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Abstract

An optimization framework for three-dimensional conformal radiation
therapy is presented. In this type of therapy, beams of radiation are ap-
plied to a patient from different directions, where the aperture through
which the beam is delivered from each direction is chosen to match the
shape of the tumor, as viewed from that direction. Given a set of eq-
uispaced beam angles, a mixed-integer linear program can be solved to
determine the most effective angles to be used in a treatment plan, and
the weight (exposure time) to be used for each beam. This model can be
enhanced to account for the use of wedge filters, which may be placed in
front of a beam to produce a gradient in beam intensity across the aper-
ture. Several techniques for strengthening the formulation (and there-
fore reducing the solution time) are described, and methods to control
the dose-volume histogram implicitly for various parts of the treatment
region using hot- and cold-spot control parameters are presented. The
paper concludes with computational results that show the effectiveness of
the proposed approach on two practical data sets.

1 Introduction

The optimization of radiation therapy for cancer has become an active research
topic in recent years [1, 2, 3, 6, 17, 18, 29, 34, 35]. Many types of cancer are
treated by applying radiation from external sources, aiming beams at the patient
from a number of different angles. The general goal is to apply a significant
total dose of radiation to the cancerous region (the tumor) while sparing the
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surrounding normal tissues (especially sensitive structures near the tumor) from
excessive radiation. The increasing sophistication of treatment devices allows
delivery of complex and sophisticated treatment plans. Besides choosing from a
wide range of different directions, a treatment planner can choose the shape of
the aperture through which the beam is delivered, possibly applying a number
of beams with different shapes from a single direction. In addition, wedges can
be used to vary the intensity of the radiation across the aperture.

Radiation treatments are typically delivered using a linear accelerator (see
Figure 1) with a multileaf collimator (see Figure 3(b)) housed in the head of the
treatment unit. The shape of the aperture through which the beam passes can
be varied by moving the computer-controlled leaves of the collimator. In confor-
mal radiation therapy, the subject of this paper, three-dimensional anatomical
information is used to shape the beam of radiation at each angle to match the
shape of the tumor, as viewed from that angle. We refer to this approach to
selecting the beam shape as the beam’s-eye view (BEV) technique.

The goal in conformal radiation therapy is to provide a high probability
of tumor control while minimizing radiation damage to surrounding normal
tissue. This goal can accomplished by cross-firing beams from a number of beam
directions. In practice, a dosimetrist usually uses a trial-and-error approach to
determine how many beams of radiation should be used, which beam angles are
most effective, and what weight should be assigned to each beam.

Often, additional flexibility is available to the dosimetrist, in the form of
wedge filters that can be placed in front of the aperture to induce a gradient
in the radiation field from one side of the aperture to the other. Wedge filters
are particularly useful in treating cancers that lie near a curved patient surface,
as is common in breast cancer. In addition to selecting beam directions and
weights, the dosimetrist must decide whether it is appropriate to use a wedge,
and if so, which orientation to choose for the wedge. It may be appropriate to
use a combination of wedged and non-wedged beams from a single direction.

As we show in this paper, optimization techniques can be used to design these
treatment plans automatically. Although the conformal techniques described
above are the current standard of care in radiation therapy, used in the treat-
ment of the vast majority of patients today, the benefits of automated treatment
planning have gone largely unrealized. We focus on the conformal approach be-
cause requires little alteration to current clinical practices, and therefore has
a good chance of rapid adoption. A more sophisticated treatment planning
approach known as intensity modulated radiation therapy (IMRT), which is
currently receiving a good deal of attention from optimization experts, allows a
number of differently shaped beams to be delivered from each direction, thereby
allowing a high degree of flexibility in modulating the intensity of the radiation
delivered from each beam angle. Although this approach is undoubtedly inter-
esting, its often-nonintuitive choice of aperture shapes represents a significant
departure from current clinical practice, and therefore will require more time to
be adopted widely.

We now given some further specifics of our proposed modeling and optimiza-
tion methodology, and outline the remainder of the paper. The overall process
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Figure 1: A Linear Accelerator

consists of determination of the beam’s-eye view from each given angle; gener-
ation of the corresponding dose matrices; development of optimization models
for the beam angles, beam weights, and wedge orientations; techniques to im-
prove the optimization formulation and reduce the solution time; and techniques
to control the dose-volume histogram (DVH1) on organs. By automating the
treatment planning process, we aim to improve the quality of treatment plans
while reducing the time required for planning each patient case.

Data for the model consists of the dose distribution matrices for beams from
each angle and the dose requirements for different regions of the treatment space.
The dose matrix for a given radiation beam consists of the radiation deposited by
the beam into each of the small three-dimension regions (“voxels”) into which
the treatment area is divided. We divide the beam from each direction into
a rectangular array of pencil beams, or beamlets, calculating the dose matrix
independently for each, as described in Section 2.1. The beamlet dose matrices
are used to identify the BEV, and the aggregate dose matrix for the BEV
aperture is obtained by simply adding the contributions from the does matrices
for the beamlets that make up the BEV.

The second important component of the data is specification of the tumor
region and critical structures. Three-dimensional organ geometries are outlined
by a physician on a set of CT or MRI images. The physician labels some of the
voxels as PTV (for “Planning Target Volume,” the tumor region) and others
as OAR (for “Organ At Risk,” also known as “sensitive structure” or “critical
structure”). The desired or required dose information for each region is also
specified.

In Section 3, we present several formulations of the treatment planning prob-

1A DVH is a plot that shows what fraction of volume of a structure receives dosage in a
given range.
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lem using linear programming (LP), quadratic programming (QP), and mixed-
integer programming (MIP) approaches. In these optimizations, each “voxel”
within the target volume typically requires at least a specified minimum amount
of radiation to be delivered (a lower bound), while an upper bound is used
for voxels in the sensitive structures and in the normal tissue. Since sensitive
structures often are located close to target volumes, it is sometimes difficult or
impossible to determine a treatment plan that satisfies the required bounds at
every voxel. Instead, penalty terms can be included in the objective of the opti-
mization problem that penalize violations of these bounds, with more significant
violations incurring larger penalties.

Section 3.1 describes the problem in which the gantry angles for the treat-
ment plan are fixed, and the task is merely to determine the beam weights for
each angle. Several problem LP and QP formulations are presented; we ex-
plore the characteristics of each. In Section 3.2, we discuss the “angle selection”
problem, in which the most effective angles (and their beam weights) are de-
termined from among a set of candidate angles. A MIP model is used here,
with binary variables indicating whether or not a particular angle used in the
treatment. Treatments with fewer beams can be delivered more rapidly, and
hence are generally preferred. We consider treatment plans using wedges in
Section 3.3, using an extension of the MIP formulation for the angle selection
problem. In Section 4, we describe several techniques for improving the formu-
lation and reducing the solution time without degrading the solution quality for
this model.

The quality of a treatment plan is typically specified and evaluated using
a dose-volume histogram (DVH). Using the DVH as a guide, a planner may
choose to allow a certain portion of voxels in each sensitive structure to exceed
a specified dose, or require a large fraction of the volume to receive at least a
certain dose. Due to the need to incorporate many binary variables into the
optimization [13], formulation of a constraint of this type is not easy to handle
using conventional optimization techniques. In Section 5, we show how the
MIP formulations can be modified to account for the DVH constraints by using
several control parameters.

In Section 6, we present computational results for the models described above
on clinical data. We demonstrate in particular the usefulness of wedges in devis-
ing good treatment plans, and the effectiveness of our techniques for enforcing
DVH constraints. We conclude by outlining our expected future research in
Section 7.

