we first outline the semantics we chose,
and then we discuss some alternatives.

In our implementation, we took a simple approach,
and chose to think of virtual directory creation as a
one-time search. In other words, the contents of a
virtual directory are determined when the directory
is created, and they represent a snapshot of the file
system at that point in time. If the user wishes to
re-execute a query, he or she mush delete the existing
virtual directory, and then recreate it. Additionally, in
the prototype, the contents of each virtual directory
are hard links to the files satisfying the given query.
This ensures that the files in the virtual directory will
continue to exist in the system until the virtual direc-
tory is deleted.

In addition to the semantics implemented in the
prototype, there are a number of possible alternatives,
and we describe a few.



• Symbolic Links A simple alternative to the pro-
posed semantics is to create virtual directories
that contain a set of symbolic links to files sat-
isfying the associated query. We chose not to
use symbolic links because of the potential for
dangling or broken links when a file is deleted.
Nonetheless, this design is also perfectly valid.

• Lazy Query-Processing on readdir The vir-
tual directories described in the semantic file sys-
tem paper [6] were based on lazy query evalua-
tion. The given query was re-processed each time
the contents of the virtual directory were read
(using readdir). The added benefit of this ap-
proach is that it guarantees the contents of vir-
tual directories are always up to date when they
are read. However, repeatedly re-running these
queries will likely put much greater pressure on
the NFS proxy, as well as the database back-end,
as the contents of virtual directories cannot be
cached. This semantics is also perfectly valid, but
the performance implications in a distributed en-
vironment should be carefully considered based
on the anticipated workload.

• Dynamic Virtual Directories A third alterna-
tive we considered is dynamically updating the
contents of virtual directories every time a file is
created, updated, or deleted. This semantics can
be implemented using database triggers. How-
ever, it is likely to suffer the same set of perfor-
mance drawbacks as the lazy query-processing ap-
proach.

3.2 Text Queries and Virtual Directories

Our prototype currently supports two types of queries
for text, both of which are implemented in the
Tsearch2 Postgres extension [4], and which offer
greater functionality than the grep utility:

• Boolean Keyword Queries These queries are
logical expressions, and every document satisfying
the logical expression is returned. For example,
consider the query (‘file’ & ‘system’) | (‘disk’ &
‘drive’). Documents containing either the words
‘file’ and ‘system’, or the words ‘disk’ and ‘drive’
would satisfy the query.

• IR Rank Queries Numerous notions of rank
have been proposed in the information retrieval
literature. We stress that our architecture sup-
ports the use of various rank functions, but the
rank utility in the current prototype is based on
proximity. Intuitively, the rank function counts
how many times each word appears in the doc-
ument, and also takes into account how close
the search terms are to one another. Optionally,
these rank scores can be normalized by document
length.

As mentioned previously, one of the ideas of virtual
directories is to extend the existing directory semantics
to encode queries. In our prototype, we encode text
queries in the names of virtual directories using a spe-
cial syntax. Specifically, text queries are enclosed on
percent signs (%). For example, consider the following
command:

> mkdir %(computer&architecture)%

This command indicates the creation of a virtual direc-
tory containing text files about computer architecture.

We found that the easiest way to indicate rank,
without modifying the NFS interface, was to simply
append the ordinal rank to the name of each file in
each virtual directory. For example,

> ls %(computer&architecture)%
[Rank 1]Chip Design.txt
[Rank 2]Digital Logic.txt
[Rank 3]Computer Aided Home Design.txt

Alternative mechanisms are possible, such as modify-
ing the ls function to order files by rank, but would
require modification to the client.

4 Prototype Implementation

In this section we discuss the database schema that we
implemented, the intricacies of the tsearch2 database
module, and the essential features of our NFS proxy.
We relied on four sources of open-source code. The
largest piece of code is the Postgres database, version
7.4.7, which was the latest version at the time of this
implementation [3]. Packaged with the Postgres dis-
tribution is the tsearch2 module that we discuss in sec-
tion 4.1 [4]. We utilize a user-space implementation of
the NFS server version 2 [8]. A kernel implementation
of the NFS server could have worked for us, but as
we were leveraging the code written by Halverson and
Samios, we were more or less forced to stick with it,
as Halverson’s code is a modification of it.

4.1 The Tsearch2 Module

The tsearch2 module was designed to provide search
capabilities for text documents within the Postgres
database. The essential type it provides is “tsvector”
The related “to tsvector” function createsa a tsvector
element from an element of type text. For example:
to tsvector(’Hi mom, hi dad.’) creates the following
tsvector: ‘hi’:1,3 ‘mom’:2 ‘dad’:4. This tsvector indi-
cates that ‘hi’ appears at positions 1,3 in the sentence,
while ‘mom’ and ‘dad’ appear at positions 2, 4 respec-
tively. This position information is important for rank-
ing search results. The index that the tsearch2 module
provides utilizes the words as search terms along with
a reference to the file in which the word occurred and
the position at which the word was found.

