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Abstract

Large-scale supply chain design problems are generally intractable when input
as single entities to general purpose branch-and-bound solvers such as
CPLEX. In this research we demonstrate that the nested partition (NP)
method is capable of efficiently producing very high quality solutions to
large-scale supply chain problems by taking advantage of their structure to
generate an appropriate set of restricted subproblems. The implementation of
NP that we describe here first employs an optimization-based heuristic to
generate an efficiency ranking of the available warehouses and then employs
biased sampling (from the ranked warehouse set) guided by the NP global
optimization framework. The overall process is implemented using the looping



constructs available in the AMPL modeling language and employs the CPLEX
mixed-integer branch-and-cut code to solve the optimization subproblems that
arise. This implementation represents a novel use of CPLEX as an evaluator
of samples generated using a global view that takes advantage of the stucture
of the original problem. Our computational results demonstrate that NP also
outperforms specialized approaches such as the Lagrange relaxation methods
that previously have been regarded as the most effective techniques for
large-scale supply chain optimization.

1 Introduction

We consider large-scale supply chain problems with the following properties:
e A set of plants and customers are geographically dispersed in a region.

e Each customer experiences a demand for a variety of products which are
manufactured at the plants. Products are shipped from plants to
warehouses and then distributed to customers. For each shipping link
and product there is a per unit shipping cost.

e A given number of warehouses must be located in the distribution
network from a list of potential sites. A fixed cost must be paid for each
warehouse that is opened.

The goal is to identify the W best warehouse locations (for any specified value
of W) that allow satisfaction of each customer’s demand for each product from
a single warehouse, minimizing total cost. This particular format for supply
chain optimization problems was motivated by data for a very large real world
application furnished to us by Rockwell Automation (Milwaukee, Wisconsin).
The actual test problems considered below were generated via suitable
approximations to the data distributions provided by Rockwell.

Large-scale problems of this type are intractable when they are input as single
problems to general purpose branch-and-bound solvers such as CPLEX. In
this research we demonstrate that the nested partition (NP) method ((Shi, et
al., 1999) and (Shi and Olafsson, 2000)) is capable of efficiently producing very
high quality solutions to large-scale supply chain problems by taking
advantage of their structure to generate an appropriate set of restricted
subproblems. The implementation of NP that we describe here first employs
an optimization-based heuristic to generate an efficiency ranking of the
available warehouses and then employs biased sampling (from the ranked
warehouse set) guided by the NP global optimization framework. The overall
process is implemented using the looping constructs available in the AMPL
modeling language and employs the CPLEX mixed-integer programming
(MIP) solver for the optimization subproblems that arise. This
implementation represents a novel use of CPLEX as an evaluator of samples
generated via a global view that takes advantage of the stucture of the original



problem. Our computational results demonstrate that NP also outperforms
specialized approaches such as the Lagrange relaxation methods that
previously have been regarded as the most effective techniques for large-scale
supply chain optimization.
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Figure 1: Products go from plants to warehouses to customers.

2 The supply chain model

We formulate the problem as a mixed integer program. The indices and sets

are as follows:

e i (I) customer(s)

e j (J) warehouse(s)

(
(

e k (K) product(s)

e /(L) plant(s)

e W warehouses to locate

The problem data are as follows:

parameter | description

Cojk unit shipping cost from plant ¢ to warehouse j of product k
djir unit shipping cost from warehouse j to customer i of product k
fi fixed cost of opening and operating a warehouse at site j

Wik demand of customer ¢ for product &

Sk volume of unit of product &

q; capacity (in volume) of warehouse located at site j

ok supply at plant £ of product k




The problem variables are as follows:

decision variables | description

X € {0,1} is 1 iff warehouse j supplies customer ¢ with product k
Y; €{0,1} is 1 iff warehouse is opened at location j
Ugj, > 0 shipment from plant ¢ to warehouse j of product k

The overall problem may now be stated:

[ min Z ceikUsjk plant-warehouse shipping costs
G.k,0
+ Z djsrwirn X ik warehouse-customer shipping costs
i,5,k
+ Z Y5 warehouse fixed costs
J
s.t. Z Xjik = 1 single supplier
J
Z Spwik X jik < ¢Y; warehouse capacity
ik
Z Wik X jik = Z Ugji  conservation at warehouses
i ‘
Z Ugjk < v plant capacity
J
Z Y; = W fixed number of warehouses
J
ink S {0, 1}
Y; e {0,1}
L Ujr > 0 i

3 A Test Problem Set

Using a factorial design approach, we set min and max values (see Table 1) for
the 5 design parameters: plants, warehouses, open warehouses, customers, and
products. This resulted in 2° = 32 problem sets. After randomly generating
the data for each problem, we froze the data so that various solution strategies
could be compared for each problem.



| plants | warehouses | open warehouses | customers | products
minimum ) 30 10 50 3
maximum 10 100 30 200 10

Table 1: Max and min values of design parameters.