2 Model Data Generation

2.1 Dose Matrices and Beam’s-Eye View

A multileaf collimator located inside the head of the linear accelerator is used
to shape the beam of radiation generated by the linear accelerator [14, 33]. To
calculate the radiation dosages that can be delivered by a beam applied from
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Figure 2: Division of Aperture into Pencil Beams (Shaded Area Represents One
Beamlet)

a given angle, the rectangular aperture obtained by opening the collimator as
widely as possible is divided into rectangular subfields arranged in a regular
M×N rectangular pattern, as shown in Figure 2. Each of the subfields is called
a pencil beam or beamlet. M represents the number of leaf pairs in the multileaf
collimator, while N represents the number of possible settings we allow for each
leaf. We identify each beamlet by the index pair (i, j), where i = 1, 2, . . . ,M
and j = 1, 2, . . . , N . In our work, the leaves of the multileaf collimator are 1 cm
wide, and a pencil beam is assigned a length of 0.5 cm. Thus, for a 10 cm by
10 cm field, we would use M = 10 and N = 20, giving a total of 200 beamlets.

The dose distribution matrix for each pencil beam from each angle is cal-
culated using a Monte Carlo technique, which simulates the track of individual
radiation particles, for a large number of particles. A unit-intensity, non-wedged
beam is assumed for the purposes of these calculations.

In conformal radiotherapy, the shape of each beam is set to match the
beam’s-eye view (BEV) of the tumor volume, which is essentially the projec-
tion of the three-dimensional shape of the tumor onto the plane of the multileaf
collimator. One technique for determining the BEV is to employ a ray-tracing
algorithm from the radiation source to the tumor volume, setting the beam’s-
eye view to include all of the rays that pass through the tumor volume. We use
an alternative approach based on the dose matrices of the pencil beams. We in-
clude in the BEV all pencil beams whose field of significant dose intersects with
the target region. To be specific, given a threshold value T , we include include
a pencil beam in the BEV if its dose delivered to at least one voxel within the
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(a) Beams-eye-view in a given an-
gle

(b) Beams-eye-view can be pro-
duced using a multileaf collima-
tor

Figure 3: Beams-eye-view

target region is at least T% of the dose delivered by that pencil beam to any
voxel. Figure 3(a) shows an example of a BEV. Implementation of a BEV by a
multileaf collimator is shown in Figure 3(b).

Once the BEV from a particular angle has been chosen, we can construct
the dose matrix for the BEV aperture by simply summing the dose matrices of
all the pencil beams that make up the BEV.

The choice of threshold parameter T is critical. If the value of T used in the
determining the BEV is too small, the BEV overestimates the target, producing
an aperture that irradiates not only the target but also nearby normal tissue
and organs at risk. On the other hand, if the value of T is too large, the BEV
underestimates the target, and the optimizer might not be able to find a solution
that adequately delivers radiation dose within the required range to all parts
of the target. The best value of T to use depends somewhat on the shape of
the tumor. We choose T as the minimum value such that the resulting BEVs
provide a complete 2D coverage of the target from all beam angles considered
in the problem. Based on our experiments, a value of T of between 10% and
15% appears to be appropriate.

2.2 Use of Wedges

Wedges (also called wedge filters) are used to produce a gradient in the radiation
field across the aperture. As shown in Figure 4, a wedge is a tapered metallic
block with a the thick side (the heel) and a thin edge (the toe). Less radiation
is transmitted through the heel of the wedge than through the toe. Figure 4(b)
shows an external 45◦ wedge, so named because it produces isodose lines that are
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(a) A wedge filter (b) An external wedge

Figure 4: Wedges

oriented at approximately 45◦, as illustrated in Figure 5. Figure 5(a) shows the
dose attenuation pattern produced when no wedge are used, while Figure 5(b)
is the dose contour map resulting from use of a wedge. (In this example, the
wedge is oriented with its heel on the right side of the figure.) As well as
tilting the isodose lines, the wedge produces a general attenuation of the dose
as compared with the open beam. We assume that the wedge can be oriented
in four ways: with its heel aligned with each of the four sides of the rectangular
aperture obtained by opening all the leaves of the collimator. We refer to these
orientations as “north,” “south,” “east,” and “west,” according to the edge of
the aperture in question, as indicated in Figure 2.

We include a wedge transmission factor τ in the model to account for the
effect of the wedge on the dose delivered to the voxels in the treatment region.
Wedges are characterized by two constants τ0 and τ1, with 0 ≤ τ0 < τ1 ≤ 1
that indicate the smallest and largest transmission factors for the wedge among
all pencil beams in the field. Specifically, τ0 indicates the factor by which the
dose is decreased for the pencil beams along the edge of the aperture with which
the heel of the wedge is aligned. Correspondingly, τ1 indicates the transmission
factor along the opposite (thin) edge. When the heel lies along the west edge,
the transmission factor for beamlet (i, j) is calculated as follows:

τwest
ij = τ0 +

j − 0.5

N
(τ1 − τ0), i = 1, 2, . . . ,M, j = 1, 2, . . . , N. (1)

When the wedge is oriented with its heel at the top (north) of the field, the
weight applied to the (i, j) beamlet is

τnorth
ij = τ0 +

i− 0.5

M
(τ1 − τ0), i = 1, 2, . . . ,M, j = 1, 2, . . . , N. (2)

The shift of 0.5 is introduced in both formulae to capture the transmission factor
at the center of each beamlet.

7



Figure 5: Dose contour maps: Effect of wedge on the dose distribution

Two different wedge systems are used in clinical practice. In the first system,
four different wedges with angles 15◦, 30◦, 45◦, and 60◦ are available, and the
therapist is responsible for selecting one of these wedges and inserting it with
the correct orientation. In the second system, a single 60◦ wedge (the universal
wedge) is permanently located on a motorized mount located within the head
of the treatment unit. This wedge can be rotated to the desired orientation or
removed altogether, as required by the treatment plan. By using the universal
wedge appropriately, all plans deliverable by the four-wedge system can be re-
produced, as we show in Appendix A. Hence, we assume in this paper that the
universal wedge is used.

3 Formulating the Optimization Problems

3.1 Beam Weight Optimization

We start with the simplest model, in which we assume that the angles from
which beams are to be delivered are selected in advance, that wedges are not
used, and that the apertures are chosen to be the beam’s-eye view from each
respective angle. It remains only to determine the intensities of the beams (that
is, the beam weights) to be used from each angle.

We now introduce notation that is used below and in later sections. The set
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of beam angles is denoted by A. We use T to denote the set of all voxels that
make up the target structure, S to denote the voxels in the sensitive structure,
and N to be the voxels in the normal tissue. We use θ to denote the prescribed
dose level for each target voxel, while the hot spot control parameter φ defines
a dose level for each voxel in the critical structure that we would prefer not
to exceed. The beam weight delivered from angle A is denoted by wA, and
the dose contribution to voxel (i, j, k) from a beam of weight 1 from angle A
is denoted by DA,(i,j,k). (It follows that a beam of weight wA will produce a
dose of wADA,(i,j,k) in voxel (i, j, k).) We obtain the total dose D(i,j,k) to voxel
(i, j, k) by summing the contributions from all angles A ∈ A. We use DA,Ω

(and DΩ) to denote the submatrices consisting of the elements DA,(i,j,k) (and
D(i,j,k)) for all (i, j, k) in a given set of voxels Ω.

The beam weights wA, A ∈ A, which are of course nonnegative, are the
unknowns in the optimization problem. The general form of this problem is as
follows.

min
w

f(DΩ)

s.t.

