CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Instructor: Rahul Nayar

TAs: Annie Lin, Mohit Verma

Examination 3

In Class (50 minutes)
Wednesday, April 7, 2017
Weight: 17.5\%

NO: BOOK(S), NOTE(S), CALCULATORS OR ELECTRONIC DEVICES OF ANY SORT.
The exam has ten pages. You must turn in the pages 1-9. Circle your final answers. Plan your time carefully since some problems are longer than others. Use the blank sides of the exam for scratch work.

LAST NAME: \qquad
FIRST NAME: \qquad
ID\#: \qquad

Problem	Maximum Points	Points Earned
1	3	
2	3	
3	4	
4	5	
4	3	
6	3	
7	26	
Total	3	

Problem 1

Write all the missing comments for the LC-3 binary code shown in the table below. (3 points)

Address	Instruction	Comment
0×3000	0010000000101011	R0 <- M[0x302C]
0×3001	0010001000101011	
0×3002	1001011001111111	R3 <- NOT (R1)
0×3003	0001011011100001	
0×3004	0001010000000	
0×3005	0000100000000010	R2 <- R0 + R3
0×3006	0011000000100111	
0×3007	0000111000000001	
0×3008	0011001000100101	
0×3009	1111000000100101	HALT

Problem 2

Given the initial values at the following registers and memory locations, fill in the values at the memory locations below after each instruction is executed. The instructions are executed in order. So, instruction at location $\times 4000$ has finished execution before instruction at x4001 begins, and so on. You may assume that all other registers and memory locations are set to 0.

Address	Initial Memory Values
R0	x4021
R1	$x 4022$
R2	$x 4023$
x4020	$x 4021$
x4021	x4022
x4022	xFFFE

Address	LC-3 Binary Instruction	Values at memory locations after execution

| $x 4000$ | $0110 \quad 010000000001$ | Value at $x 4020:$
 Value at $x 4021:$
 Value at $x 4022:$ |
| :--- | :--- | :--- | :--- | :--- |
| $\times 4001$ | 0001
 001 001010000 | Value at $x 4020:$
 Value at $x 4021:$
 Value at $x 4022:$ |
| $x 4002$ | 0111010001000000 | Value at $x 4020:$
 Value at $x 4021:$
 Value at $x 4022:$ |

Problem 3 The following pseudo-code presents an algorithm to check if the data present in R1 is greater than 3. The table below shows an incomplete LC-3 binary program that implements this logic. Assume that R1 has been initialized to the data value being checked.

$$
\begin{aligned}
& \text { R1 }=R 1-3 \\
& \text { R2 }=0 \\
& \text { If } \mathrm{R} 1>0 \text { then: } \\
& \quad \text { R2 }=1 \\
& \text { end if } \\
& \text { HALT }
\end{aligned}
$$

Assume PC is $x 3000$ when execution of the program starts.

Address	Instruction
0×3000	0101010010100000
0×3001	
0×3002	0001010010100001
0×3003	1111000000100101
0×3004	

a) Complete the code to implement the algorithm in the above table by filling in the missing LC-3 binary instructions in memory locations 0×3001 and 0×3002.
b) By looking at the algorithm logic above, a student incorrectly concludes that if R2 $=$ 1 at the end of program execution, the value in R1 at program start must be greater than 3. Provide at least one example of a value in R1 for which the above conclusion is incorrect.
c) Which of the following programming construct does the above algorithm use?
i) Iterative
ii) Conditional

Problem 4

a) Briefly explain what the following LC-3 instruction does:

0000111000000000
b) Which of the following instructions does not change the condition code of LC-3 after execution? You must explain your answer for full credit.
a) 0001010000000001
b) $0110011010 \quad 000011$
c) 0111011010000011
d) 1010110000000011
c) How many memory accesses does the STI instruction in LC-3 ISA make? You must explain your answer for full credit.
d) Briefly explain the difference between syntax errors and logical errors.
e) The following instruction is located in memory at 0×3000.

000011100000111
What is the value of $P C$ after the instruction finishes execution? Assume $n=1, z=0, p=0$ before the instruction begins execution.

Problem 5

The following table shows an incomplete program located in memory. Assume PC $=x 3000$ before the program starts execution.

Address	Instruction	Comments
0×3000		R1 <- NOT (R1)
0×3001		R2 <- NOT (R2)
0×3002		R3 <- R1 AND R2
0×3003	1001011011111111	R3 <- NOT R3

0×3004		$\mathrm{M}[\times 4000]<-\mathrm{R} 3$
0×3005	1111000000100101	HALT
0×3006	0100000000000000	. FILL $\times 4000$

a) Fill in the missing LC-3 binary instructions from the comments provided.
b) The following table shows the values in select registers and condition flags before the execution of the above program begins. Write the values in these locations just after the program finishes execution (i.e. after HALT has finished execution).

Register/Condition flag	Value before execution starts	Value after execution completes
R1	$0 \times 000 \mathrm{~A}$	
R2	$0 \times 000 \mathrm{~B}$	
R3	0×0000	
n	1	
p	0	
z	0	
$M[\times 4000]$	0×0000	

Problem 6

a) Write a single LC-3 instruction to load the number x2FF0 into R5. Your instruction will be located at $\times 3000$.
b) Write a single LC-3 instruction to store the data from register R3 into memory address $\times 4010$. Your instruction will be located at $\times 4000$.
c) Write up to two LC-3 instructions that will subtract the number 30 from R2 and place the result in R3.

Problem 7

The tables below show the contents of a few memory locations and registers before and after an LC-3 instruction at location x2000 is executed. Identify the instruction located at $\mathbf{x 2 0 0 0}$ given the information below. Write its LC-3 16-bit binary form and comment what it does. Explain how you arrived at your answer for full credit.

	Before	After
R0	xFF35	xFF35
R1	xF911	xF911
R2	x67F9	x0146
R3	x0912	x0912
R4	x8231	x82331
R5	x0901	xE981
R6	x1091	x0901
R7	x7684	x3040
x304D	x0146	x1091
x304E	x xFFF	x7684
x304F	x1021	x0146
x3050	x99DF	$x E F F F$
x3051	x4782	x1021
x3052	x99DF	
x3053	x4782	

Instruction:

LC-3 Binary Form	Comment

Explanation:

