
- 1 -

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi

TAs: Junaid Khalid and Pradip Vallathol

Examination 4

In Class (50 minutes)

Wednesday, December 12, 2012

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has nine pages. Circle your final answers. Plan your time carefully since some

problems are longer than others. You must turn in the pages 1-7.

LAST NAME: ___

FIRST NAME: ___

ID# ___

- 2 -

Problem Maximum Points Points Earned

1 6

2 6

3 6

4 3

5 3

6 6

Total 30

- 3 -

Problem 1: Assembly Language

(a) Briefly explain the four assembly errors in the following LC-3 program.

 (4 Points)

 .ORIG x3000

 LD R2, INPUT

 AND R0, R0, #0

 ADD R1, R0, #1

 BR NEXT

LOOP AND R4, R2, R1

 BRz SKIP

 NOR R0, R0, #1

NEXT ADD R1, R1, R1

 ADD R3, R3, x2A

 LD R6, SKIP

 NOT R6, R6

 BRzp LOOP

INPUT .FILL x1997

NEXT .FILL x1998

 .END

i. Label SKIP is not declared.

ii. Duplicate label NEXT

iii. x2A cannot be represented as a signed number in 5 bits

iv. NOR is an undefined instruction

(b) Which of the following (if any) of the following pseudo-ops can be used multiple

times in a single assembly file. Circle all options that apply. (2 Points)

i. .FILL

ii. .ORIG

iii. .BLKW

iv. .END

v. .STRINGZ

- 4 -

Problem 2: Two pass Assembly Process

 An LC-3 assembly language program in given below:

 .ORIG x3000

 AND R3, R3, #0

 LD R0, M0

 LD R1, M1

 LD R2, M2

 ADD R3, R3, R2

LOOP ADD R3, R3, #1

 ADD R0, R0, #-1

 BRn LOOP

DONE ST R3, RESULT

 HALT

RESULT .FILL x0000

M0 .BLKW #7

M1 .STRINGZ “Section-3”

M2 .FILL x0009

 .END

(a) A symbol table is created during the first pass by the assembler. Fill in the

following symbol table for the above program: (4 Points)

Symbol Address

LOOP

DONE

RESULT

M0

M1

M2

x3005

x3008

x300A

x300B

x3012

x301C

(b) The assembly program is converted into a binary file during the second pass by

the assembler. Fill in the binary instructions at the following memory locations:

 (2 Points)

Address Instructions

x3007 0000 1001 1111 1101

x3008 0011 0110 0000 0001

- 5 -

Problem 3: Traps and Subroutines (6 Points)

The following LC-3 assembly program takes a single character as input from the user. If

the input character is a digit (0-9), it prints the message “Is a digit” on the display. This

process is continued until the user enters the termination character ‘#’, and the program

halts. Fill in the missing parts of the program indicated by ________.

 .ORIG x3000

GETINPUT TRAP x20 ; Input a character from the user

 ; (Do not echo it on the display)

 LD R1, TERMCHAR ; termination check

 ADD R1, R0, R1

 BRz END ; Branch to END on ‘#’

 JSR CHECKINPUT ; Call CHECKINPUT subroutine

 BR GETINPUT

END HALT

CHECKINPUT

 ST R7, SAVELOC ; Save something here

 LD R2, DIGIT0

 ADD R2, R0, R2

 BRn RELOAD

 LD R2, DIGIT9

 ADD R2, R0, R2

 BRp RELOAD

DISP_IS LEA R0, STR_IS ; print a string

 TRAP x22 ; to the display

RELOAD LD R7, SAVELOC ; Load something here

 RET

; Data

SAVELOC .BLKW #1

STR_IS .STRINGZ "Is a digit\n"

STR_NOT .STRINGZ "Not a Digit\n"

TERMCHAR .FILL 0xFFDD ; negative ASCII value of ‘#’

DIGIT0 .FILL 0xFFD0 ; negative ASCII value of ‘0’

DIGIT9 .FILL 0xFFC7 ; negative ASCII value of ‘9’

 .END

- 6 -

Problem 4: I/O

a) Briefly explain the difference between interrupt-driven I/O and polling based

I/O? (2 Points)

Polling: CPU keeps checking status register until new data arrives or device ready

for new data.

