CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN-MADISON

Prof. Gurindar Sohi
TAs: Lisa Ossian, Minsub Shin, Sujith Surendran
Midterm Examination 1
In Class (50 minutes)
Wednesday, September 24, 2014
Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has nine pages. You must turn in the pages 1-8. Circle your final answers. Plan your time carefully since some problems are longer than others. Use the blank sides of the exam for scratch work.

LAST NAME: \qquad

FIRST NAME: \qquad

ID\#: \qquad

Problem	Maximum Points	Points Earned
$\mathbf{1}$	2	
$\mathbf{2}$	1	
$\mathbf{3}$	1	
4	2	
$\mathbf{5}$	2	
$\mathbf{6}$	4	
7	4	
$\mathbf{8}$	5	
$\mathbf{9}$	2	
$\mathbf{1 0}$	2	
$\mathbf{1 1}$	30	
$\mathbf{1 2}$	$\mathbf{4}$	
Total		

Problem 1

Label the following items/terms according to their level of abstraction relative to one another. Label the most abstract term as 1 and least abstract as 6 .

	Instruction Set Architecture (ISA)
	Code in High level language (C/C++/Java)
	Problem Statement / Application
	Algorithm to solve problem
	Micro Architecture
	Transistors (CMOS or NMOS)

Problem 2

(1 Point)
Mention one difference between a high level language and an assembly language?

Problem 3
(1 Point)
Explain why natural languages cannot be used as programming languages?

Problem 4

(2 Points)

There are 65 birds on a tree.
a) How many bits are required to uniquely represent all birds?
b) If the number of birds on the tree were to decrease so that only 5 bits will be required to uniquely represent them, what is the maximum number of birds that could be on the tree?

Problem 5

Using 8 bits to represent each number, write the representations of 24 and -24 in sign-magnitude and 2 's complement notations.

Number	Sign-magnitude	2's complement
24		
-24		

Problem 6

(4 Points)
Perform binary arithmetic for the following pairs of 2's complement numbers. Write your result in binary. Indicate if there is an overflow.
a) 011010

+ 011111

Did overflow occur?
b) 00100111

- 00001110

Did overflow occur?

Problem 7
Perform the specified logical operations on the following binary numbers. Express your result in hexadecimal.
a) $00010110 \operatorname{AND}(\operatorname{NOT}(10111010))$
b) 1000 OR (1010 OR 0001)

Problem 8

You have an 8-bit fixed point binary notation, with 5 bits for the integer part, i.e., 5 bits to the left of the binary point, and 3 bits for the fractional part, i.e., 3 bits to the right of the binary point. Represent the decimal 5.125 in this fixed point notation.

Problem 9

Convert the decimal value -10.25 into its IEEE single-precision floating point representation.

The bits for the IEEE single-precision floating point number (N) are allocated as follows:

Sign (1 bit)	Exponent (8 bits)	Fraction (23 bits)

Where the value $\mathrm{N}=(-1)^{\text {Sign }} \times 1$. Fraction $\times 2^{\text {Exponent-127 }}$

Problem 10

(2 Points)
Suppose we have an eight-bit pattern in which the leftmost 4 bits are of interest. For example, the computer could be asked to perform some tasks depending on the value stored in the leftmost 4 bits of A. How can we isolate those 4 bits of interest? Demonstrate on A = 11010101. (To "isolate" means to make all the bits that are not of interest equal to 0 , while leaving the bits of interest as they are. For example, if 8-bit string is 11111111 and the bit of interest is the rightmost bit, your output should be 00000001 .)

Problem 11

Consider an n-bit 2's complement representation.
a) What is the largest decimal number that can be represented with an n-bit 2 's complement number?
b) What is the smallest decimal number that can be represented with an n-bit 2 's complement number? (Note: -2 is smaller than -1 .)

The ASCII table on the last page will be useful in solving this problem. You can detach it to make it easier to consult without flipping pages while solving this problem.

Consider two strings of two ASCII characters each: "A@" and "\$1". The ASCII characters in the string are the two characters between the quotation marks, and there is no null character terminating the string.

First, convert each of these two strings into their corresponding 16-bit binary values. (2 Points)

Now, suppose that the two 16-bit binary values were added as if they were unsigned integers, and the resulting 16 bits treated as they were a string of ASCII characters. What would the resulting ASCII string be? (2 Points)

ASCII Table

Character	Hex	Character	Hex	Character	Hex	Character	Hex
nu1	00	sp	20	@	40		60
soh	01	!	21	A	41	a	61
stx	02	"	22	B	42	b	62
etx	03	\#	23	C	43	c	63
eot	04	\$	24	D	44	d	64
enq	05	\%	25	E	45	e	65
ack	06	\&	26	F	46	f	66
bel	07	- (Apostr.)	27	G	47	g	67
bs	08	(28	H	48	h	68
ht	09)	29	I	49	i	69
If	0 A	*	2A	J	4A	j	6A
vt	0B	+	2B	K	4B	k	6B
ff	0 C	, (Comma)	2 C	L	4C	1	6C
cr	0D	-	2D	M	4D	m	6D
so	0 E	- (Period)	2E	N	4 E	n	6 E
si	0F	/	2 F	0	4 F	-	6 F
dle	10	0	30	P	50	p	70
dc1	11	1	31	Q	51	q	71
dc2	12	2	32	R	52	r	72
dc3	13	3	33	S	53	s	73
dc4	14	4	34	T	54	t	74
nak	15	5	35	U	55	u	75
syn	16	6	36	V	56	v	76
etb	17	7	37	W	57	w	77
can	18	8	38	X	58	x	78
em	19	9	39	Y	59	y	79
sub	1A	:	3A	Z	5A	z	7 A
esc	1B	;	3B	[5B	\{	7B
fs	1C	$<$	3 C	1	5C	\|	7 C
gs	1D	=	3D]	5D	\}	7 D
rs	1E	$>$	3 E	\wedge	5 E	\sim	7 E
us	1F	?	3F	_ (Undrscre)	5F	del	7F

