
Introduction to Computer

Engineering

CS/ECE 252, Spring 2017

Rahul Nayar

Computer Sciences Department

University of Wisconsin – Madison

Chapter 7 & 9.2

Assembly Language

and Subroutines

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-3

Human-Readable Machine Language

Computers like ones and zeros…

Humans like symbols…

Assembler is a program that turns symbols into

machine instructions.

• ISA-specific:

close correspondence between symbols and instruction set

➢mnemonics for opcodes

➢labels for memory locations

• additional operations for allocating storage and initializing data

ADD R6,R2,R6 ; increment index reg.

0001110010000110

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-4

An Assembly Language Program
;
; Program to multiply a number by the constant 6
;

.ORIG x3050
LD R1, SIX
LD R2, NUMBER
AND R3, R3, #0 ; Clear R3. It will

; contain the product.
; The inner loop
;
AGAIN ADD R3, R3, R2

ADD R1, R1, #-1 ; R1 keeps track of
BRp AGAIN ; the iteration.

;
HALT

;
NUMBER .BLKW 2
SIX .FILL x0006
;

.END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-5

Decoding the Lable NUMBER for LD instruction
LD R2, NUMBER

Addr = x3050 PC= x3051

Addr for Label “NUMBER” x3059

0010 DR PCOffset

Offset Required = x0008

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-6

LC-3 Assembly Language Syntax

Each line of a program is one of the following:

• an instruction

• an assember directive (or pseudo-op)

• a comment

Whitespace (between symbols) and case are ignored.

Comments (beginning with “;”) are also ignored.

Can we write two assembly instructions on the same line?

An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

In Class Exercise

• Do instruction translation by filling in the table below

7-7

Machine Code Assembly Code Comments

1001 101 010 1 11111

AND R0, R3, R1

R6 ← R7 + SEXT(#3)

0101 000 011 0 00 001

0001 110 111 1 00011

NOT R5, R2 R5 ← NOT(R2)

R0 ← R3 AND R1

ADD R6, R7, #3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-8

Opcodes and Operands

Opcodes
• reserved symbols that correspond to LC-3 instructions

• listed in Appendix A

➢ex: ADD, AND, LD, LDR, …

Operands
• registers -- specified by Rn, where n is the register number

• numbers -- indicated by # (decimal) or x (hex)

• label -- symbolic name of memory location

• separated by comma

• number, order, and type correspond to instruction format

➢ex:
ADD R1,R1,R3

ADD R1,R1,#3

LD R6,NUMBER

BRz LOOP

R1 ← R1 + R3

R1 ← R1 + #3

R6 ← mem[…]

If Z, PC ← …

0001 001 001 0 00 011

0001 001 001 1 00011

0010 110 xxxxxxxxx

0000 010 xxxxxxxxx

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-9

Labels and Comments

Label

• placed at the beginning of the line

• assigns a symbolic name to the address corresponding to line

➢ex:

LOOP ADD R1,R1,#-1

BRp LOOP

Comment

• anything after a semicolon is a comment

• ignored by assembler

• used by humans to document/understand programs

• tips for useful comments:

➢avoid restating the obvious, as “decrement R1”

➢provide additional insight, as in “accumulate product in R6”

➢use comments to separate pieces of program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-10

Assembler Directives

Pseudo-operations

• do not refer to operations executed by program

• used by assembler

• look like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with

value n

.STRINGZ n-character

string

allocate n+1 locations,

initialize w/characters and null

terminator

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-11

Assembler Directives

.ORIG x3010

HELLO .STRINGZ “Hello, World!”

x3010 : x0048

x3011 : x0065

x3012 : x006C

x3013 : x006C

x3014 : x006f

x3015 : x002C

x3016 : x0020

……..

x301C : x0021

x301D : x0000

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-12

Trap Codes

LC-3 assembler provides “pseudo-instructions” for

each trap code, so you don’t have to remember them.

Code Equivalent Description

HALT TRAP x25 Halt execution and print message to

console.

IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.

Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.

GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].

PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-13

Style Guidelines

Use the following style guidelines to improve

the readability and understandability of your programs:

1. Provide a program header, with author’s name, date, etc.,

and purpose of program.

2. Start labels, opcode, operands, and comments in same column

for each line. (Unless entire line is a comment.)

3. Use comments to explain what each register does.

4. Give explanatory comment for most instructions.

5. Use meaningful symbolic names.

• Mixed upper and lower case for readability.

• ASCIItoBinary, InputRoutine, SaveR1

6. Provide comments between program sections.

7. Each line must fit on the page -- no wraparound or truncations.

• Long statements split in aesthetically pleasing manner.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-14

Sample Program

Count the occurrences of a character in a file.
Remember this?

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char

from keybd
(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to

ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-15

Char Count in Assembly Language (1 of 3)
;
; Program to count occurrences of a character in a file.
; Character to be input from the keyboard.
; Result to be displayed on the monitor.
; Program only works if no more than 9 occurrences are found.
;
;
; Initialization
;

.ORIG x3000
AND R2, R2, #0 ; R2 is counter, initially 0
LD R3, PTR ; R3 is pointer to characters
GETC ; R0 gets character input
LDR R1, R3, #0 ; R1 gets first character

;
; Test character for end of file
;
TEST ADD R4, R1, #-4 ; Test for EOT (ASCII x04)

BRz OUTPUT ; If done, prepare the output

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-16

Char Count in Assembly Language (2 of 3)
;
; Test character for match. If a match, increment count.
;

NOT R1, R1
ADD R1, R1, R0 ; If match, R1 = xFFFF
NOT R1, R1 ; If match, R1 = x0000
BRnp GETCHAR ; If no match, do not increment
ADD R2, R2, #1

;
; Get next character from file.
;
GETCHAR ADD R3, R3, #1 ; Point to next character.

LDR R1, R3, #0 ; R1 gets next char to test
BRnzp TEST

;
; Output the count.
;
OUTPUT LD R0, ASCII ; Load the ASCII template

ADD R0, R0, R2 ; Covert binary count to ASCII
OUT ; ASCII code in R0 is displayed.
HALT ; Halt machine

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-17

Char Count in Assembly Language (3 of 3)
;
; Storage for pointer and ASCII template
;
ASCII .FILL x0030
PTR .FILL x4000

.END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-18

Note for HW problems

• Don’t focus on only compiling your program and expect the

program to work

• Think about a good way to test your program

• Suggestion: write a small script

• To get register values, at the end of the program

• set breakpoints at HALT instructions

• use “check r7 x343”

• Read the questions carefully, always look for start of program

address

• Address is calculated after .ORIG

• .ORIG X4545

• LDI R0,#3

• Offset is calculated on the PC register value of the current instructions

• LC3 edit does not generate symbol table

• Submit HW in *.bin format

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-19

Recap

• Assembly Language:

• Written in the same abstraction as binary instructions

• More readable

➢ADD R6,R2,R6 ; increment index reg.

• Need an assembler to convert assembly instructions into binary

instructions

• PennSim has in-built assembler

• Assembly Language can have additional operations for

allocating storage and initializing data values

• In few cases it is possible to write two assembly instructions in

the same line

➢LC3 it is possible since LC3 instructions are fixed length

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-20

Recap

Each line of a program is one of the following:

• an instruction

• an assember directive (or pseudo-op)

• a comment

Whitespace (between symbols) and case are ignored.

Comments (beginning with “;”) are also ignored.

An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-21

Recap:Trap Codes

LC-3 assembler provides “pseudo-instructions” for

each trap code, so you don’t have to remember them.

Code Equivalent Description

HALT TRAP x25 Halt execution and print message to

console.

IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.

Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.

GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].

PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-22

Assembly Process

Convert assembly language file (.asm)

into an executable file (.obj) for the LC-3 simulator.

