CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi, Kai Zhao
TAs: Daniel Griffin, Neha Mittal, Annie Lin, Mohit Verma, Yuzhe Ma

Examination 3
In Class (50 minutes)
Wednesday, November 16, 2016

Weight: 17.5\%

NO: BOOK(S), NOTE(S), CALCULATORS OR ELECTRONIC DEVICES OF ANY SORT.
The exam has eleven pages. You must turn in the pages 1-10. Circle your final answers. Plan your time carefully since some problems are longer than others. Use the blank sides of the exam for scratch work.

Problem	Maximum Points	Points Earned
1	3	
2	4	
3	3	
4	3	
5	8	
6	7	
7	31	
Total	3	
4		
6		

Fill in the six missing comments in the program below:

Address	Instruction	Comment
0x4000	0101011011100000	R $3<-0$
0x4001	0001110011100001	$\mathrm{R} 6<-\mathrm{R} 3+1$
0x4002	0101100101000110	R4 <- R5\&R6
0x4003	0000010000000001	BRz 0x4005
0x4004	0001000000100001	$\mathrm{R} 0<-\mathrm{R} 0+1$
0x4005	0001110110000110	$\mathrm{R} 6<-\mathrm{R} 6+\mathrm{R} 6=2 * \mathrm{R} 6$
0x4006	0001011011100001	$\mathrm{R} 3 \leftarrow \mathrm{R} 3+1$
0x4007	0001001011111100	$\mathrm{R} 1 \leftarrow \mathrm{R} 3-4$
0x4008	0000100111111001	BRn 0x4002
0x4009	1111000000100101	HALT

Address	Instruction	Comment
0×3000	0101010010100000	$\mathrm{R} 2 \leftarrow 0$
0×3001	0001001001111111	$\mathrm{R} 1 \leftarrow \mathrm{R} 1-1$
0×3002	0001001001111111	$\mathrm{R} 1 \leftarrow \mathrm{R} 1-1$
0×3003	0000100000000010	$\mathrm{BRn} \times 3006$
0×3004	0001010010100001	$\mathrm{R} 2 \leftarrow \mathrm{R} 2+1$
0×3005	1111000000100101	$\mathrm{BRnzp} \times 3001$
0×3006		HALT

a) The above program processes a value initially stored in register R1 according to an algorithm, and stores the result in register R2. Assuming the initial value in R1 is greater than 0, describe how the value in R2 is related to the value that was initially in R1 when the program reaches the HALT instruction at address x 3006 ?
$R 2$ is the rounded down value of $\mathrm{R} 1 / 2$. Aka, it's floor(R2/2)
b) What is the final value of R2 if R1 is initially the decimal value 12 ? Give your answer in decimal.
$R 2=6$

Shown below are the contents of memory and registers before and after the LC-3 instruction at location 0×4080 is executed. Identify the instruction stored in x4080 and give your answer in hexadecimal form. (There is enough information below to uniquely specify the instruction). Explain your reasoning to receive credit; no explanation means no credit even if your final answer is correct.

	Before	After
R0	x1000	x1000
R1	x10A1	x10A1
R2	x2300	x2300
R3	x1234	x1234
R4	x11AA	x11AA
R5	x2BEF	x2BEF
R6	x1254	x1254
R7	x1421	x1421
mem[x4050]	x3001	x3001
mem[x4051]	xADD1	xADD1
mem[x4052]	x2412	x2412
mem[x4053]	x3213	x2300
mem[x4054]	xFFFF	xFFFF

x35D2

The following (incomplete) binary code snippet accepts an input value in register R3, increments it by 2 if the value is even, and then halts. Odd values are left untouched. This can be represented in pseudo code as:
if $\mathbf{R} 3$ is divisible by $\mathbf{2}$ then:

$\mathbf{R} 3 \leftarrow \mathbf{R} 3+2$

end if
halt

Complete the code below, by filling in the LC-3 instructions (in binary format) at memory locations x3001 and x3003; the instructions at memory locations x3002 and x3004 have already been filled in for you.

The PC register is set to x 3001 before this code executes.

Address	Instruction
0×3001	0101000011100001
0×3002	0000001000000001
0×3003	0001011011100010
0×3004	1111000000100101

Note that TRAP x 25 is used to halt execution.

The DR in 0×3001 can be any register except R3.

