# CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING 

## UNIVERSITY OF WISCONSIN—MADISON

Instructor: Rahul Nayar<br>TAs: Annie Lin, Mohit Verma

Examination 3<br>In Class (50 minutes)<br>Wednesday, April 7, 2017<br>Weight: 17.5\%

NO: BOOK(S), NOTE(S), CALCULATORS OR ELECTRONIC DEVICES OF ANY SORT.
The exam has ten pages. You must turn in the pages 1-9. Circle your final answers. Plan your time carefully since some problems are longer than others. Use the blank sides of the exam for scratch work.

LAST NAME: $\qquad$
FIRST NAME: $\qquad$
ID\#: $\qquad$

| Problem | Maximum Points | Points Earned |
| :---: | :---: | :---: |
| 1 | 3 |  |
| 2 | 3 |  |
| 3 | 4 |  |
| 4 | 5 |  |
| 4 | 3 |  |
| 6 | 3 |  |
| 7 | 26 |  |
| Total | 3 |  |

Problem 1

| Address | Instruction | Comment |
| :---: | :---: | :---: |
| $0 \times 3000$ | 0010000000101010 | R0 <- M[0x302B] |
| $0 \times 3001$ | 0010001000101010 | R1 <- M[0x302C] |
| $0 \times 3002$ | 1001011001111111 | R3 <- NOT (R1) |
| $0 \times 3003$ | 0001011011100001 | R3 <- R3 + 1 |
| $0 \times 3004$ | 0001010000000 | R2 <- R0 + R3 |
| $0 \times 3005$ | 0000100000000010 | BRn 0x3008 |
| $0 \times 3006$ | 0011000000101000 | M[0x302F]<- R0 |
| $0 \times 3007$ | 0000111000000001 | BRnzp 0x3009 |
| $0 \times 3008$ | 0011001000100110 | M[0x302F]<-R1 |
| $0 \times 3009$ | 1111000000100101 | HALT |

## Problem 2

Given the initial values at the following registers and memory locations, fill in the values at the memory locations below after each instruction is executed. The instructions are executed in order. So, instruction at location $\times 4000$ has finished execution before instruction at $\times 4001$ begins, and so on. You may assume that all other registers and memory locations are set to 0.

| Address | Initial Memory Values |
| :--- | :--- |
| R0 | x4022 |
| R1 | x4023 |
| R2 | x4024 |
| x4020 | x4022 |
| x4021 | x4023 |
| x4022 | xFFFD |


| Address | LC-3 Binary Instruction | Values at memory locations after execution |
| :--- | :--- | :--- |
| $x 4000$ | 0110010000000000 <br> LDR R2, R0, 0 | Value at $\mathrm{x} 4020: \times 4022$ <br> Value at $\mathrm{x} 4021: \times 4023$ |


|  | $(R 2=x F F F D)$ | Value at $x 4022: x F F F D$ |
| :--- | :--- | :--- |
| $x 4001$ | 0001001010000 <br> 001 <br> ADD R1, R2, R1 <br> $(R 1=x 4020)$ | Value at $x 4020: ~ x 4022$ <br> Value at $x 4021: x 4023$ <br> Value at $x 4022: ~ x F F F D$ |
| $x 4002$ | 0111010001000000 <br> STR R2, R1, 0 | Value at $x 4020: x F F F D$ <br> Value at $x 4021: x 4023$ <br> Value at $x 4022: ~ x F F F D$ |

## Problem 3

The following pseudo-code presents an algorithm to check if the data present in R1 is greater than 4 . The table below shows an incomplete LC-3 binary program that implements this logic. Assume that R1 has been initialized to the data value being checked.

$$
\mathrm{R} 1=\mathrm{R} 1-4
$$

$$
R 2=0
$$

$$
\text { If R1 > } 0 \text { then: }
$$

$$
R 2=1
$$

end if
HALT
Assume PC is x 3000 when execution of the program starts.

| Address | Instruction |
| :---: | :---: |
| $0 \times 3000$ | 0101010010100000 R2 $=0$ |
| $0 \times 3001$ | 0001001001111100 ADD R1, R1, -4 |
| $0 \times 3002$ | 0000110000000001 BRnz x3004 |
| $0 \times 3003$ | 0001010010100001 ADD R2, R2, 1 |
| $0 \times 3004$ | 1111000000100101 HALT |

a) Complete the code to implement the algorithm in the above table by filling in the missing LC-3 binary instructions in memory locations $0 \times 3001$ and $0 \times 3002$.
b) By looking at the algorithm logic above, a student incorrectly concludes that if R2 $=$ 1 at the end of program execution, the value in R1 at program start must be greater than 4. Provide at least one example of a value in R1 for which the above conclusion is incorrect.
Fails for all values in R1 which are large negative, and would cause overflow while calculating R1-4. Eg. R1 = -2^15 or $0 \times 8000$
c) Which of the following programming construct does the above algorithm use?
i) Iterative
ii) Conditional
ii) Conditional