4 CPLEX results

We first tried solving the problems in the test set using the CPLEX branch
and bound (BB) code. The results of 1- and 2-hour CPLEX runs (see Table 2
) verify that standard BB (or branch-and-cut, since CPLEX also considers a
large variety of cuts with the default settings) does not in general produce
satisfactory results for large-scale supply chain design problems. (We also tried
a variety of strategy options with CPLEX and made longer runs, but these
variants led to little improvement in the results.)

The following describe the labels in the table:

e CPLEX calculates % gap as 100(1 — LB/UB), where UB is the value of
the best feasible (integer) solution generated .

e OP means optimality after the indicated number of seconds. (Note that
the CPLEX default setting for declaring optimality is a gap < 0.01%.)

e NFSTL means CPLEX found no feasible solution within the time limit.

e ** means that the objective value did not improve in hour 2 of the run.

More specifically, these results (and results for additional problems of this type
that we also considered) show that most of these problems are quite difficult
for CPLEX, in the sense that for 21 of the 32 test problems it terminates
either with a large optimality gap or with no feasible solution at all (the latter
outcome occurs in 9 of the 32 problems). Thus, a method that takes
advantage of problem structure is clearly necessary, and we therefore discuss
below a Lagrangian approach that is widely used for supply chain design as
well as a nested partition implementation. The results given below for these
alternative approaches that take into account the structure of the supply chain
problem demonstrate that the Lagrangian approach is sometimes successful for
those cases in which CPLEX yields unsatisfactory results, but nested
partitions is able to reliably generate higher quality solutions in a much
shorter time than either CPLEX or Lagrange relaxation.

5 Lagrangian relaxation
Many hard integer programming problems can be viewed as easy problems

complicated by a relatively small set of side constraints. Dualizing the side
constraints produces a Lagrangian problem that is easy to solve and whose



optimal value is a lower bound (for minimization problems) on the optimal
value of the original problem. The Lagrangian problem can thus be used in
place of a linear programming relaxation to provide bounds in a branch and
bound (BB) algorithm (Fisher 1981).The computational experience below
demonstrates that a Lagrangian approach specialized to the supply chain
problem yields significantly better lower and upper bounds than BB. (This
approach was motived by a procedure described in (Pirkul and Jayaraman,
1996), but differs somewhat from their method in that the method described
below relies more heavily on optimization tools, since we found some of the
heuristics proposed by Pirkul and Jayaraman to be effective on our test set.)
In particular, we relax single supplier constraints (with multipliers ;) and
conservation at warehouse constraints (with multipliers 6,;). The resulting
problem is

min <Z ceirUejr + Z djikwir Xjix + Z [iY;

Gkt ik J
+ ) O <Zwikaik_ZUéjk> Y ik [ 12D X >7
il i ¢ ik j

subject to the following constraints: warehouse capacity (X, Y variables),
plant capacity (U variables), fixed number of warehouses (Y variables), and
X, Y, binary variables.

Because the relaxation of conservation of flow decouples warehouses from
plants, this problem can be decomposed into two separate problems P; and
P,. They are the following:

e Let Z; be the optimal value of the plant-warehouse subproblem P;:

min Z(C@jk — ij)Ugjk

gk,
ZUij < v
J
Ujr > 0

e Let Zs be the optimal value of the warehouse-customer subproblem Ps:

[ min Z(dﬁkwik—/\ik+9jkwik)ink + ijyj—

i3,k J
s.t. Zskwikaik < Qj}/j
ik
9 - w
J

Xjik € {0,1}

I Y; € {0,1}




Let Z,0 be the optimal solution to this problem. Then
Zxe =21+ Za+ Zi,k Aik is a lower bound to the original problem. To
maximize Z) g, we use a subgradient algorithm.

prob | plants | warehouses | open | customers | products % gap (1 hr — 2 hr)
1 5 30 10 50 3 720 OP
2 5 30 10 50 10 16.72 % — 15.05 %**
3 5 30 10 200 3 7.64 % — 5.45%
4 5 30 10 200 10 NFSTL
5 5 30 20 50 3 28 OP
6 5 30 20 50 10 0.12 % — 0.04 %
7 5 30 20 200 3 1200 OP
8 5 30 20 200 10 8.29 %-7.61 %**
9 5 100 10 50 3 6.89 % —3.52 %
10 5 100 10 50 10 NFSTL - 25.42 %
11 5 100 10 200 3 NFSTL
12 5 100 10 200 10 NFSTL
13 5 100 20 50 3 2900 OP
14 5 100 20 50 10 15.29 % — 15.29 %**
15 5 100 20 200 3 11.69 % — 11.11 %**
16 5 100 20 200 10 NFSTL
17 10 30 10 50 3 1100 OP
18 10 30 10 50 10 22.03 % — 18.47 %**
19 10 30 10 200 3 18.30 % — 16.82 %**
20 10 30 10 200 10 NFSTL
21 10 30 20 50 3 160 OP
22 10 30 20 50 10 3.09 % — 0.09 %
23 10 30 20 200 3 0.75 % - 0.12 %
24 10 30 20 200 10 7.02 % — 6.57 %**
25 10 100 10 50 3 8.27 % — 6.64 %**
26 10 100 10 50 10 NFSTL
27 10 100 10 200 3 NFSTL
28 10 100 10 200 10 NFSTL
29 10 100 20 50 3 6.99 % —0.21 %
30 10 100 20 50 10 19.64 % — 19.32 %**
31 10 100 20 200 3 11.63 % — 11.35 %**
32 10 100 20 200 10 NFSTL

Table 2: Gaps for 1- and 2-hour CPLEX runs (using default CPLEX settings).