The diagram shown to the right represents the flow chart of a program that multiplies the integer numbers 23 and 10 together, and leaves the result in register R3. The table below gives the register operations that implement this program. Note that each register operation might translate into multiple LC-3 instructions. Fill in the spaces in the program diagram with the letters from the table that correctly implement this program. There are multiple combinations of letter assignments that will work for this program. Choose any single assignment that works. Each blank should contain a single letter option, and not all of the options below will be used.

Letter	Operations
A	$\mathrm{R} 0 \leftarrow 23$
B	$\mathrm{R} 2=0 ?$
C	$\mathrm{R} 3 \leftarrow 0$
D	$\mathrm{R} 2 \leftarrow 10$
E	$\mathrm{R} 3 \leftarrow \mathrm{R} 5$
F	$\mathrm{R} 2 \leftarrow \mathrm{R} 2-1$
G	$\mathrm{R} 0=0 ?$
H	$\mathrm{R} 3 \leftarrow \mathrm{R} 3+\mathrm{R} 0$

[^0]
a) (2 points) We wish to execute a single LC-3 instruction that will subtract the decimal number 16 from register R1 and put the result into register R2. Can we do it? If yes, write the LC-3 instruction to do so in its binary format. If not, explain why not.

Yes, 0001010001110000
b) (1 point) Consider the following LC-3 instruction located at address 0 x 4010 : 0010010101001110
What is the memory address whose contents are loaded into R2? Show your work and give answer in hex. (No credit without shown work, even if your answer is correct.)
$x 4011+x F F 4 E=x 3 F 5 F=0011111101011111$
c) (1 point) Consider the following LC-3 instruction: 0000101000001110
Does the execution of the above instruction change any condition codes? Why or why not? (No credit without an explanation, even if your answer is correct.)

No, only instructions that write to registers change condition codes.
d) (1 point) Consider the following LC-3 branch instruction located at memory address 0×3000 : 0000101000001111
If the value of the condition codes before executing this instruction are ($\mathrm{N}=0, \mathrm{Z}=1, \mathrm{P}=0$), then what is the value of the PC after the above instruction finishes execution?
$\mathrm{PC}=0 \times 3001$
e) (1 point) Name at least two types of errors that can occur when writing a program?
i) Syntax Errors
ii) Logic Errors
iii) Data Errors
iv) Runtime Errors (not discussed, but it occurs when out of memory)
f) (2 points) Match the following four statements (on the right side) with the letters (A, B, or C) for their corresponding subtask constructs (shown on the left).

A	Sequential
B	Conditional
C	Iterative

C	'For each O, do P'
B	'If G, then do H'
A	'Do E, then do F'
C	'Do M until N'

We are about to execute the program below. Assume the condition codes before execution of the program are $\mathrm{N}=1, \mathrm{Z}=0, \mathrm{P}=0$.

Address	Instruction	Comments
0×3000	0011000000001011	Store R0 into memory location 0x300C
0×3001	0001000000111101	Subtract 3 from R0 and store the result in R0
0×3002	0000001000000010	If p flag is set, branch to 0x3005
0×3003	0101010010000000	R2 \leftarrow R2 AND R0
0×3004	0000111000000001	BRnzp 0x3006
0×3005	1010010000000111	LDI: Load the value from a memory location, whose address is stored in location 0x300D, into R2
0×3006	1111000000100101	HALT (Trap x25)

a) ($\mathbf{3}$ points) Fill in the three missing instructions in the program above.
b) (4 points) Suppose a section in memory before execution of the program is as follows:

Address	Value
$0 \times 300 \mathrm{~A}$	$0 \times 300 \mathrm{~B}$
$0 \times 300 \mathrm{~B}$	$0 \times 300 \mathrm{~F}$
$0 \times 300 \mathrm{C}$	$0 \times A C E D$
$0 \times 300 \mathrm{D}$	$0 \times 300 \mathrm{~B}$

Given the initial values of the below registers, fill in the values after the program has completed execution (i.e., reached a HALT). Give your answers in hex.

Register	Initial Value	Final value
Memory Address Register (MAR)	$0 \times 300 \mathrm{~B}$	X 300 B or $\times 3006$
Memory Data Register (MDR)	$0 \times \mathrm{ABCD}$	X 300 F or $\times \mathrm{F} 025$
Instruction Register (IR)	0×1000	xA407 or xF025
R0	0×5555	0×5552
R1	$0 \times 300 \mathrm{D}$	X300D
R2	$0 \times 300 \mathrm{~A}$	X300F

[^0]: A, C, D
 H, F
 B