DΩ =
∑

A∈A

wA · DA,Ω, Ω = T ∪ S ∪ N ,

wA ≥ 0, ∀A ∈ A.

(3)

The choice of objective function f(DΩ) in (3) depends on the specific goal
that the treatment planner wants to achieve. Two common goals are to control
the integral dose to organs and to control cold spots (underdose to the target
region) and hot spots (overdose). In general, the objective function measures
the mismatch between the prescription and the delivered dose. For voxels in
the target region T , there are terms that penalize any difference between the
delivered dose and the prescribed dose θ. For voxels in each sensitive structure
Si(i = 1, . . . , |OAR|), there are terms that penalize the amount of dose in excess
of φi, the desired upper bound on the dose to voxels in sensitive structure
i. However, for simplicity of explanation, we only consider a single sensitive
structure in the problem formulations in this paper. For voxels in the normal
region N , the desired dose is zero, so the objective usually includes terms that
increase as the amount of dose delivered to these voxels increases. There may
be more than one sensitive structure in a treatment planning problem.

Let parameters λt, λs, and λn be nonnegative weighting factors applied to
the objective terms for the target, sensitive, and normal voxels, respectively.
Two common ways to define the objective are to use the L1-norm (which pe-
nalizes the absolute value of deviation from the prescribed dose on each voxel,
weighted by the factors just defined) and the sum of squares of the deviations,
again weighted according to the region in which each voxel lies. These tech-
niques lead to the following two definitions:

λt‖DT − θeT ‖1 + λs‖(DS − φeS)+‖1 + λn‖DN‖1, (4)

λt‖DT − θeT ‖2
2 + λs‖(DS − φeS)+‖2

2 + λn‖DN‖2
2. (5)

9



The notation (·)+ := max(·, 0) in the second term defines the overdose to voxels
in the sensitive region, while eT is the vector whose components are all 1 and
whose dimension is the same as the cardinality of T (similarly for eS). The
terms in (4) and (6) are approximations to the L1 and squared-L2 integrals of
the deviations from prescription over each region of interest.

A planner can also use an average dose deviation for each structure by di-
viding the integral dose over the number of voxels in the structure:

λt
‖DT − θeT ‖p

card (T )
+ λs

‖(DS − φeS)+‖p
card (S)

+ λn
‖DN ‖p

card (N )
, p = 1, 2,

where card (T ), card (S), and card (N ) denote the number of voxels in the target
region, the sensitive structure, and the normal region, respectively. The use of
these factors in the denominator facilitates easier choice of λt, λs, and λn, and
removes some of the dependence of the plan on the relative sizes of each region.

An objective function based on L∞-norm terms (6) allows effective penal-
ization of “hot spots” in sensitive regions and of cold spots in the target. We
define such a function as follows:

λt‖(DT − θeT )‖∞ + λs‖(DS − φeS)+‖∞ + λn‖DN‖∞. (6)

Combinations of the objective functions above can also be used to achieve spe-
cific treatment goals, as we describe later in this section.

3.1.1 Quadratic Programming Formulation

If we use a weighted sum-of-squares objective of the form (5), the 3D conformal
radiation treatment planning problem is a quadratic program (QP). We slightly
modify (5) by including the cardinality of the sets T , S, and N explicitly in the
weighting terms. We arrive at the following QP formulation (a particular case
of (3)):

min
w

λt
‖DT − θeT ‖2

2

card (T )
+ λs

‖(DS − φeS)+‖2
2

card (S)
+ λn

‖DN ‖2
2

card (N )

s.t.

DΩ =
∑

A∈A wADA,Ω, Ω = T ∪ S ∪N ,

wA ≥ 0, ∀A ∈ A.

(7)

By introducing variables V(i,j,k), (i, j, k) ∈ S to denote the excess dose over the
upper bound φ in the sensitive region S, we can rewrite (7) as follows:

min
w

λt
‖DT − θeT ‖2

2

card (T )
+ λs

‖VS‖2
2

card (S)
+ λn

‖DN‖2
2

card (N )

s.t.

DΩ =
∑

A∈A wADA,Ω, Ω = T ∪ S ∪ N ,

VS ≥ DS − φeS ,

VS ≥ 0,

wA ≥ 0, ∀A ∈ A.

(8)
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Note that the expression for DN can be explicitly substituted into the objective
function removing all such variables. Eliminating some of DT and DS may be
done in certain cases, but the substitutions are more complex.

3.1.2 Least-Absolute-Value Formulation: Linear Programming

The absolute-value terms in (4) do not penalize large violations as much as the
squared terms in (5). However, they allow the problem to be formulated as a
linear program. By including the cardinalities of T , S, and N in the weighting
factors of (4), we obtain another special case of (3):

min
w

λt
‖DT − θeT ‖1

card (T )
+ λs

‖(DS − φeS)+‖1

card (S)
+ λn

‖DN ‖1

card (N )

s.t.

DΩ =
∑

A∈A wADA,Ω, Ω = T ∪ S ∪N ,

wA ≥ 0, ∀A ∈ A.

(9)

To recast this problem as a linear program, we introduce variables V(i,j,k) for
(i, j, k) ∈ T ∪ S to represent violations from the desired doses or dose intervals
on the PTV and the OAR. We can then write (9) equivalently as follows:

min
w

λt
eTT VT

card (T )
+ λs

eTSVS
card (S)

+ λn
eTNDN

card (N )

s.t.

DΩ =
∑

A∈A wADA,Ω, Ω = T ∪ S ∪ N ,

VT ≥ DT − θeT ,

VT ≥ θeT −DT ,

VS ≥ DS − φeS ,

VS ≥ 0,

wA ≥ 0, ∀A ∈ A.

(10)

Note that since the elements DA,(i,j,k) of the dose matrix and wA of the weight
vector are all nonnegative, the elements of the dose vector DN are also nonneg-
ative. Hence, in the last term of the objective, we are justified in making the
substitution ‖DN‖1 = eTNDN .

3.1.3 Min-Max Formulation: Linear Programming

Sometimes, it is important in radiation treatment to minimize the maximum
dose violation on organs. Min-max formulations based on (6) can be used for
this purpose:

min
w

λt‖DT − θ‖∞ + λs‖(DS − φ)+‖∞ + λn‖DN‖∞

s.t.

DΩ =
∑

A∈A wADA,Ω, Ω = T ∪ S ∪ N ,

wA ≥ 0, ∀A ∈ A.

(11)
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An LP formulation for (11) can be generated by introducing extra scalar vari-
ables, Vt, Vs, and Vn into the problem as follows.

min
w

λtVt + λsVs + λnVn

s.t.

DΩ =
∑

A∈A wADA,Ω, Ω = T ∪ S ∪ N ,

VteT ≥ DT − θeT ,

VteT ≥ θeT −DT ,

VseS ≥ DS − φeS ,

VneN ≥ DN ,

0 ≤ Vt, Vs, Vn,

0 ≤ wA, ∀A ∈ A.

(12)

3.1.4 Composite Formulations

In the sections above, we introduced three possible problem formulations for the
optimization problem (3) based on specific treatment goals. Often, the planner’s
goals are quite specific to the case at hand. For example, the planner may wish
to keep the maximum dose violation on the target low, and also to control the
integral dose violation on the OAR and the normal tissue. These goals can be
met by defining the objective to be a weighted sum of the relevant terms. For
the given example, we would obtain the following:

min
w

λt‖DT − θeT ‖∞ + λS
‖(DS − φeS)+‖1

card (S)
+ λn

‖DN ‖1

card (N )

s.t.

DΩ =
∑

A∈A wADA,Ω, Ω = T ∪ S ∪ N ,

wA ≥ 0, ∀A ∈ A.