## Problem 4

a) Briefly explain what the following LC-3 instruction does:

0000111000000000
Unconditionally branches to the immediately next instruction. In other words, a NO-OP or does nothing.
b) Which of the following instructions does not change the condition code of LC-3 after execution? You must explain your answer for full credit.
a) 0101011000000001
b) 0110011010000011
c) 1011011010000011
d) 1010110000000011
c) as it is a STI instruction, it doesn't modify any register and doesn't change condition codes.
c) How many memory accesses does the LDI instruction in LC-3 ISA make? You must explain your answer for full credit.

2
d) Briefly explain the difference between syntax errors and logical errors.

Syntax errors are language errors that can be caught by the compiler. Logic errors are errors that are caught in execution or lead to an incorrect result.
e) The following instruction is located in memory at $0 \times 3000$.

0000111000001111
What is the value of $P C$ after the instruction finishes execution? Assume $n=1, z=0, p=0$ before the instruction begins execution.

$$
P C=0 \times 3010
$$

## Problem 5

The following table shows an incomplete program located in memory. Assume PC $=x 3000$ before the program starts execution.

| Address | Instruction | Comments |
| :---: | :---: | :---: |
| $0 \times 3000$ | 1001001001111111 | R1 <- NOT (R1) |
| $0 \times 3001$ | 1001010010111111 | R2 <- NOT (R2) |
| $0 \times 3002$ | 01010010010010 | R3 <- R1 AND R2 |
| $0 \times 3003$ | 1001011011111111 | R3 <- NOT R3 |


| $0 \times 3004$ | 1011011000000001 | $\mathrm{M}[\times 4000]<-\mathrm{R} 3$ |
| :---: | :---: | :---: |
| $0 \times 3005$ | 1111000000100101 | HALT |
| $0 \times 3006$ | 0100000000000000 | . FILL $\times 4000$ |

a) Fill in the missing LC-3 binary instructions from the comments provided.
b) The following table shows the values in select registers and condition flags before the execution of the above program begins. Write the values in these locations just after the program finishes execution (i.e. after HALT has finished execution).

| Register/Condition flag | Value before execution <br> starts | Value after execution <br> completes |
| :---: | :---: | :---: |
| R1 | $0 \times 00 \mathrm{FB}$ | $0 \times F F 04$ |
| R2 | $0 \times 00 \mathrm{FA}$ | $0 \times F F 05$ |
| R3 | $0 \times 0000$ | $0 \times 00 \mathrm{FB}$ |
| n | 1 | 0 |
| p | 0 | 1 |
| $z$ | 0 | 0 |
| $M[\times 4000]$ | $0 \times 0000$ | $0 \times 00 \mathrm{FB}$ |

## Problem 6

a) Write a single LC-3 instruction to load the number $x 3010$ into R2. Your instruction will be located at $\times 3000$.

1110010000001111 LEA R2, 15 -> xE40F
b) Write a single LC-3 instruction to store the data from R4 into memory address x3FF0. Your instruction will be located at $\times 4000$.

0011100111101111 ST R4, -17 -> x39EF
c) Write up to two LC-3 instructions that will subtract the number 30 from R3 and place the result in R2.

0001011011110001 ADD R3, R3, -15
0001010011110001 ADD R2, R3, -15

Problem 7

|  | Before | After |
| :--- | :--- | :--- |
| R0 | xFF35 | xFF35 |
| R1 | xF911 | xF911 |
| R2 | x67F9 | x0146 |
| R3 | x0912 | x0912 |
| R4 | x8231 | x8231 |
| R5 | x3040 | x3040 |
| R6 | x11AA | x0901 |
| R7 | x1091 | x11AA |
| x304D | x9A2F | x1091 |
| x304E | xEFFF | x7684 |
| x304F | x0146 | x9A2F |
| x3050 | x99DF | xEFFF |
| x3051 | x4782 | x0146 |
| x3052 | xA221 | x99DF |
| x3053 | x4782 |  |
| x3054 | xA221 |  |

## Instruction:

| LC-3 Binary Form | Comment |
| :--- | :--- |
| 0110010101010001 | LDR R2, R5, 17 |

## Explanation:

The value that changes is R2, which is loaded from x3051. x2000 is too far to load via LD, and there are no instructions that contain a memory address relevant to LDI. R5 contains x3040 which is close enough to x3051 to load with an offset of 17 .

