
CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN – MADISON

Instructor: Andy Phelps
TAs: Newsha Ardalani, Peter Ohmann, and Jai Menon

Midterm Examination 3
In Class (50 minutes)

Friday, April 8
Weight: 15%

NO BOOK(S), NOTE(S), CALCULATOR(S) OF ANY SORT

This exam has 13 front-and-back pages. Plan your time carefully, since some problems are longer than
others. You must turn in all pages.

LAST NAME: __

FIRST NAME: __

SECTION: __

ID #: __

Question Maximum Points Points

1 4

2 8

3 6

4 8

5 4

6 10

Total 40

Problem 1 (4 points)

Suppose below to be the current snapshot of memory. Further,suppose,
at the start, the PC is x4000.

x4000 | 0101 0010 0110 0000
x4001 | 0001 0110 0111 1111
x4002 | 0000 0110 0000 0011

a. Decode each instruction above.

x4000 _____________

x4001 _____________

x4002 _____________

After the execution of the instruction at x4002, what are the values
of the following registers :

R1 _____________

R2 _____________

PC _____________

Problem 2 (8 points)

Suppose below to be the current snapshot of memory. Further, suppose,
at the start, that the PC is x5000.

x5000 | 1110 0010 0000 0011
x5001 | 1010 0100 0000 0010
x5002 | 0110 0110 0111 1111
x5003 | 0010 1001 1111 1101
x5004 | 0001 0011 1000 1011

a. Decode each instruction above.

X5000 _______________

x5001 _______________

x5002 _______________

x5003 _______________

x5004 _______________

b. After the program halts, what are the values (in hex) of:

R1 _____________

R2 _____________

R3 _____________

R4 _____________

Note: You *MUST* do part (a) to be given *any* credit for part (b).

Problem 3 (6 points)

The following (incomplete) binary code snippet accepts an input value
in register R1, increments it by 1 if the value is even and then
halts. Odd values are left untouched. This can be represented in
pseudocode as :

Note : A represents value in R1

if A is divisible by 2 then :
 A <-- A + 1
end if
halt

Complete the code to achieve functionality described above by filling
in the blanks (two of the required instructions are already filled in
for you). Also write down the corresponding decoded instructions.

Assume that the PC register contains 3001 initially.

x3001 __________________

x3002 0000 0010 0000 0001

x3003 __________________

x3004 1111 0000 0010 0101

Note that TRAP x25 is used to halt execution.

Problem 4 (8 points)

The LC-3 ISA doesn't provide a subtract instruction though the
required functionality can be implemented using instructions it
does support. The code fragment listed below (Fig. 1) attempts to
subtract two values stored at the memory addresses x3008 and x3009,
leaving the result in register R3. Fig. 2 illustrates the relevant
memory state at the time of execution.

Figure 1
Address Machine Code Decoded Instruction

x3000 0010 0010 0000 1000

x3001 0010 0100 0000 1000

x3002 1001 0100 1011 1111

x3003 0001 0110 0100 0010

Figure 2
Address Value

x3008 xDEAD

x3009 xBEEF

Unfortunately, the code above is buggy and doesn't work as
expected. Specifically, you will need to find and fix any errors in
the instruction's machine code as well as any logical mistakes in the
code.

Note : It's easier to work with decoded instructions so an additional
column is provided for you to write the decoded instructions in.

Your solution should note any changes or additional instructions
introduced as :

<memory address> <assembly instruction> <machine code>

Hint : There are 3 errors in the given listing. Treat errors in
different instructions as separate errors.

Problem 5 (4 points)

Part a.

Consider an LD instruction at x3020. What is the largest possible
memory address this instruction can load from/reference? Conversely,
which is the smallest possible address? Write the instruction and
corresponding machine code which performs a load from these addresses.

Part b.

Now consider the same LD instruction but this time, assume you're
writing code for a machine where the PC offset is *not*
sign-extended. In other words, the offset field is zero-extended to 16
bits. In this case, what is the largest possible memory address this
instruction can load from/reference? Conversely, which is the smallest
possible address? Write the instruction and the corresponding machine
code which performs a load from these addresses.

Problem 6 (10 points)

The execution trace of a program usually records the state of various
registers and execution contexts when the program is run for a given
set of inputs. Such traces can be very useful tools when debugging
code (and moreso when a debugger isn't available).

Figure 3

Address Machine Code Decoded Instruction

x3000 0101 0010 0110 0000

x3001 0101 1001 0010 0000

x3002 0001 1001 0010 1010

x3003 0010 0100 1111 1100

x3004 0110 0110 1000 0000

x3005 0001 0100 1010 0001

x3006 0001 0010 0100 0011

x3007 0001 1001 0011 1111

x3008 0000 0011 1111 1011

x3009 1111 0000 0010 0101

Note : It's easier to work with decoded instructions so an additional
column is provided for you to write the decoded instructions in.

Figure 4

Address Value

x3100 0x3105

x3101 0x0001

x3102 0x0001

x3103 0x0001

x3104 0x0001

x3105 0x0001

x3106 0x0001

x3107 0x0001

x3108 0x0001

x3109 0x0001

x310A to x310E 0x0000

Part a.

For the program listing shown in Fig. 3, record the state of registers
R1, R2, R3 and R4 after the 2nd iteration of the loop (immediately
after the branch has been taken for the second time). Use the table
printed below for this purpose.

Register Value after 1st

iteration
Value after 2nd

iteration

R1

R2

R3

R4

Part b.

The expected behavior of the program listed in Fig. 3 is that it
should compute the sum of values stored in the address range x3100 to
x3109, store the computed sum in R1 and halt. Taking this into
account, would you say that the program listing in Fig. 3 works
correctly?

 - If it does, then what is the final value in R1?

 - If not, how would you fix it (assuming that such a fix doesn't
require changing more than one instruction, and doesn't add any more
instructions)?

Extra Scratch Paper

Extra Scratch Paper

Extra Scratch Paper