So why is this faster than grep? A utility like grep
scans through files on disk, searching for the specified



mtime istextatimectimesizenlinksmodegiduidinode
fileatt

parentnameinode
naming datachunk_idinode

allfiles

1 1

N
N

tsvectorfulltextinode
allfiles_txt

1

1

1

N

tsearch2 index

Figure 2: Database schema for prototype implementation

search string. Recall that each element of type text
is reduced to a tsvector. The space savings we get
from throwing out the stopwords and storing dupli-
cated words only once is partially offset by the posi-
tioning information that is kept for each word occur-
rence. The real savings comes thanks to the index,
which is built on top of Postgres’ Generalized Search
Tree (GiST) template for building indexes for user-
defined types. GiST search trees are structured to be
similar in structure to B+ trees, the most common
index format in most databases. In the case of the
tsearch2 module a GiST tree was customized for the
purposes of storing the mapping from words to the files
in which they occur. Thus using a search word as a
key in the index, the occurrences of the search word
will be found in no more than logb(N) disk accesses,
where b is the fan-out of the tree and ranges from 100
to 1000 depending on the data it indexes. Compare
this to the cost of reading all text files to seek out
potential keyword matches.

Tsearch2 incorporates some common information
retrieval tricks in performing its text search. As seen
in the “Hi mom, hi dad.” example, it ignores capi-
talization. It additionally uses a stopwords file which
contains the most frequent, and therefore the least in-
formative words (for search purposes), in the English
language. No stopwords are stored in tsearch2’s tsvec-
tors or in its index. Some common stopwords are “a”,
“the”, “of”, etc. Stemming is also performed, which
entails the reduction of “walks”, “walked”, and “walk-
ing” to “walk”. For the purposes of search, all vari-
ations are considered equivalent, and the same stem-
ming is also applied to the search terms. These are
useful search tricks, especially when the user is unsure
of the exact wording in a file, and will always return
at least as many results as a grep query would, which
is good for users who are still learning the semantics
of the search functionality.

The tsearch2 library implements a ranking function
with some tunable parameters. It incorporates the fre-
quency of each search term in its scoring for each file
that it considers. In addition, if there are multiple
search terms, it uses the proximity information stored
in the tsvector to influence the score. This is partic-
ularly useful, as the user is likely to search based on
terms that occur together in a sentence, or may include
an individual’s first and last names in a search. The
tsearch2 module also allows for the inclusion/exclusion
of the inverse of document length in its ranking score.
Intuitively, if a search terms appears the same number
of times in a long document and in a short document,
the shorter document probably features the term more
prominently.

In our system, the tsearch2 ranking function will
run over a collection of personal files and can afford to
be simpler than the ranking function of a search en-
gine. This is true because the number of hits will usu-
ally be orders of magnitude fewer in our system, which
makes ranking easier and slightly less important, the
emphasis instead being that all files that match the
search terms must appear in the results. Furthermore,
a commercial search engine must deal with documents
that seek to bias their rating by exploiting knowledge
of the search engine’s ranking function, which is un-
likely to occur in our implementation.

4.2 The Database Schema

Figure 2 illustrates the schema that our database uti-
lized. The “fileatt” table keeps track of all the stan-
dard filesystem metadata. The “nlinks” field keeps
track of the number of hard links pointing to a file.
We use hard links extensively when creating seman-
tic directories and can only delete a file once nlinks
reaches 0. The “naming” table keeps track of the di-
rectory structure and contains a tuple for each file or
link in the filesystem. All of the text files that the user



would like to index are in the “allfiles txt” table. The
remainder of files are not indexed and are placed in
the “allfiles” table.

Our schema differs from the one-table schema of [7]
in two respects. The first difference is the “istext”
attribute in the “fileatt” table and second is the “all-
files txt” table which did not exist in their implementa-
tion. Currently text files are identified by the presence
of a “.txt” extension.

A relational database will not allow a subset of the
pages that comprise an attribute in a tuple to be mod-
ified. For this reason, each non-text file stored in
the “allfiles” filesystem is subdivided into 4096 byte
chunks and an entry for each chunk is placed in the
“allfiles” table along with the file’s inode. When a
file is read the chunks are collated together and sent
across to the NFS client. When an NFS write occurs
to a subset of the bytes of a file, the write is directed
to the affected chunks and an entire rewrite of the file
is avoided. An additional benefit to the division of
these files into even-sized chunks is that they made
block-level server-side caching particularly easy to im-
plement. The server-side caching allows the proxy to
fill NFS read requests for data without having to in-
voke the database each time.