(13)

In practice, voxels on the PTV that receive dose within specified limits may
be acceptable as a treatment plan. Furthermore, voxels receive below the lower
dose specification (cold spots) may get penalized more severely than hot spots
on the PTV. Therefore, we consider the following two definitions of f(DΩ) in
(3) as follows:

f(DΩ) = λ+
t

‖(DT − θueT )+‖1

card (T )
+ λ−t

‖(θLeT −DT )+‖1

card (T )
(14)

+λs
‖(DS − φeS)+‖1

card (S)
+ λn

‖DN ‖1

card (N )
,

f(DΩ) = λ+
t ‖(DT − θueT )+‖∞ + λ−t ‖(θLeT −DT )+‖∞ (15)

+λs
‖(DS − φeS)+‖1

card (S)
+ λn

‖DN‖1

card (N )
.
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In these objectives, θL is the target cold-spot control parameter. If the dosage
of a voxel in T falls below θL, a penalty term for the violation is added to the
objective. Likewise, a voxel on the PTV incurs a penalty if the dosage at the
voxel exceeds θu.

It should be understood that in all models we describe in this paper such a
separation of hot and cold spots is possible. However, we simplify the exposition
throughout by using a combined objective function. Alternative objectives have
been discussed elsewhere. For example, the papers [22, 26] use score functions
to evaluate and compare different plans.

Building on the beam-weight optimization formulations described above, we
now consider extended models in which beam angles and wedges are included
in the optimization problem.

3.2 Beam orientation optimization

In the previous section, we showed how to choose the beam weights in an op-
timal fashion, given a set A of specified beam orientations. We now consider
the problem of selecting a subset of at most K beam angles from a set A of
candidates, simultaneously choosing optimal weights for the selected beams. A
treatment plan involving few beams (say, 3 to 5) generally is preferable to one
of similar quality that uses more beams because it requires less time and effort
to deliver in the clinic.

We introduce binary variables ψA, A ∈ A, that indicate whether or not
angle A is selected to be one of the treatment beam orientations. The value
ψA = 0 indicates that angle A is not used, so the weight for this beam must
satisfy wA = 0. When ψA = 1, on the other hand, the beam from angle A may
have a positive weight. Both conditions are enforced by adding the constraint
wA ≤ M · ψA to the model, where M is a upper bound on the beam weights
(discussed below in Section 4.1). The resulting mixed programming formulation
(10) is as follows:

min
w,ψ

f(DΩ)

s.t.

DΩ =
∑

A∈A

DA,Ω · wA, Ω = {T ∪ S ∪ N}

0 ≤ wA ≤MψA, ∀A ∈ A,
∑

A∈A ψA ≤ K,

ψA ∈ {0, 1}, ∀A ∈ A.

(16)

Our approach relies on a mixed integer formulation for which standard optimiza-
tion codes can be applied. Some theoretical considerations of optimizing beam
orientations are also discussed in [1]. In general, using more beams typically
produces better quality treatment plans. The down side, however, is that the
time to treat the patients is longer when more beams are used. Furthermore,
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it has been shown that, when many beams are used, (say ≥ 5), beam orien-
tation becomes less important in the overall optimization [7, 8, 28]. In many
cited cases, the objective is to find a minimum number of beams that satisfy
the treatment goals.

The beam angles and the weights can be optimized either sequentially or
simultaneously. Most of the earlier work in the literature uses sequential schemes
[5, 15, 20, 24, 25], in which a certain number of beam angles are fixed first, and
their weights are subsequently determined. Rowbottom et al [23] optimize both
variables simultaneously. To reduce the initial search space, a heuristic approach
to remove some beam orientations a priori is used, while the overall optimization
problem is solved with the simplex method and simulated annealing.

A different approach has been proposed by Hass et al [16]. They address
a geometrical formulation of the coplanar beam orientation problem combined
with a hybrid multi-objective genetic algorithm. The approach is demonstrated
by optimizing the beam orientation in two dimensions, with the objectives being
formulated using planar geometry. Their algorithm attempts to replicate the
approach of a treatment planner whilst reducing the amount of computation
required. Hybrid genetic search operators have been developed to improve the
performance of the genetic algorithm by exploiting problem-specific features.
When the approach is applied without constraining the number of beams, the
solution produces an indication of the minimum number of beams required.
Webb [30] applies simulated annealing approach on a two dimensional treat-
ment planning problem. Three-dimensional problems using simulated annealing
approach are addressed in [23, 31, 32, 33].

3.3 Wedge orientation optimization

Wedges may be placed in front of a beam to deliver a nonuniform dose distribu-
tion across the aperture. Several researchers have studied treatment planning
problem with wedge filters [9, 10, 19, 27, 36, 37]. Xing et al [36] demonstrate
the use of optimizing the beam weights for an open field and two orthogonal
wedged fields. Li et al [19] presents an optimization algorithm for the wedge
orientation selection and the beam weights. Design of treatment plans involv-
ing wedges are discussed in [10, 19, 27, 36, 37]. The papers [27, 36, 37] discuss
selection of wedge angles; in particular, Sherouse [27] describes a mathematical
basis for selection of wedge angle and orientation. However, it has been noted
that including wedge angle selection in the optimization makes for excessive
computation time [37].

We consider four possible wedge orientations at each beam angle: “north”,
“south”, “east”, and “west”. At each angle A, we calculate dose matrices for
the beams-eye view aperture and for each of these four wedge settings, along
with the dose matrix for the no-wedge setting (the open beam), as used in the
formulations above. We use F to denote the set of wedge settings; F contains
5 elements in our case. Extending our previous notation, the dose contribution
to voxel (i, j, k) from a beam delivered from angle A with wedge setting F is
denoted by DA,F,(i,j,k), and we use DA,F,Ω to denote the collection of doses for all
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(i, j, k) in some set Ω. The weight assigned to a beam from angle A with wedge
setting F is denoted by wA,F , while the binary variable πA,F determines whether
or not we use a beam from angle A with wedge setting F in the treatment plan.

The optimization problem is to select beams and optimizing weights when
wedges are present. The new formulation is obtained not by simply replacing A
by A×F in the discussion above, since there are some additional considerations.
First, in selecting beams, we do not wish to place a limit on the total number
of beams delivered, as in Section 3.2, but rather on the total number of distinct
angles used. In other words, we are prepared to allow multiple beams to be
delivered from a given angle for the same “cost” as a single beam from that
angle; that is,

ψA ≥ πA,F , ∀A ∈ A, ∀F ∈ F .

This constraint models the clinical situation reasonably well, since changing the
wedge orientation takes little time relative to the time required to move the
gantry and possibly shift the patient.

The second consideration is that we do not wish to deliver two beams from
the same angle for two diametrically opposite wedge settings. We enforce this
restriction by adding the following constraints:

1 ≥ πA,north + πA,south,

1 ≥ πA,west + πA,east.
(17)

(17) limits the number of wedge orientations to be less than three in each angle
for the treatment. The resulting mixed integer programming model is now as
follows:

min
w,ψ,π

f(DΩ)

s.t.

DΩ =
∑

A∈A,F∈F

wA,FDA,F,Ω, Ω ∈ T ∪ S ∪N ,

MπA,F ≥ wA,F ,

ψA ≥ πA,F ,

K ≥
∑

A∈A ψA,

1 ≥ πA,north + πA,south,

1 ≥ πA,west + πA,east,

wA,F ≥ 0, ∀A ∈ A, ∀F ∈ F ,

ψA , πA,F ∈ {0, 1}, ∀A ∈ A, ∀F ∈ F .