First Pass:

• scan program file

• find all labels and calculate the corresponding addresses;

this is called the symbol table

Second Pass:

• convert instructions to machine language,

using information from symbol table

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-23

First Pass: Constructing the Symbol Table

1. Find the .ORIG statement,

which tells us the address of the first instruction.

• Initialize location counter (LC), which keeps track of the

current instruction.

2. For each non-empty line in the program:

a) If line contains a label, add label and LC to symbol table.

b) Increment LC.

– NOTE: If statement is .BLKW or .STRINGZ,

increment LC by the number of words allocated.

3. Stop when .END statement is reached.

NOTE: A line that contains only a comment is considered an empty line.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-24

Practice

Construct the symbol table for the program in Figure 7.1

(Slides 7-15 through 7-17).

Symbol Address

TEST

GETCHAR

OUTPUT

ASCII

PTR

x3004

x300B

x300E

x3012

x3013

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

In-Class Exercise (2014 Exam4 Question2b)
Construct the symbol table for the program.

Symbol Address

HERE

THIS

STRING

NUMBER

DONE

x3002

x3008

x300E

x301B

x301C

.ORIG x3000

LEA R2, STRING

LD R3, NUMBER

HERE ADD R1, R2, R3

ADD R2, R1, #0

LDR R0, R1, #0

BRz DONE

OUT

BR HERE

THIS .BLKW 6

STRING .STRINGZ "2down_3to_go"

NUMBER .FILL x4

DONE HALT

.END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-26

Second Pass: Generating Machine Language

For each executable assembly language statement,
generate the corresponding machine language instruction.

• If operand is a label,
look up the address from the symbol table.

Potential problems:
• Improper number or type of arguments

➢ex: NOT R1,#7

ADD R1,R2

ADD R3,R3,NUMBER

• Immediate argument too large

➢ex: ADD R1,R2,#1023

• Address (associated with label) more than 256 from instruction

➢can’t use PC-relative addressing mode

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-27

Practice

Identify and correct 5 assembly errors in the following LC3
program:

.ORIG x3001

AND R4, R4, #0

BRz NEXT

LD R5, STRING

STOP ADD R5, R5, *1

BRp STOP

LDR R6, R5, #4

OR R6, R6, #3

ST R4, STRING

STOP HALT

ZERO .FILL #0

VAL .FILL VALUE

STRING .STRINGS "Hello World !"

.END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-28

Practice

Identify and correct 5 assembly errors in the following LC3
program:

.ORIG x3001

AND R4, R4, #0

BRz NEXT

LD R5, STRING

STOP ADD R5, R5, *1

BRp STOP

LDR R6, R5, #4

OR R6, R6, #3

ST R4, STRING

STOP HALT

ZERO .FILL #0

VAL .FILL VALUE

STRING .STRINGS "Hello World !"

.END

OR Instruction not

part of LC3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-29

Practice

Identify and correct 5 assembly errors in the following LC3
program:

.ORIG x3001

AND R4, R4, #0

BRz NEXT

LD R5, STRING

STOP ADD R5, R5, *1

BRp STOP

LDR R6, R5, #4

OR R6, R6, #3

ST R4, STRING

STOP HALT

ZERO .FILL #0

VAL .FILL VALUE

STRING .STRINGS "Hello World !"

.END

No STRING directive

, it is .STRINGZ

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-30

Practice

Identify and correct 5 assembly errors in the following LC3
program:

.ORIG x3001

AND R4, R4, #0

BRz NEXT

LD R5, STRING

STOP ADD R5, R5, *1

BRp STOP

LDR R6, R5, #4

OR R6, R6, #3

ST R4, STRING

STOP HALT

ZERO .FILL #0

VAL .FILL VALUE

STRING .STRINGS "Hello World !"

.END

Immediate Value

using *

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-31

Practice

Identify and correct 5 assembly errors in the following LC3
program:

.ORIG x3001

AND R4, R4, #0

BRz NEXT

LD R5, STRING

STOP ADD R5, R5, *1

BRp STOP

LDR R6, R5, #4

OR R6, R6, #3

ST R4, STRING

STOP HALT

ZERO .FILL #0

VAL .FILL VALUE

STRING .STRINGS "Hello World !"