The allfiles txt table contains the necessary addi-
tions for text search capabilities. The tsvector field
stores the word occurrence information in a format
amenable to the text index. A trigger is set on the
fulltext field of the allfiles txt table so that whenever
the file is updated, the corresponding tsvector entry
is recomputed using the to tsvector function and the
index is updated.

The “allfiles txt” and “allfiles” tables also differ in
that files in “allfiles txt” are not divided into chunks,
rather the full text of the file is stored in a single field.
The decision to do this was driven by the workings of
tsearch2 module. It would not work to create a tsvec-
tor for every chunk of a file because words lying across
chunkID boundaries would get cut in half and not get
indexed. Another problem with this approach is that,
boolean searches such as %alice & bob% would fail in
the event that “alice” is in one file chunk and “bob”
is in another. A viable alternative would be to add
another table “text chunks” in which the file is broken
into chunks as in “allfiles” and to add a boolean “is-
Stale” column to allfiles txt. Reads and writes would
then occur to “text chunks” and the isStale flag would
be set to true on writes to chunks int the “text chunks”
table. Unless stale data is acceptable, this still requires
a lot of work to be done for searching since the entire
fulltext field needs to be updated when even a small
write occurs. The most efficient solution would be to
customize the tsearch2 module so that it would work
on files that are split into chunks.

5 Related Work

Over the years, there have been a number of projects
and papers related to semantic file management, per-
sonal information management, text searching, and
database-backed file systems. None of these individual
elements is new. However, to the best of our knowl-
edge, this is the first time a file system has attempted
to expose user-defined file types, implemented in an
object-relational database system, using a standard in-
terface (NFS) and virtual directories.

The prior work that is most closely related to ours
is the Inversion File System [9], which was also con-
structed on top of Postgres. This system allowed the
user to implement new file types, which defined the
kinds of meta-data associated with each type of file,
new functions to operate on these types, and new types
of indices. These user-defined types and functions were
loaded automatically into the Postgres database man-
ager. The system then allowed users to issue arbitrary
queries over the meta-data associated with the various
Inversion files.

The most obvious difference between the Inversion
system and our work is the nature of the exported in-
terface. The interface to Inversion included a set of
special-purpose libraries, and the query interface was
Postquel, the first query language supported by Post-
gres. For this reason, in order to access Inversion files,
applications were required to use these libraries, and
in order to leverage the query functionality, users were
required to write queries in the (somewhat cumber-
some) Postquel language.

The designer of Inversion mentioned its interface as
a potential shortcoming. Indeed, in the years since
the Inversion paper was published, we suspect that
this problem has only grown. NFS continues to be an
almost ubiquitous standard, which is relied upon by
many existing applications. Also, because the num-
ber of people using computers has grown rapidly over
the past twelve years, and includes many people not
trained in computer programming, we suspect that an
interface based on a query language such as Postquel
or SQL would now be even more difficult for the typi-
cal user.

The interface exported by our prototype is more
similar to that used by the Semantic File System [6].
As we mentioned previously, the main premise of this
paper was that declarative queries could be integrated
into an existing tree-structured file system by extend-
ing the naming semantics of files and directories, using
a paradigm called “virtual directories.” Otherwise, the
existing interface (NFS in this case) was preserved for
existing applications.

To a lesser extent, the Semantic File System was
also extensible. User-programmed “transducers” were
used to extract meta-data from files of various types,
and the meta-data was then indexed in the file sys-
tem. However, the indexing component was based



solely on B-Trees, and could not be extended to new
index types. Additionally, the system used a custom-
written query processing module (and query optimiza-
tion heuristics) rather than taking advantage of exist-
ing technology found in modern database systems.

In more recent related work, our database-backed
NFS implementation closely follows the design used
by Halverson and Samios’s project at the University
of Wisconsin [7]. However, as mentioned previously,
this work did not take advantage of the query power
available in the underlying database. For this reason,
our work can be considered complementary.

Finally, a number of recent and forthcoming com-
mercial products, including Apple Spotlight [2] and
WinFS [1], seek to integrate text management, con-
tent indexing, and search into personal file manage-
ment. However, to the best of our knowledge, none
of the existing products can be used in conjunction
with common distributed file system protocols, such
as NFS.

6 Summary and Conclusions

In this paper, we presented a prototype architecture
for building extensible semantic file systems. This ar-
chitecture has two key sets of advantages that have
not previously been implemented in a single system.
First, the exported interface exposes query functional-
ity using virtual directories, as proposed in [6], while
maintaining “backwards compatibility” with the NFS
interface. Second, by building the system on top of
an object-relational database, as proposed in [9], we
obtain easy extensibility for new file types and in-
dexes, and we are able to take advantage of existing
query processing functionality. As an added benefit,
the database-backed architecture also allows for strong
transactional semantics and recoverability.