(18)

In comparing (18) with (16), we see that the amount of data to be stored
increases by a factor of |F|. The number of binary variables also increases by
a factor of |F| + 1, although the nature of the new variables πA,F and the new
constraints is such that the complexity of the problem is increased by less than
this factor would suggest.

15



We show in Appendix B that a plan calling for two nonzero weights for two
diametrically opposed beams can be replaced by an equivalent plan requiring
a positive weight for an open beam along with a positive weight for one of the
two original beams. Hence any solution with nonzero weights on diametrically
opposed wedges can be postprocessed easily to reduce one of the weights to zero.
This suggests an alternative to the formulation above, in which we dispense with
the binary variables πA,F and the constraints in which they appear:

min
w,ψ

f(DΩ)

s.t.

DΩ =
∑

A∈A,F∈F

wA,FDA,F,Ω, Ω ∈ T ∪ S ∪ N ,

MψA ≥ wA,F ,

K ≥
∑

A∈A ψA,

wA,F ≥ 0, ∀A ∈ A, ∀F ∈ F ,

ψA ∈ {0, 1}, ∀A ∈ A.

(19)

Post-processing can be used in the cases where

{wA,south > 0 and wA,north > 0 } or {wA,west > 0 and wA,east > 0},

to avoid a treatment plan that calls for two nonzero weights for two diametrically
opposite wedge settings as discussed in Appendix B. Note that if there are other
constraints on the number of wedges being used, we typically cannot use (19)
but must add the additional constraints on πA,F to (18).

4 Reducing the Solution Time

The formulation (19) includes beam angles, weights, and wedges as variables in
the formulation. It involves a large amount of data—the beam shapes and dose
matrices must be computed for each beam angle and wedge orientation—along
with many discrete variables, and so is time-consuming to set up and solve. In
this section, we describe a number of techniques for reducing the solution time.
First, we show how to choose a reasonable value of M in the formulations (16),
(18) and (19). (This choice is important in practice, as an excessively large
value of M can lead to a significant increase in run time.) Second, we show
how normal-tissue voxels in the treatment region some distance away from the
target region can be merged, thereby reducing the number of variables without
sacrificing solution quality. Third, we describe a scheme for solving a lower-
resolution problem to identify the most promising beam angles, then consider
only these angles in solving the full-resolution problem.

4.1 Computing tight upper bounds on the beam weights

The formulation (19) requires an upper bound M on the beam weights wA,F
which is not known a priori. If M is too small, the optimization problem can
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be infeasible or produce a suboptimal result. On the other hand, if the value is
too large (usually the case), the algorithm can be considerably slower. A key
preprocessing technique to overcome this problem is to use tight bounds on the
decision variables [21].

Let ρA be the maximum dose deliverable to the target by a beam angle A
with a unit beam intensity. Since the open beam delivers more radiation to a
voxel (per unit beam weight) than any wedged beam, we have

ρA := max
F∈F , (i,j,k)∈T

DA,F,(i,j,k)

= max
(i,j,k)∈T

DA,(i,j,k), A = 1, 2, · · · , |A|,
(20)

where, as before, DA,(i,j,k) denotes the dose delivered to voxel (i, j, k) from a
unit weight of the open beam at angle A. In Section 2.2, we defined a constant
τ1 ∈ [0, 1] as the largest radiation transmission factor by a wedge filter. Using
this definition, we have for a given angle A that the maximum dose deliverable
to a target voxel using wedge filters is

ρA



wA,0 + τ1
∑

F∈F\{0}

wA,F



 , (21)

where 0 ∈ F denotes the open beam.
Suppose now that we modify the model in (19) to include explicit control of

“hot spots” by introducing an upper bound u on the dose allowed in any target
voxel. That is, we assume that the constraint

DT ≤ ueT (22)

is added to (19). (Such a constraint may also be added to the other models of
Section 3.) By combining (22) with (21), we deduce that

wA,0 + τ1
∑

F∈F\{0}

wA,F ≤
u

ρA
, ∀A ∈ A.

We can therefore use this constraint to bound wA,F for F ∈ F , provided the
angle A is selected. If the angle A is not selected, of course, we must enforce
wA,F = 0 for all F ∈ F . We can accomplish these goals by replacing the
somewhat arbitrary bound in (19):

MψA ≥ wA,F

by

wA,0 + τ1
∑

F∈F\{0}

wA,F ≤

(

u

ρA

)

ψA, ∀A ∈ A, (23)

where ψA is the binary variable that indicates whether or not the angle A is
selected. Our modification of (19) that includes “hot spot” control and the
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bound (23) is therefore as follows:

min
w,ψ

f(DΩ)

s.t.

DΩ =
∑

A∈A,F∈F

wA,FDA,F,Ω, Ω ∈ T ∪ S ∪ N ,

u
ρA
ψA ≥ wA,0 + τ1

∑

F∈F\0

wA,F

K ≥
∑

A∈A ψA,

wA,F ≥ 0, ∀A ∈ A, ∀F ∈ F ,

ψA ∈ {0, 1}, ∀A ∈ A , ∀F ∈ F ,

(24)

Note that if we also impose an upper bound on dose level to normal-tissue
voxels, we can derive additional bounds on the beam weights using the same
approach as is used for the target voxels above.

4.2 Reducing resolution in the normal tissue

The main focus in solving the optimization problem is to deliver enough dose
to the target while avoiding organs at risk as much as possible. Therefore, the
dosage to normal regions that are some distance away from the PTV does not
need to be resolved to high precision. It suffices to compute the dose only on
a representative subset of these normal-region voxels, and use this subset to
enforce constraints and to formulate their contribution to the objective.

Given some parameter ∆, we define a neighborhood of the PTV as follows:

R∆(T ) := {(i, j, k) ∈ N | dist ((i, j, k), T ) ≤ ∆, } ,

where dist ((i, j, k), T ) denotes the Euclidean distance of the center of the voxel
(i, j, k) to the target set. We also define a reduced version N1 of the normal
region, consisting only of the voxels (i, j, k) for which i, j, and k are all even;
that is:

N1 := {(i, j, k) ∈ N | mod (i, 2) = mod (j, 2) = mod (k, 2) = 0} .

Finally, we include in the optimization problem only those voxels that are close
to the target, or that lie in an OAR; or that lie in the reduced normal region.
Formally, we consider voxels (i, j, k) with

(i, j, k) ∈ T ∪ S ∪ R∆(T ) ∪ N1.

Since each of the voxels (i, j, k) ∈ N1 effectively represents seven neighboring
voxels, the weights applied to the terms for the voxels (i, j, k) ∈ N1 in the L1

and sum-of-squares objective functions ((4) and (5), respectively) are increased.

In effect, the objective quantity
‖DN‖1

card (N )
is smaller than

‖DN1∪R∆(T )‖1

card (N1 ∪ R∆(T ))
.
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If this is an issue, it is possible to replace the latter by

‖DR∆(T )‖1 + ‖DN1
‖1

(

card(N\R∆(T ))
card(N1)

)

card (N )

in the objective function.

4.3 A three-phase approach

We now discuss an approach in which rather than attacking the full-scale op-
timization problem directly, we “ramp up” to the solution via a sequence of
models. Each model in the sequence is easier to solve than the next model, and
the solution of each provides a good starting point for the next model. The mod-
els differ from each other in the selection of voxels included in the formulation,
and in the number of beam angles allowed. The idea is to first determine the
treatment beam angles among all beam angles considered in the optimization.
Then a linear program is solved to determine the intensities of these beam an-
gles. One simple approach for removing unpromising beam angles is to remove
from consideration those that pass directly through any sensitive structure [23].
A more elaborate approach [22] introduces a score function for each candidate
angle, based on the ability of that angle to deliver a high dose to the target
without exceeding the prescribed dose tolerance to OAR or to normal tissue
located along its path. Only beam angles with the best scores are included in
the model.

