
 1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Instructor: Rahul Nayar

TAs: Annie Lin, Mohit Verma

Examination 2

 In Class (50 minutes)

 Wednesday, March 8, 2017

 Weight: 17.5%

 NO: BOOK(S), NOTE(S), CALCULATORS OR ELECTRONIC DEVICES OF ANY SORT.

The exam has ten pages. You must turn in the pages 1-9. Circle your final answers. Plan your time

carefully since some problems are longer than others. Use the blank sides of the exam for scratch work.

 LAST NAME: __

FIRST NAME: __

 ID#: ___

 2

Problem

Maximum Points

Points Earned

1

4

2

6

3

3

4

5

5

4

6

2

7

4

8

5

9

5

Total

38

 3

1. Figure 1 shows the output of a transistor-level circuit connected to the select line of a 2-input
multiplexer.

Fill out the following truth table for the overall circuit. (Note: ~A means NOT(A)). Fill all 8 rows.

(4 points)
A B C S Y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Figure 1

 4

2. Consider the logic equation
Z = NOT(A OR NOT (B AND NOT (NOT A AND NOT C)))

a) Using DeMorgan’s law, simplify the logic equation for Z to reduce the number of NOT gates
to one. Show your work for full credit. (Solutions using more than one NOT gate will receive
only partial credit.) (3 points)

b) Fill out the following truth table for Z. (2 points)

A B C Z

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

c) Draw the logic gate diagram for the simplified equation obtained in part a) above using NOT
and AND gates only. You can use AND gates with any number of inputs. (1 point)

 5

3. a) An architecture has the following format for a 16-bit ISA. Given that all the fields are of
equal length, what is the maximum number of Opcodes the ISA can represent? (1 point)

Opcode Destination Register Source Register 1 Source Register 2

b) The PC-relative load instruction of a certain LC-3 like 16-bit ISA has the following format:

Load Opcode (4 bits) Destination Register (3-bits) PC-offset (9-bits)

If this instruction resides in memory at location 0x3000, what is the range of memory locations
that can it can address when it is executed? Assume 2’s complement representation. (2 points)

4. Answer the short answer questions below.

a) In LC3, what is the difference between a jump and a branch instruction? Describe at least one
way that they are the same and one way that they are different. (1 point)

b) True or false: a single LD instruction can be used to load from a memory location that is 100
locations away from the current PC. (1 point)

 6

c) Match each of the descriptions below to the appropriate terms. Each definition will have only
one answer. Possible terms: IR, ALU, Fetch Instruction, MDR, Execute Operation, Decode
Instruction, Driver, Algorithm, Abstraction (2 points)

 Register that contains the data to write to memory or read from memory

 Instruction processing state that identifies the opcode and other operands

 PC is always incremented in this instruction processing state

 Program that controls access to a device

d) A decoder has 1024 outputs. How many inputs does it have? (1 point)

5. In the von Neumann model, the control unit orchestrates execution of a program

a) What do IR and PC stand for? What do they do? (2 points)

b) Given the six steps of instruction processing, put them into the correct order. Write the numbers
1-6 next to the appropriate instructions, with 1 being the first and 6 being the last. (2 points)

 Fetch instruction from memory

 Fetch operands from memory

 Store result

 Execute operation

 Decode instruction

 Evaluate address

Figure 2

 7

6. Figure 3 shows a 1-bit half adder, and a 2-to-4 decoder with the same inputs A and B. You have
one 3-input OR gate, and one 2-input AND gate. Label the inputs of the given OR and AND
gates in terms of the output of the decoder (C, D, E or F), to realize a 1-bit half adder. Clearly
label the outputs of the two gates to show which gate outputs “Sum” and which gate outputs
“Cout”. (Note: You can also use the signals 0 and 1 as any input, if needed). (2 points)

7. a) An R-S latch is shown in Figure 4. Given that out is initially set to 0, fill out the following
table. (2 points)

Time 0 1 2 3 4 5 6

R NONE 1 1 0 1 1 0

S NONE 1 0 1 1 1 1

OUT 0

Figure 3

Figure 4

 8

b) A gated D-latch adds two inputs, D and WE, to an RS-latch to decide when to set or keep
memory. Describe how do we combine multiple gated D-latches to make a register? (2 points)

8. Figure 5 shows the steps required to execute a certain LC-3 instruction.

a) What is the instruction (ex. ADD, LD)? (1 point)

b) Suppose that we know A has a value of xFFFD, B holds a value of x1234, and C has a value of
x2345. Is it possible to write out the instruction in its LC-3 16-bit binary format? If yes, write
the instruction. If not, explain why. (1 point)

c) Using the values from part (b), what are the final values stored in D, E, and F? Write your
answers in hex. Explain your answers for full credit. (3 points)

Figure 5

 9

9. a) Draw a finite state machine (FSM) that has four states (00, 01, 10, and 11) and a 1-bit input. It
should have the following transitions: (3 points)

i) Input of 0 changes state from 00 to 01.
ii) Input of 1 at state 00 does not change the state.
iii) Input of 1 changes state from 01 to 10.
iv) Input of 0 at state 01 does not change the state.
v) Input of 1 changes state from 10 to 11.
vi) Input of 0 changes state from 11 to 10.

b) Add extra transitions in your FSM above to satisfy the following condition:
Given that the start state is 00, your FSM should finish at state 11 at the end of ALL the following bit
sequences: (2 points)

i) 011, 0111, 01111.
ii) 011, 011001, 011001001.

Clearly indicate the additional lines you added in step b).

 10

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition
| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate
| 0 0 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND
| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate
| 0 1 0 1 | DR | SR1 | 1 | imm5 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch
| 0 0 0 0 | n | z | p | PCoffset9 | GO ß ((n and N) OR (z AND Z) OR (p AND P))
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCßPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump
| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine
| 0 1 0 0 | 1 | PCoffset11 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register
| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp ß PC’, PC ß BaseR, R7 ß temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative
| 0 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect
| 1 0 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRßmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset
| 0 1 1 0 | DR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address
| 1 1 1 0 | DR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement
| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR ß NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine
| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC ß R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt
| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative
| 0 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect
| 1 0 1 1 | SR | PCoffset9 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset
| 0 1 1 1 | SR | BaseR | offset6 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] ß SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call
| 1 1 1 1 | 0 0 0 0 | trapvect8 |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 ß PC’, PC ß mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode
| 1 1 0 1 | |
+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception
 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

