CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN—MADISON

Instructor: Rahul Nayar
TAs: Annie Lin and Mohit Verma

Midterm Examination 1
In Class (50 minutes)
Friday, February 10, 2017
Weight: 17.5\%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.
The exam has seven pages. Circle your final answers. Plan your time carefully since some problems are longer than others. You must turn all pages.

LAST NAME:
FIRST NAME: \qquad
ID\#

Problem	Maximum Points	Points Earned
$\mathbf{1}$	1	
$\mathbf{2}$	4	
$\mathbf{3}$	2	
$\mathbf{4}$	3	
$\mathbf{5}$	4	
$\mathbf{6}$	3	
$\mathbf{7}$	2	
$\mathbf{8}$	5	
$\mathbf{9}$	2	
$\mathbf{1 0}$	3	
$\mathbf{1 1}$	3	
Total	32	

Problem 1 (1 point)

Which of the below is not a property of an algorithm? (Choose one option.)
a) An algorithm must successfully terminate.
b) An algorithm must be efficient.
c) Each step of an algorithm must be precisely defined.
d) Each step of algorithm must be able to be carried out by a computer.

Problem 2 (4 points)

For each of the following statements, indicate whether it is true or false. If it is false, explain why it is incorrect.
a) Statements in assembly language can have multiple interpretations.

False. Can't be ambiguous.
b) A compiler converts an assembly language to the corresponding ISA.

False. An assembler does.
c) Microarchitecture defines the set of instructions that a computer can carry out.

False. ISA defines the set of instructions that a computer can carry out. Microarchitecture specifies how blocks are organized to implement an ISA.
d) The decimal number 7 can be represented with a 4-bit 2's complement number.

True

Problem 3 (2 points)

A teacher grades each question on an exam on a scale of -10 to +10 (inclusive, and only integers).
a) What is the minimum number of bits needed to represent the score for each question in 2 's complement representation?

21 unique scores possible. Minimum 5 bits needed.
b) Assuming there are 3 questions in the exam, and each question is graded the same way mentioned above, what is the minimum number of bits needed to represent the total score for the exam in 2's complement representation? Explain your answer.

61 unique scores possible from -30 to +30 . Minimum 6 bits needed.

Problem 4 (3 points)

4. Perform the calculations below on the following two's complement numbers. Show your work for full credit.
```
    a) 0110001
    - }11001
0111111 (49 - (-14) = 63)
    b) 1101
        + 01011001
01010110 (-3 + 89 = 86)
```

c) Did an overflow error occur in (a) or (b)? State how you know. No overflow. (a) because adding two positives results in a positive, which means no overflow occured. (b) because adding a positive and a negative can never result in overflow.

Problem 5 (4 points)

Fill in the table for the following equations given the starting values A, B, and C .

```
Q1 = (A AND B) OR NOT C
Q2 = B OR NOT (C AND B)
```

\mathbf{A}	\mathbf{B}	\mathbf{C}	$\mathbf{Q 1}$	$\mathbf{Q 2}$
1001	1110	0011	1100	1111
0110	0011	1011	0110	1111

Problem 6 (3 points)

Perform the conversions below. Show your work for full credit.
a) Convert the decimal number -122 to 8 -bit 2's complement. 10000110
b) Convert the 8 -bit 2's complement 01101111 to decimal.

111

Problem 7 (2 points)

You have a new 8 -bit fixed point binary notation. The bits will be divided as follows: 1 sign bit, 3 bits for the integer part, and 4 bits for the fractional part. xF 4 is a a bit pattern for a number in our new format. What is the decimal equivalent? Explain your answer.
(x stands for Hexadecimal representation. Example: xA= 1010 in binary)
$-1 *(7+0.25)=-7.25$

Problem 8 (5 points)

You are given a 8 -bit binary number $\mathrm{A}=11111111$.
a) Write the decimal equivalent of A, assuming A is represented in 1 's complement form. 0
b) Write the decimal equivalent of A , assuming A is represented in 2's complement form. -1
c) What is the smallest decimal number that can be represented with an $\mathbf{8}$-bit $\mathbf{1}$'s complement number?
-127
d) What is the smallest decimal number that can be represented with an 8-bit $\mathbf{2}$'s complement number?
-128
e) How many unique numbers can be represented using 8-bit 1's complement? Show your answer in decimal (exponent answers are allowed, ex: $2^{\wedge} 5$).
$2^{\wedge} 8-1=255$

Problem 9 (2 points)

Convert the IEEE number to decimal: 11000000100110000000000000000000
Show your work for full credit. Recall that the bits for the IEEE single-precision floating point number (N) are allocated as follows:

Sign (1 bit)	Exponent (8 bits)	Fraction (23 bits)

where the value $\mathrm{N}=(-1)^{\text {sign }} \times 1$. Fraction $\mathrm{x} 2^{\text {Exponent-127. }}$.
-4.75

Problem 10 (3 points)

a) Add the following hex values together. Your answer should be in 16-bit binary. Show your work for full credit.

```
x3278 + xCD26
```

 0011001001111000
 +1100 110100100110
1111111110011110
b) Interpret your answer from (a) as 16-bit two's complement. What is its decimal equivalent? Show your work for full credit.
-98

Problem 11 (3 points)

You are given a 8-bit binary number A represented in 2's complement form. Your aim is to turn off the rightmost bit of \mathbf{A} which is $\mathbf{O N}$ (i.e. equal to 1). For example if $\mathbf{A}=0011$ 0110, after turning off the rightmost $\mathbf{O N}$ bit of \mathbf{A}, we get $\mathbf{B}=00110100$. Answer the following questions:
a) Calculate the value of $\mathbf{A - 1}$ (using the value of $\mathrm{A}=0011$ 0110). Express your answer in 8 -bit 2's complement binary representation.

00110101
b) How would you obtain \mathbf{B} from \mathbf{A} and $\mathbf{A - 1}$ using exactly one of the following logical operations: AND, OR, NOT, XOR ?
$B=A \&(A-1)$