These heuristics can reduce solution time appreciably, but their effect on the
quality of the final solution cannot be determined a priori. We propose instead
the following incremental modeling scheme, which obtains a near-optimal solu-
tion within a small fraction of the time required to solve the original formulation
directly. Our scheme proceeds by three phases.

Phase 1: Selection of Promising Beam Angles. Our aim in this phase
is to construct a subset of beam angles A1 that are likely to appear in the final
solution of (19). A similar technique is applicable to (18) and (24). A mixed
integer program (19) is solved r times using sampled data points. The sampled
data points include voxels on the PTV, randomly sampled 10% of OAR (S ′),
and R∆(T ), i.e.

Ω1 = {T ∪ S ′ ∪ R∆(T )}

We define A1 as a collection of beam angles found in r solutions of the mixed
integer program.

Phase 2: Treatment Beam Angle Determination. In the next phase, we
determine K or less treatment beam angles based on A1 (instead of A). We
solve the optimization model (19) using A1 and voxels on the PTV, OAR, and
N1, i.e.

Ω2 = {T ∪ S ∪ R∆(T ) ∪ N1}

Note that |A1| is typically greater or equal than K.
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Phase 3: Final Approximation. In the final phase, we fix the K beam
angles and solve the resulting simplified optimization problem over the com-
plete set of voxels. We have assumed that the K beam angles are a good
approximation to those angles in the solution of the full-scale model. The final
approximation typically takes much less time to solve than the full-scale model,
both because of the smaller amount of data (due to fewer beam angles) and
fewer binary variables.

We have found that this three-phase scheme reduces the total time required
to compute the treatment plan considerably. Although it will not in general
produce the same solution as the original full-scale model (19), we have found the
quality of its approximate solution to be very close to optimal. Computational
experience with this approach is given in Section 6.

5 Techniques for DVH control

Dose-volume histograms (DVH) are a compact way of representing dose dis-
tribution information for subsets of the treatment region. By placing simple
constraints on the shape of the DVH for a particular region, radiation oncolo-
gists can exercise control over fundamental aspects of the treatment plan. For
instance, the oncologist often is willing to sacrifice some specified portion of a
sensitive structure (such as the lung) in order to provide an adequate probabil-
ity of tumor control, when the sensitive structure lies near the tumor. This aim
can be realized by requiring that at least a specified percentage of the sensitive
structure must receive a dose less than a specified level. DVH constraints can
also be used to control uniformity of the dose to the target, and to avoid cold
spots (regions of underdose). For example, the planner may require all voxels in
the target volume to receive doses of between 95% and 107% of the prescribed
dose (θ).

DVH constraints that require some fraction of voxels in a region to receive
less than a given dose, without specifying which individual voxels must sat-
isfy this requirement, cannot be implemented in a straightforward way using
traditional optimization formulations. However, by manipulating the objective
function, we can set up and solve a sequence of problems that leads to a satisfac-
tory approximate solution. We describe these techniques with reference to the
formulation (16). The results are equally valid for (18), but the computational
requirements are of course higher.

There are three typical requirements for the radiation treatment: homo-
geneity, conformity, and avoidance [11, 12]. In our formulations, homogeneity is
controlled by the DVH control parameters θL and θu (θL ≤ 1 ≤ θu), which spec-
ify the lower and upper bounds on the dose to target voxels. (If the prescribed
dose to the voxels in T is θ, then we wish to deliver at least θL · θ and at most
θu · θ to each voxel.) The conformity constraints, which require that the dose
to the normal tissue is as small as possible, can be controlled by the penalty
parameter on the normal-tissue voxels in the objective function. As we increase
the value of λn, it typically reduces the integral dose on the normal tissue. The
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avoidance constraints, which require the dose to be below certain thresholds on
at least some fraction of the sensitive structure, can be implemented by includ-
ing terms in the objective that involve the OAR voxels and a hot-spot control
parameter φ.

One might argue that the homogeneity and avoidance requirements can be
controlled by adding hard constraints to the optimization model. However,
the optimization problem might not be able to find a feasible solution with hard
constraints. Even when it is possible to obtain a solution with a hard-constraint
formulation, the solutions are typically too homogeneous, and physicians prefer
the ability to relax or tighten the constraints using parametrized terms in the
objective to achieve a specific treatment goal. We describe ways of controlling
DVH on organs, and show results based on a clinical case in the following
subsections.

5.1 Effects of different objective functions

We introduced different types of objective functions in Section 3.1; see in par-
ticular (4), (5), (6), (14), and (15). One can use infinity-norm penalty terms
in the objective function to control hot and cold spots in the treatment region,
while L1-norm penalty terms are useful for controlling the integral dose over a
region.

Here we illustrate the effectiveness of using both types of terms in the ob-
jective, by comparing results obtained from an objective with only L1 terms,
with results for an objective with both L1 and infinity-norm terms. We use the
typical values θL = 0.95, θu = 1.07, φ = 0.2, and K = 4 in this experiment.
As can be expected, Figure 6 shows that (15) has better control on the PTV;
the infinity-norm terms yielded a stricter enforcement of the constraints on the
PTV. The two objective functions can produce a similar solution if the values of
λt’s are chosen appropriately. However, the choice of such values is not intuitive.
We believe that it is easier to choose the value of λt for the L∞ penalty, and
use these values in the sequel. We note that on the normal and OAR regions,
the difference in quality of the solutions obtained from these two alternative
objectives was insignificant.

5.2 DVH control on the PTV

Because of our experience reported in Section 5.1, we consider the optimization
problem (16) with objective function f(DΩ) defined by (15).

Modelers usually are advised to update the weights (λt, λs, λn) to achieve
DVH control on the PTV. However, based on extensive numerical experiments,
we believe that this is a less effective way to provide DVH control. We suggest
fixing (λt, λs, λn) at appropriate value, say 1, and updating them only for fine
tuning of a solution.

Our aim in controlling DVH on the PTV is to attain homogeneity of the
dose on T without significant loss of quality in the dose profile for the normal
region and OAR (that is, without significant change to the DVH plots for these
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Figure 6: Dose Volume Histogram on the PTV

regions). As discussed above, the key parameters used to achieve this goal in
(15) are θu and θL, which define the desired maximum and minimum fractions
of the prescribed dose that the planner wishes to deliver to the target voxels.
In this experiment, we fix θu = 1.07, and try the values 0.7, 0.8, 0.9, 0.94
for the lower-bound fraction θL. Figure 7 shows four DVH plots based on the
four different values of θL. For each value, we observe that in fact 100% of
the target volume receives more that the desired lower bound θL. In other
words, we manage to avoid completely cold spots in the PTV in this example.
We may expect that larger values of θL (which lead us to confine the target
dose to a tighter range) will result in a less attractive solution in the OAR and
the normal tissue. However, as can be seen in Figure 7, the loss of treatment
quality is not significant. We conclude that this technique for implementing
homogeneity constraints is effective.

