CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi
TAs: Lisa Ossian, Minsub Shin, Sujith Surendran
Midterm Examination 3
In Class (50 minutes)
Friday, November 14, 2014

Weight: 17.5\%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has nine pages. Circle your final answers. Plan your time carefully since some problems are longer than others. You must turn in the pages $\mathbf{1 - 8}$. Use the blank sides of the exam for scratch work.

The LC-3 instruction set is provided on Page 9

LAST NAME: \qquad

FIRST NAME: \qquad

ID\#: \qquad

Problem	Maximum Points	Points Earned
$\mathbf{1}$	3	
$\mathbf{2}$	2	
$\mathbf{3}$	3	
$\mathbf{4}$	3	
$\mathbf{5}$	7	
7	3	
$\mathbf{8}$	30	
Total	3	

a) Which of the following LC-3 instructions copies the value of R7 into R1?

1) 0001001111111111
2) 0101001111111111
3) 0101111001111111
4) 0001111001100000
b) Excluding the memory access to fetch the instruction, how many memory accesses are made to fetch and execute the LDI instruction?
5) 1
6) 2
7) 3
8) 4
c) The LC- 3 branch instruction 0000011000001111 is located at memory address $0 x 3000$. If the branch is taken, what does that imply about the values of the condition codes before the instruction executed?
9) Either $\mathrm{N}=1$ or $\mathrm{P}=1$, and $\mathrm{Z}=0$
10) Either $P=1$ or $Z=1$, and $N=0$
11) Both $\mathrm{P}=1$ and $\mathrm{Z}=1$, and $\mathrm{N}=0$
12) Both $\mathrm{N}=1$ and $\mathrm{Z}=1$, and $\mathrm{P}=0$

Problem 2

a) (1 point) Write a single LC-3 instruction to load the number 0×4020 into R2. Assume that your instruction will be located at 0×4000.
b) (1 point) Write a single LC-3 instruction to load the data stored at memory address 0×4020 into R3. Assume that your instruction will be located at 0×4001.

The table below shows LC- 3 instructions starting at 0×3000, which are executed in sequence. Specify the values at memory locations $0 \times 300 \mathrm{~F}$ to 0×3012 after executing each instruction.

Assume that the initial contents of $\mathrm{R} 0=0 \times 3010$ and $\mathrm{R} 1=0 \times 3011$. Also, assume that the initial values of the memory locations $0 \times 300 \mathrm{~F}$ to 0×3012 are all zeros.

Address	LC-3 Instruction	Values at memory locations after executing the instruction
0×3000	0011000000001111	Value at $0 \times 300 \mathrm{~F}:$ Value at $0 \times 3010:$ Value at $0 \times 3011:$ Value at $0 \times 3012:$
0×3001	0111001000000010	Value at $0 \times 300 \mathrm{~F}:$ Value at $0 \times 3010:$ Value at $0 \times 3011:$ Value at $0 \times 3012:$
0×3002	101100100001110	Value at $0 \times 300 \mathrm{~F}:$ Value at $0 \times 3010:$ Value at $0 \times 3011:$ Value at $0 \times 3012:$

Problem 4

Assume that the following two LC-3 instructions are a part of a large program:

```
0001 000 000 1 11111
0000010000000001
```

a) (2 points) If the second instruction (which is a branch) is taken, what can you tell about the value of R0 just before executing these two instructions?
b) ($\mathbf{1}$ point) If the branch instruction is located at address 0×3000, specify the range of addresses to which you can branch using this instruction.

Problem 5

Consider the LC-3 program below.

Address	Instruction	Comment
0×4000	0101100100100000	
0×4001	0001011011111011	
0x4002	0101011011111111	
0×4003	0000100000000010	
0×4004	0001100100111110	R4<- R4-2
0×4005	0000111111111000	Branch if N, Z, or P is set to address 0 x 4001
0×4006	1111000000000000	HALT

a) ($\mathbf{2}$ points) Fill in the four missing comments in the program above.
b) ($\mathbf{1}$ point) If the initial value of R 3 is 0×0033, what is the value of R 4 when the HALT instruction is reached?
c) ($\mathbf{1}$ point) If the initial value of R 3 is 0×0004, what is the value of R 4 when the HALT instruction is reached?
d) (1 point) What is the minimum value of R 3 that causes the value of R 4 to be -8 upon reaching the HALT instruction?

Problem 6

We are about to execute the program below. Assume the condition codes before execution of the program are $\mathrm{N}=1, \mathrm{Z}=0, \mathrm{P}=0$.