We demonstrated the feasibility of this architecture
using an important sample file type: text. Full-text in-
dexing and query support is implemented as an exten-
sion to Postgres, and we were able to expose two key
pieces of functionality using the existing NFS interface
and virtual directories: boolean keyword search, and
document rank. Indeed, our implementation required
no modification to an existing NFS client.

There are several interesting conclusions to be
drawn from this work, the most important of which
is simplicity. The three-tiered proxy architecture pro-
vides a great deal of flexibility. By combining existing
components, including an existing extensible database
system and an existing NFS client, it was relatively
easy to expose new text-search functionality to the
user, without disturbing the existing file system inter-
face or the core database implementation. Addition-
ally, the extensible database system provides a flexible
interface for defining new file types, which can be ex-
posed to the user.

7 Future Work

There are a number of promising areas for future work,
many of which have been mentioned throughout the
paper. In the short term, there are two important is-
sues to be addressed. The first issue is incorporating
block-level text writes and block-level caching into our
prototype. At present, when a single block of a text
file is written, our implementation requires the entire
document to be re-written. An enhanced implementa-
tion would support block-level writes.

The second near-term problem is performance
benchmarking. Due to time constraints, we were not
able to perform a thorough performance analysis of
our prototype. In the near-term, there are three im-
portant questions related to the performance of text
indexing, query support, and virtual directories:

• Dynamic index maintenance In the proto-
type, text indices are maintained automatically
by the database, using triggers, when files are cre-
ated, updated, or deleted. In the current imple-
mentation, we expect this to be the main source
of performance overhead related to full-text man-
agement. However, this overhead is likely to vary
tremendously based on the workload, and has not
yet been quantified.

• Virtual directory creation and text query-
ing Because of the full-text indices, we expect
the performance of full-text query execution to
be pretty good. An experiment would measure
this cost, as compared to a “strawman” utility
that processes these queries by simply scanning
all files, like grep.

• Performance comparison of alternative se-
mantics As mentioned in Section 3.1, there are
a number of alternative semantics for virtual di-
rectories, two of which re-process the associated
query, either when the directory is read, or when
files are updated. We hypothesize that this would
cause an additional performance burden for the
database backend, as well as the network, but a
set of experiments would quantify this cost more
precisely for certain types of workloads.

In the longer term, there are several additional is-
sues to be considered. The first relates to the three-tier
architecture. Exploiting this design, we suspect that it
would be possible to track use patterns, inside the NFS
proxy, to enable adaptive reorganization of indices and
storage. File systems in general, as well as our query
utilities, can be used in a number of ways. We sus-
pect that this workload would influence the design of
schemas and choice of indices for both the meta-data
and data files in the database. Unfortunately, these
workloads may not be well-understood, particularly
because few file systems have been implemented in this



way, and none is in widespread use. Further, follow-
ing our theme of transparency, it is important to hide
database performance tuning from the NFS client.

Finally, integrating text-search into an existing file
system is an interesting problem. However, as men-
tioned in the introduction, text management serves as
just one example of a new type of file system that is
easily extended to manage new file types based on se-
mantic content, with minimal modification to the ex-
isting interface. An important future step is to extend
the existing prototype to handle indexing and query-
ing meta-data and content of other types of files, such
as images and music.

8 Acknowledgements

We wish to thank Alan Halverson for providing a large
amount of useful source code from his 2002 project,
Remzi Arpaci-Dusseau for a number of useful com-
ments, and David DeWitt for lending us an unsup-
ported machine on which to run our prototype.

References

[1] http://msdn.microsoft.com/data/winfs/default.aspx.

[2] http://www.apple.com/macosx/tiger/spotlight.html.

[3] http://www.postgresql.org.

[4] O. Bartunov and T. Sigev. Tsearch2 full
text extension for PostgreSQL. http://www.
sai.msu.su/ megera/postgres/gist/tsearch/V2.

[5] R. Boardman, R. Spence, and M. Sasse. Too many
hierarchies? The daily struggle for control of the
workspace. In Proc. of Human-Computer Interac-
tion International, 2003.

[6] D. Gifford, P. Jouvelot, M. Sheldon, and
J. O’Toole. Semantic file systems. In Proc. of
the 13th Annual Conference on Operating Systems
Principles, October 1991.

[7] A. Halverson and B. Samios. NFS meets data
bases. In Proc. of the First Annual USEDNIX Con-
ference, December 2002.

[8] O. Kirch. UNFSD - The Universal User-
mode NFS Daemon. ftp://linux.mathematik.tu-
darmstadt.de/pub/linux/people/okir.

[9] M. Olson. The design and implementation of the
inversion file system. In Proc. of the 1993 Winter
USENIX Conference, January 1993.