5.3 DVH control on the OAR

The objective (15) also contains terms that penalize the integral of the dose
violation over the OAR and normal regions. Here, we show that the dose to
the OAR can be controlled by means of the parameter φ, assuming that the
weights λt, λs, and λn have been fixed appropriately. If our goal is for voxels
in the OAR to receive a dose of at most β, where β ∈ (0, 1), we set φ = β in
(15). Figure 8(a) illustrates the effect of changing values of φ on DVH of the
OAR. When φ is set to 0.5, most of the OAR receives dose less than 50% of the
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Figure 7: DVH plots: DVH control on the PTV
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prescribed target dose. Similar results hold for the values 0.2 and 0.1, though
constraint is not as “hard” in these cases. (For φ = 0.1, about 20% of the OAR
receives more than 10% of the prescribed dose, but only about 5% receives more
than 20% of the prescribed dose.) As expected, the costs of achieving better
control on the OAR is the loss of treatment quality on the PTV and the normal
tissue. However, Figure 8 shows that there is little sacrifice in treatment quality.

5.4 Remarks

We conclude this section with several remarks.

1. If our goal is to control hot spots in the OAR rather than the integral
dose, we could replace the term ‖(DS − φeS)+‖1 in the objective (15) by
its infinity-norm analogue ‖(DS − φeS)+‖∞.

2. In applying the three-phase approach of Section 4.3 to the objective func-
tion (15), we can update φ on a per-organ basis and re-solve the optimiza-
tion problem if the DVH requirement for the OAR is not satisfied at the
end of Phase 3.

3. There can be some conflict between the goals of controlling DVH on target
and non-target regions. Ideally, all target voxels should receive the exact
prescription dose θ, while the non-target region should receive zero dose.
In practice, this is not possible, as the target is always adjacent either
to normal tissue or sensitive structures. Therefore, we need to reach a
compromise based on the the relative priorities of meeting the prescription
on the target and avoiding excessive dose to the OAR and normal tissues.
If the PTV dose control is most important, as is usually the case, the
control parameters θL, θu, φ should be chosen with (θu − θL) small and
φ as a fairly large (but smaller than 1) fraction of θ. However, if the
OAR dose control is most important, a smaller value of φ can be used in
conjunction with L1-norm penalties for the OAR terms in the objective.
In addition, a larger value of (θu − θL) is appropriate in this case.

6 Application to Clinical Data

In this section, we use two sets of clinical data to explain how to use our model
to achieve treatment planning goals.
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Figure 8: DVH plots: DVH control on the OAR
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6.1 Solution time reduction

The specific optimization model considered in this section is as follows:

min
w,ψ

λt (‖(DT − θueT )+‖∞ + ‖(θLeT −DT )+‖∞)

+λs
‖(DS − φeS)+‖1

card (S)
+ λn

‖DN‖1

card (N )

s.t.

DΩ =
∑

A∈A

DA,Ω · wA, Ω = T ∪ S ∪ N ,

DT ≤ u,

0 ≤ wA ≤MψA, ∀A ∈ A,
∑

A∈A

ψA ≤ K,

ψA ∈ {0, 1}, ∀A ∈ A.

(25)

Note that we have introduced hard upper bound constraints on the target DT ≤
u (where u typically is somewhat larger than θu). We fix some of the control
parameters in the optimization model (25) throughout the experiments: θL =
0.95, θu = 1.07, φ = 0.2, K = 4, λt = λs = λn = 1, u = 1.15 and |A| = 36. In
fact, the set of angles A consists of angles equally spaced by 10◦ in a full 360◦

circumference.
We attempt to solve (25) using the full set of voxels. Note that the optimality

criterion is set such that the solution process terminates with the relative error
of the objective value being less than or equal to 1%. Figure 9 shows changes of
upper and lower bounds of the objective values as the iteration number increases.
We notice that a large number of iterations are used to slightly improve the
feasible solution found at iteration 2.2×106. We also notice that the lower bound
of the objective value increases slowly. We addressed techniques to overcome
these problems in Section 4. Effects of using the techniques are discussed in the
following paragraph.

Table 1 summarizes results of four different experiments using a data set
from a patient with pancreatic cancer. Column I shows the results obtained by
solving (25) directly, with M set to 2. In column II, we use the tight bound (23)
on wA, specialized to the case in which no wedges are used. That is, we replace
the constraint wA ≤ MψA in (25) by wA ≤ (u/ρA)ψA. (This tighter bound is
also used in columns III and IV.) Column III shows the solution time for the
reduced-voxel version of the problem discussed in Section 4.2. Finally, column
IV shows results obtained with the three-phase approach of Section 4.3 using
r = 10 samples of the OAR. Note that the objective values were calculated on
the full set of voxels for the comparison.

Table 1 shows that the final objective values obtained from the all three
schemes were the same, to at least three significant digits. The next rows in
Table 1 show the CPU times required (in hours) for each of the four experiments,
and the savings in comparison with the time in column I. By comparing columns
I and II, we see that a modest reduction was obtained by using the tighter bound.
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Figure 9: Changes of upper and lower bounds of the objective value

Table 1: Comparisons among different solution schemes.

I II III IV

Approach Single Solve Single Solve Reduced Model Three-Phase

Bound (M) 2 u/ρA u/ρA u/ρA

Final Objective 0.0342 0.0342 0.0342 0.0342

Time (hours) 112.3 93.5 29.9 0.5

Time saved(%) - 16.8 73.3 99.5
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Column III shows that more significant savings were obtained, with essentially
no degradation in the quality of the solution plan, by using a reduced model.
The full problem contains 1244 voxels in the PTV, 69270 voxels in the OAR,
and 747667 voxels in the normal region, while the reduced model has 1244 voxels
in the PTV, 14973 voxels in the OAR, and 96154 voxels in the normal tissue.
The reduction in computing time was over 73%. Column IV shows that the use
of the three-phase scheme resulted in a savings of 99.5% over the direct solution
scheme with no effect on the quality of the solution.

Note that, if the solution time is very important, we could relax the cold-spot
and hot-spot control parameter values on the PTV. Relaxing these parameter
values typically speeds up the the solution time.

We believe our iterative technique is equally effective in the general case in
which wedges are included in the formulation. Hence, our subsequent compu-
tations used the iterative scheme with wedges.

6.2 The effect of using wedges on DVH

In general, the use of wedges gives more flexibility in achieving adequate coverage
of the tumor volume while sparing normal tissues. To show the effect of wedges,
we test our optimization models on a different set of data, from a prostate
cancer patient. Figure 10 shows DVH graphs obtained for a treatment plan
using wedges (24) and one using no wedges (25). Three beam angles, K = 3,
are used in both cases. As can be seen in Figure 10(a), a significant improvement
on DVH on the OAR is achieved by adding wedges. In Figure 10(b), we see
that there is also a slight improvement in the DVH for the PTV. The line is
closer to the prescribed dose level of one when wedges are used. The DVH on
the normal tissue, however, does not show much difference between the wedges
and no-wedges cases.

6.3 A Clinical case study - Pancreas

We now apply the full optimization approach (including DVH controls and
wedges) to a pancreatic tumor. This case is made particularly difficult by the
close proximity to the PTV of several sensitive structures, including the spinal
cord, liver, left kidney, and right kidney. The set A contains 36 equispaced
candidate beam angles. Wedges are also used for the beam angles. The goals
of the treatment plan are as follows:

1. Choose four beam angles for the treatment.
2. As the first priority, the target volume should receive dose between 95%

and 107% of the presribed dose.
3. 90% of each organ-at-risk should receive less than 20% of the target pre-

scribed dose level.
4. The integral dose delivered to the normal tissue should be minimized.

To achieve these goals, we set DVH control parameters as follows:

θ = 1.0, θL = 0.95, θu = 1.07, r = 10, K = 4, and
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Figure 10: Dose Volume Histogram: effect of wedges with 3 beam angles
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(a) Axial (b) Sagittal

Figure 12: Isodose Plots: four lines represent 20%, 50%, 80%, and 95% isodose
lines; the 20% line is outermost.