Address	Instruction	Comments
0×3000		Store R0 into memory location 0x300D
0×3001		If n flag is set, branch to 0x3005
0×3002		Subtract 5 from R0 and store the result in R0
0×3003	0101010010000000	R2 <- R2 AND R0
0×3004	1111000000000000	HALT
0×3005	1010010000000100	LDI: Load the value from a memory location, whose address is stored in location 0x300A, into R2
0×3006	1111000000000000	HALT

a) ($\mathbf{3}$ points) Fill in the three missing instructions in the program above.
b) $\mathbf{4}$ points) Suppose a section in memory before execution of the program is as follows:

Address	Value
$0 \times 300 \mathrm{~A}$	$0 \times 300 \mathrm{D}$
$0 \times 300 \mathrm{~B}$	$0 \times 300 \mathrm{~F}$
$0 \times 300 \mathrm{C}$	$0 \times A C E D$
$0 \times 300 \mathrm{D}$	$0 \times 300 \mathrm{~B}$

Given the initial values of the below registers, fill in the values after the program has completed execution (i.e., reached a HALT). Give your answers in hex.

Register	Initial Value	Final Value
MAR	$0 \times 300 B$	
MDR	$0 \times A B C D$	
R0	0×5555	
R1	$0 \times 300 D$	
R2	$0 \times 300 \mathrm{~A}$	

Assume that you wrote a program which asks the user to enter a number and then identifies whether it is a prime number or a composite number. When you run the program, you see that it created an illegal operation.
(a) (1 point) What kind of error have you committed? Explain.
(b) (1 point) What are the different options available to you to trace this program and identify the wrong instruction? Explain the options.
(c) (1 point) Now assume that you were able to trace the bug in the program and after you modified it, assume that it ran successfully (without creating any illegal instructions) and gave the correct output when the user input was 5 . However, when the user then gave an input of 50000, it did not give the correct answer. What kind of error do you think you have committed now? Explain the error.

Problem 8

Assume that your friend John has written a large LC-3 program which is working correctly. Column A in the table below shows 4 sets of instructions which are part of his working program. Now, suppose you replaced one set of instructions in Column A with the corresponding set of instructions in Column B. Without making assumptions about any register or memory location, specify if the program is still guaranteed to work correctly. Justify your answer.

Set \#	Column A	Column B
1	$\begin{array}{llllll} 0101 & 000 & 000 & 1 & 00000 \\ 0101 & 001 & 001 & 1 & 00000 \text { (R0 <- R1 <- R1 AND AND } 0) \\ 0000 & 010 & 000000010 & \text { (Branch if Z to PC' }+2 \text {) } \end{array}$	0101 001 001 1 00000 (R1<-R1 AND 0) 0101 000 000 1 00000 (R0<- R0 AND 0) 0000 010 000000010 (Branch if Z to PC'+2)
	Answer/Justification:	
2	$\begin{array}{llllll} 0001 & 000 & 000 & 11111 & (R 0<-R 0-1) \\ 0001 & 001 & 001 & 1 & 11111(R 1<-R 1-1) \\ 0000 & 010 & 000000010(\text { Branch if Z to PC' }+2) \end{array}$	$\begin{array}{llllll} 0001 & 001 & 001 & 11111 & (\mathrm{R} 1<-\mathrm{R} 1-1) \\ 0001 & 000 & 000 & 1 & 11111(\text { R0 <-R0-1) } \\ 0000 & 010 & 000000010(\text { Branch if Z to PC' }+2) \end{array}$
	Answer/Justification:	
3	$\begin{array}{llll} 0001 & 000 & 00011111(\text { R0 <- R0-1) } \\ 001100100000011(R 1<-\operatorname{Mem}[P C '+3]) \end{array}$	0011001000000011 (R1 <- Mem[PC'+3]) 0001000000111111 (R0<-R0-1)
	Answer/Justification:	
4	$\begin{array}{llllll} 0001 & 000 & 001 & 11111 & (\mathrm{R} 0<-\mathrm{R} 1-1) \\ 0111 & 001 & 001 & 000011 & (\mathrm{R} 1<-\mathrm{Mem}[\mathrm{R} 1]+3) \end{array}$	0111001001000011 (R1 <- Mem[R1]+3) $0001000001111111(\mathrm{R} 0<-\mathrm{R} 1-1)$
	Answer/Justification:	

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007)

P^{\prime} : incremented PC. setcc() : set condition codes N, Z, and P. mem[A]:memory contents at address A. SEXT (immediate) : sign-extend immediate to 16 bits. ZEXT (immediate) : zero-extend immediate to 16 bits.