.END

NEXT label

undeclared

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-32

Practice

Identify and correct 5 assembly errors in the following LC3
program:

.ORIG x3001

AND R4, R4, #0

BRz NEXT

LD R5, STRING

STOP ADD R5, R5, *1

BRp STOP

LDR R6, R5, #4

OR R6, R6, #3

ST R4, STRING

STOP HALT

ZERO .FILL #0

VAL .FILL VALUE

STRING .STRINGS "Hello World !"

.END

STOP label used

twice

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-33

Practice

Identify and correct 5 assembly errors in the following LC3
program:

.ORIG x3001

AND R4, R4, #0

BRz NEXT

LD R5, STRING

STOP ADD R5, R5, *1

BRp STOP

LDR R6, R5, #4

OR R6, R6, #3

ST R4, STRING

STOP HALT

ZERO .FILL #0

VAL .FILL VALUE

STRING .STRINGS "Hello World !"

.END

VALUE label

undeclared

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-34

Practice

Using the symbol table constructed earlier,

translate these statements into LC-3 machine language.

Address Statement Machine Language

x3001 LD R3,PTR

x3004 ADD R4,R1,#-4

x300C LDR R1,R3,#0

x3009 BRnp GETCHAR

Symbol Address

TEST x3004

GETCHAR x300B

OUTPUT x300E

ASCII x3012

PTR x3013

0010 011 000010001 = x2611

0001 100 001 1 11100 = x187C

0110 001 011 000000 = x62C0

0000 101 000000001 = x0A01

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

In-Class Exercise
Construct the symbol table for the program.

Symbol Address

LOOP

NEXT

NUMBER

MASK

PTR1

x3003

x3007

x300B

x300E

x300F

.ORIG x3000

LD R2, NUMBER

LD R1, MASK

LD R3, PTR2

LOOP LDR R4, R3, #0

AND R4, R4, R1

BRz NEXT

ADD R0, R0, #1

NEXT ADD R3, R3, #1

ADD R2, R2, #-1

BRp LOOP STI R0, PTR1

HALT

NUMBER .BLKW 3

MASK .FILL x8000

PTR1 .FILL x4000

PTR2 .FILL x5000
.END

PTR2 x3010

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-36

Practice

Using the symbol table constructed earlier,

translate these statements into LC-3 machine language.

Address Statement Machine Language

x3000 ADD R1,R2,#4

x300A STI R0,PTR3

Symbol Address

ADDRESS x3012

AGAIN x3014

PTR3 x3015

DESTINATION x301A

0001 001 010 1 00100 = x12A4

1011 000 000 0 01010 = xB00A

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-37

Note for All

• HW6 due today

• Need to submit your binary code at Learn@uw, by 9.55am

• Also need to hand in physical copy

• Remember to staple your HW

• HW7 will be released today

• Due on April 14th

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-38

Points covered so far

• Assembly Language

• Structure

• Labels

• Assembler directives

• Two step assembly process

• generating the symbol table

• converting assembly to machine instructions

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-39

LC-3 Assembler

Using “lc3as” (Unix) or LC3Edit (Windows),

generates several different output files.

This one gets

loaded into the

simulator.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-40

Object File Format

LC-3 object file contains

• Starting address (location where program must be loaded),

followed by…

• Machine instructions

Example

• Beginning of “count character” object file looks like this:

0011000000000000

0101010010100000

0010011000010001

1111000000100011

.

.

.

.ORIG x3000

AND R2, R2, #0

LD R3, PTR

TRAP x23

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-41

Multiple Object Files

An object file is not necessarily a complete program.

• system-provided library routines

• code blocks written by multiple developers

For LC-3 simulator,

can load multiple object files into memory,

then start executing at a desired address.