φi = 0.2, i ∈ {spinal cord, liver, left kidney, right kidney}.

Figure 11 shows DVH plots of this experiment. Note first that the homo-
geneity constraints are satisfied for the PTV: every voxel in the target volume
receives 95% and 107% of the prescribed dose. It is also clear that approximately
90% of each sensitive structure receives at most 20% of the target prescribed
dose, as specified; the DVH plot for each sensitive structure passes very close to
the point (0.2, 0.1) that corresponds to the aforementioned treatment goal.

Figure 12 shows isodose lines on the CT slices. The target (tumor) is outlined
within four isodose lines. The outermost line is 20% isodose line, which encloses
a region in which the voxels receive a dose of 20% of the target prescribed dose
level. Moving inwards towards the target, we see 50%, 80%, and 95% isodose
lines. Figure 12(a) shows an axial slice. The kidneys are outlined as two circles
right below the target. As can be seen, the target lies well inside the 95% isodose
line, while the dose to the organs at risk remains reasonable. Figure 12(b) shows
a sagittal view of the target with those four isodose lines also.

All computations in this paper were performed on Pentium 4 1.8 GHz ma-
chine running on Linux. All optimization problems were modeled in the GAMS
modeling language [4]. We use CPLEX 7.1 as LP and MIP solver, and MINOS
5.5 for QP solver.

7 Summary

We have developed an optimization framework for 3D conformal radiotherapy.
The key features of our methodology are as follows:

1. Simultaneous optimization of three key parameters (beam angles, wedge
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orientation, and beam weight);

2. Fast delivery of the treatment plan; and

3. Capability of controlling DVH on organs implicitly depending on the spe-
cific treatment goal of the planner.

The optimization problems were formulated as mixed integer linear program-
ming and quadratic programming problems. We presented different objective
function formulations for different treatment goals. Since the data set required
by the obvious optimization formulations was very large, techniques were in-
troduced to reduce the data requirements and the complexity of the problem.
Specifically, we introduced tighter a priori bounds on the beam weights, re-
duction of the number of voxels to be considered in the optimization, and a
three-phase scheme in which a sequence of progressively more realistic opti-
mization models is solved to obtain an approximate solution. Using all these
techniques, we demonstrated a 99.5% improvement in computational time over
direct solution of the full-resolution problem on a clinical data set.

A Using a Universal Wedge

In this section we show that a treatment plan that requires the use of a wedge
at a certain orientation can be expressed equivalently by a plan that uses a
different wedge at the same orientation, provided that certain conditions are
satisfied by the two wedges. This result implies that a single “universal wedge”
can be used to design and deliver treatment plans; an array of wedges with
different properties (i.e., different values of τ0 and τ1) is unnecessary.

Suppose that at some angle A and some wedge at a given orientation with
parameters τ ′0 and τ ′1 (with 0 ≤ τ ′0 < τ ′1 ≤ 1) we have a treatment plan that
calls for delivering a weight w′

A,open through the open beam, and w′
A,west

through the wedge. (We have supposed without loss of generality that the
wedge is oriented to the west, so the attenuation parameter τij for beamlet
(i, j) is given by the formula (1).) We now ask whether it is possible to deliver
an equivalent dose through every beamlet using a different wedge with the same
(west) orientation, and different parameters τ0 and τ1, with 0 ≤ τ0 < τ1 ≤ 1.

Using (1), we find that the total dose delivered through beamlet (i, j) is

w′
A,open + w′

A,west

[

τ ′0 +
j − 0.5

N
(τ ′1 − τ ′0)

]

= w′
A,open + w′

A,west [τ ′0 − 0.5/N(τ ′1 − τ ′0)] + jw′
A,west(τ

′
1 − τ ′0)/N.

If we were to use the alternative wedge with parameters τ0 and τ1, and weights
wA,open and wA,west, we would find that the total dose delivered through
beamlet (i, j) is

wA,open + wA,west [τ0 − 0.5/N(τ1 − τ0)] + jwA,west(τ1 − τ0)/N.
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By equating the constant terms and the coefficient of j in the last two formulae,
we find that the plans are equivalent if

wA,west(τ1 − τ0) = w′
A,west(τ

′
1 − τ ′0)

and

wA,open+wA,west [τ0 − 0.5/N(τ1 − τ0)] = w′
A,open+w′

A,west [τ ′0 − 0.5/N(τ ′1 − τ ′0)] .

By rearranging and substituting, we find that the weights for the new beam
must be

wA,west =
τ ′1 − τ ′0
τ1 − τ0

w′
A,west

and

wA,open = w′
A,open + w′

A,west

[

τ ′0 −
τ ′1 − τ ′0
τ1 − τ0

τ0

]

. (26)

Note that wA,west is always nonnegative whenever w′
A,west is nonnegative, but

that wA,open is not necessarily nonnegative, even when the weights for the
original wedge are both nonnegative. However, a sufficient condition for wA,open
to be nonnegative for any nonnegative values of w′

A,open and w′
A,west is that

τ ′0
τ0

≥
τ ′1 − τ ′0
τ1 − τ0

,

since this condition ensures that the bracketed term on the right-hand side
of (26) is nonnegative. This condition implies that given a solution using a
particular wedge, we can always identify an equivalent plan using an alternative
wedge with the same (or smaller) value of τ0 and a larger value of τ1 − τ0.

B Transforming the Wedge Orientation Solution

As mentioned earlier, we would prefer not to deliver two beams from the same
angle for two diametrically opposite wedge settings. There is nothing in the
formulations of Section 3.3 to prevent such solutions arising. However, a simple
transformation of the solution results in an equivalent treatment plan in which
no such beam pairs are present.

To illustrate the technique, consider the “west” and “east” wedge orienta-
tions. For beamlet (i, j), i = 1, 2, . . . ,M , j = 1, 2, . . . , N , the attenuation factor
when the west wedge is present is given by (1). For the east wedge, it is as
follows.

τwest
ij = τ0 +

N − j + 0.5

N
(τ1 − τ0), i = 1, 2, . . . ,M, j = 1, 2, . . . , N. (27)

Suppose now that we have a treatment plan in which, at some angle A, the
weight corresponding to the open beam (no wedge) is wA,open ≥ 0, while
the weights corresponding to the west and east beams are wA,west > 0 and
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wA,east > 0, respectively. Suppose for the moment that wA,west ≥ wA,east.
The contribution of these three weights to the total intensity delivered by beam-
let (i, j) is then

wA,east

[

τ0 +
N − j + 0.5

N
(τ1 − τ0)

]

+wA,west

[

τ0 +
j − 0.5

N
(τ1 − τ0)

]

+wA,open

which is equal to

(wA,west − wA,east)

[

τ0 +
j − 0.5

N
(τ1 − τ0)

]

+ (wA,open + wA,east(τ1 − τ0)).

Hence, the same beamlet intensity could be delivered at every (i, j) pair by using
weight wA,open +wA,east(τ1 − τ0) for the open beam, (wA,west −wA,east) for
the west wedge, and 0 for the east wedge. Similarly, for the case of wA,west ≤
wA,east, we achieve identical beamlet intensities by using weight wA,open +
wA,west(τ1 − τ0) for the open beam, 0 for the west wedge, and (wA,east −
wA,west) for the east wedge.

We conclude that when there are positive beam weights for two diametrically
opposed wedge orientations, we can obtain an equivalent treatment plan by
zeroing the smaller of the two weights, and adjusting the weights on the open
beam and on the remaining wedge orientation.
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