Interrupt: Device sends a special signal to CPU when new data arrives or device

ready for next data.

b) What is the main reason to prefer asynchronous I/O over synchronous I/O in

recent microprocessor designs? (1 Point)

I/O devices usually operate at speeds very different from that of a microprocessor.

The rate at which data is provided or consumed is not predictable and usually not

in lockstep with the processor clock.

Problem 5: Trap Handling (3 Points)

List the main steps of the TRAP mechanism involved in executing the instruction

TRAP x86.

a. Lookup the starting address of the service routine to execute in the Trap Vector

table at location 0x86.

b. Transfer control to service routine (Set PC to contents of the memory location

0x86). Save return address in R7.

c. Return from service routine (JMP R7).

- 7 -

Problem 6: Short Answer Questions

Answer the flowing questions briefly.

a) How many trap service routines can be defined in LC-3? (1 Point)

256

b) Explain briefly the problem that the callee-save and the caller-save approaches

are trying to solve. (2 Point)

If a register value is “destroyed” by actions of a subroutine or service routine, the

value has to be saved before it is modified, and reloaded before it is used again.

c) What important feature does the instruction JSRR provide that JSR does not?

 (1 Point)

JSRR uses the contents a register as the address to jump to (16 bits), while JSR

instruction provides an 11 bit offset to PC. Thus the range of addresses to which a

JSRR instruction can jump to is larger than that of the JSR instruction.

d) What happens during the linking phase of an assembly program? (1 Point)

Linking is the process of resolving symbols between independent object files. The

linker will search symbol tables of other modules to resolve symbols and

complete code generation before loading.

e) What is the use of Comments in an assembly program? (1 Point)

Comments are useful to humans to document or understand programs. They are

ignored by the assembler.

- 8 -

Extra page for hand written work, if needed. This page is not required and will

NOT affect your grade. You don’t even need to hand this page in.

- 9 -

ASCII Table

Character Hex Character Hex Character Hex Character Hex

nul 00 sp 20 @ 40 ` 60

soh 01 ! 21 A 41 a 61

stx 02 “ 22 B 42 b 62

etx 03 # 23 C 43 c 63

eot 04 $ 24 D 44 d 64

enq 05 % 25 E 45 e 65

ack 06 & 26 F 46 f 66

bel 07 ‘ (Apostr.) 27 G 47 g 67

bs 08 (28 H 48 h 68

ht 09) 29 I 49 i 69

lf 0A * 2A J 4A j 6A

vt 0B + 2B K 4B k 6B

ff 0C , (Comma) 2C L 4C l 6C

cr 0D - 2D M 4D m 6D

so 0E . (Period) 2E N 4E n 6E

si 0F / 2F O 4F o 6F

dle 10 0 30 P 50 p 70

dc1 11 1 31 Q 51 q 71

dc2 12 2 32 R 52 r 72

dc3 13 3 33 S 53 s 73

dc4 14 4 34 T 54 t 74

nak 15 5 35 U 55 u 75

syn 16 6 36 V 56 v 76

etb 17 7 37 W 57 w 77

can 18 8 38 X 58 x 78

em 19 9 39 Y 59 y 79

sub 1A : 3A Z 5A z 7A

esc 1B ; 3B [5B { 7B

fs 1C < 3C \ 5C | 7C

gs 1D = 3D] 5D } 7D

rs 1E > 3E ^ 5E ~ 7E

us 1F ? 3F _ (Undrscre) 5F del 7F

- 10 -

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 PC’, PC PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp PC’, PC BaseR, R7 temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 PC’, PC mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- 11 -

TRAP CODES