• system routines, such as keyboard input, are loaded

automatically

➢loaded into “system memory,” below x3000

➢user code should be loaded between x3000 and xFDFF

• each object file includes a starting address

• be careful not to load overlapping object files

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-42

Linking and Loading

Loading is the process of copying an executable image

into memory.

• more sophisticated loaders are able to relocate images

to fit into available memory

• must readjust branch targets, load/store addresses

Linking is the process of resolving symbols between

independent object files.

• suppose we define a symbol in one module,

and want to use it in another

• some notation, such as .EXTERNAL, is used to tell assembler

that a symbol is defined in another module

• linker will search symbol tables of other modules to resolve

symbols and complete code generation before loading

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-43

Linking

P1:

.ORIG x3000

ADD R0, R1, #0

ADD R0, R0, #-15

ADD R0, R0, #-10

STI R0, PTR

HALT

.END

P2:

PTR .FILL x5000

.END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-44

Linking

P1:

.ORIG x3000

ADD R0, R1, #0

ADD R0, R0, #-15

ADD R0, R0, #-10

STI R0, PTR

HALT

.EXTERNAL PTR

.END

P2:

PTR .FILL x5000

.END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-45

Skipping Ahead to Chapter 9

You will need to use subroutines for programming

assignments

• Read Section 9.2

A subroutine is a program fragment that:

• performs a well-defined task

• is invoked (called) by another user program

• returns control to the calling program when finished

Reasons for subroutines:

• reuse useful (and debugged!) code without having to

keep typing it in

• divide task among multiple programmers

• use vendor-supplied library of useful routines

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Subroutine Motivation

7-46

Reasons for subroutines:

• reuse useful code without having to keep typing it in

• divide task among multiple programmers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-47

JSR Instruction

Jumps to a location (like a branch but unconditional),

and saves current PC (addr of next instruction) in R7.

• saving the return address is called “linking”

• target address is PC-relative (PC + Sext(IR[10:0]))

• bit 11 specifies addressing mode

➢if =1, PC-relative: target address = PC + Sext(IR[10:0])

➢if =0, register: target address = contents of register IR[8:6]

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-48

JSR

NOTE: PC has already been incremented

during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-49

JSR Example
PC is currently x4200
What is the contents of R7 and PC after the following instruction is executed?

NOTE: PC has already been incremented

during instruction fetch stage.

0x4201

1 0 0 0 0 0 0 0 1 0 0

100 0000 0100

= 0x404

1111 1100 0000 0100

= 0xFC04

0x4201

0x3E05

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-50

JSRR Instruction

Just like JSR, except Register addressing mode.

• target address is Base Register

• bit 11 specifies addressing mode

What important feature does JSRR provide

that JSR does not?

Subroutine (target) address can be anywhere in memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-51

JSRR

NOTE: PC has already been incremented

during instruction fetch stage.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-52

JSRR Example

NOTE: PC has already been incremented

during instruction fetch stage.

PC is currently x420A

R5 is currently x3002
What is the contents of R7 and PC after the following instruction is executed?

1 0 1

0x420B R5

0x3002

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-53

Returning from a Subroutine

RET (JMP R7) gets us back to the calling routine.

• just like TRAP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-54

Example: Negate the value in R0

2sComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one

RET ; return to caller

To call from a program (within 1024 instructions):

; need to compute R4 = R1 - R3

ADD R0, R3, #0 ; copy R3 to R0

JSR 2sComp ; negate

ADD R4, R1, R0 ; add to R1

...

Note: Caller should save R0 if we’ll need it later!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-55

Passing Information to/from Subroutines

Arguments

• A value passed in to a subroutine is called an argument.

• This is a value needed by the subroutine to do its job.

• Examples:

➢In 2sComp routine, R0 is the number to be negated

➢In OUT service routine, R0 is the character to be printed.

➢In PUTS routine, R0 is address of string to be printed.

Return Values

• A value passed out of a subroutine is called a return value.

• This is the value that you called the subroutine to compute.

• Examples:

➢In 2sComp routine, negated value is returned in R0.

➢In GETC service routine, character read from the keyboard

is returned in R0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-56

Using Subroutines

In order to use a subroutine, a programmer must know:

• its address (or at least a label that will be bound to its address)

• its function (what does it do?)

➢NOTE: The programmer does not need to know

how the subroutine works, but

what changes are visible in the machine’s state

after the routine has run.

• its arguments (where to pass data in, if any)

• its return values (where to get computed data, if any)

address

function

arguments

return values

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-57

Saving and Restore Registers

Since subroutines are just like service routines,

we also need to save and restore registers, if needed.

Generally use “callee-save” strategy,

except for return values.

• Save anything that the subroutine will alter internally

that shouldn’t be visible when the subroutine returns.

• It’s good practice to restore incoming arguments to

their original values (unless overwritten by return value).

Remember: You MUST save R7 if you call any other

subroutine or service routine (TRAP).

• Otherwise, you won’t be able to return to caller.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-58

Example

(1) Write a subroutine FirstChar to:

find the first occurrence

of a particular character (in R0)

in a string (pointed to by R1);

return pointer to character or to end of string (NULL) in R2.

(2) Use FirstChar to write CountChar, which:

counts the number of occurrences

of a particular character (in R0)

in a string (pointed to by R1);

return count in R2.

Can write CountChar subroutine using FirstChar

Alternatively, can write the second subroutine first,

without knowing the implementation of FirstChar!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-59

FirstChar Algorithm

save regs

R2 <- R1

R3 <- M(R2)

R3=0

R3=R0

R2 <- R2 + 1

restore
regs

return

no

no

yes

yes

R0 holds character to search

R1 is pointer to string

R2 is return value

pointer to character

or end of string

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-60

FirstChar Implementation
; FirstChar: subroutine to find first occurrence of a char

FirstChar

ST R3, FCR3 ; save registers

ST R4, FCR4

NOT R4, R0 ; use R4 for comparisons

ADD R4, R4, #1

ADD R2, R1, #0 ; initialize ptr to beginning of string

FC1 LDR R3, R2, #0 ; read character

BRz FC2 ; if null, we’re done

ADD R3, R3, R4 ; see if matches input char

BRz FC2 ; if yes, we’re done

ADD R2, R2, #1 ; increment pointer

BRnzp FC1

FC2 LD R3, FCR3 ; restore registers

LD R4, FCR4 ;

RET ; and return

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-61

CountChar Algorithm (using FirstChar)

save regs

call FirstChar

R3 <- M(R2)

R3=0

R1 <- R2 + 1

restore
regs

return

no

yes

save R7,

since we’re using JSR

R0 holds character to search

R1 is pointer to string

R2 is return value

count of occurrences

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-62

CountChar Implementation
; CountChar: subroutine to count occurrences of a char
CountChar

ST R3, CCR3 ; save registers
ST R4, CCR4

ST R7, CCR7 ; JSR alters R7
ST R1, CCR1 ; save original string ptr
AND R4, R4, #0 ; initialize count to zero

CC1 JSR FirstChar ; find next occurrence (ptr in R2)
LDR R3, R2, #0 ; see if char or null
BRz CC2 ; if null, no more chars
ADD R4, R4, #1 ; increment count
ADD R1, R2, #1 ; point to next char in string
BRnzp CC1

CC2 ADD R2, R4, #0 ; move return val (count) to R2
LD R3, CCR3 ; restore regs
LD R4, CCR4

LD R1, CCR1

LD R7, CCR7

RET ; and return

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Subroutine Summary

• Subroutines are useful reuse of code

• Need address, function, arguments, and return value

• Use JSR, JSRR to call subroutine

• Use RET to return from subroutine

• PennSim Demo

• If the return address is written to R7, then can we call a

subroutine within a subroutine?

• Can we make recursive calls?

7-63

Save R7

Stack, discussed in Chapter 10, but not this course.