6 Lagrange/CPLEX results

Combining the Lagrangian relaxation process described above with a feasibility
process (submission of “best” W warehouses as ranked by the Lagrangian
process to CPLEX for completion of best feasible solution using exactly those
W warehouses), we obtained results that in many cases reflected significant
improvements relative to “pure” CPLEX runs. These are summarized in
Table 3. Note, however, that a number of problems are difficult for both pure
CPLEX and our L-CPLEX hybrid approach. For these problems (such as 12,
16, 28, 32), we demonstrate below that an nested partitions approach provides
a vehicle for obtaining better feasible solutions more rapidly and also provides



Lagrange/CPLEX CPLEX

prob LB objective value % gap LB objective value % gap
1 352,530 366,541 3.82% 364,550 364,588 0.01%
2 | 1,269,931 1,350,625 5.97% | 1,216,545 1,432,145 15.05%
3 | 1,542,962 1,590,121 2.97% 1,530,531 1,618,810 5.45%
4 | 5,072,828 5,421,684 6.43% - - NFSTL
5 323,426 337,800 4.26% 336,421 336,445 0.01%
6 | 1,073,532 1,102,424 2.62% 1,097,614 1,098,013 0.04%
7 | 1,344,637 1,386,138 2.99% | 1,385,340 1,385,480 0.01%
8 | 4,251,166 4,386,238 3.08% 4,192,110 4,537,556 7.61%
9 296,621 325,681 8.92% 310,448 321,776 3.52%
10 | 1,134,625 1,203,571 12.20% | 1,044,617 1,400,750 25.42%
11 | 1,223,625 1,339,852 8.67% - - NFSTL
12 | 4,069,607 5,361,418 24.09% - - NFSTL
13 243,840 253,623 3.86% 253,209 253,235 0.01%
14 927,728 992,490 6.53% 881,018 1,040,055 15.29%
15 | 1,007,195 1,073,615 6.19% 990,423 1,114,251 11.11%
16 | 2,948,580 4,217,126 30.08% - - NFSTL
17 305,592 330,420 7.51% 325,031 325,109 0.02%
18 | 1,089,266 1,158,089 5.94% 1,037,379 1,272,316 18.47%
19 | 1,298,565 1,372,471 5.38% | 1,247,911 1,500,260 16.82%
20 | 4,355,511 4,875,456 10.66% - - NFSTL
21 263,113 273,176 3.68% 272,617 272,658 0.02%
22 920,990 952,316 3.29% 947,667 948,531 0.09%
23 | 1,115,479 1,156,966 3.59% 1,151,281 1,152,714 0.12%
24 | 3,649,089 3,848,794 5.19% | 3,635,487 3,891,324 6.57%
25 291,743 323,563 9.83% 308,270 330,181 6.64%
26 956,546 1,112,019 13.98% - - NFSTL
27 | 1,106,097 1,256,834 11.99% - - NFSTL
28 | 3,390,842 4,624,505 26.68% - - NFSTL
29 245,319 265,072 7.45% 256,502 257,032 0.21%
30 771,270 865,677 10.91% 753,794 934,290 19.32%
31 889,280 964,746 7.82% 857,597 967,425 11.35%
32 | 2,391,263 3,592,618 33.44% - - NFSTL

Table 3: Comparison of 2-hour Lagrange/ CPLEX runs and 2-hour CPLEX runs.

evidence (via sampling) that the lower bounds generated by pure CPLEX and
by the L-CPLEX hybrid are unrealistic in the sense that the distribution of
objective values of randomly generated solutions suggests that those lower
bounds are well below any objective value that is likely to obtained.

7 Nested partitions (NP)

We first sketch a generic nested partition procedure and then describe an
implementation of NP that takes advantage of the structure of the supply

chain problem.

Consider the following combinatorial optimization problem, where © is a finite

set: mingeco f(z).

The nested partitions (NP) framework can be briefly described as follows. In
each iteration of the algorithm we assume that we have a region (subset) of ©



that is considered the most promising (initially, this is ©). We then partition
this most promising region into subregions (for example, M subregions) and
aggregate the other regions (termed the complementary region) into one
region. At each iteration, we thus consider M + 1 disjoint subsets of the
feasible region ©. Each of these M + 1 regions is sampled using some random
sampling scheme, and for each region a promise indez is calculated. (A variety
of approaches may be used to calculate the promise index see 7?7, but in the
results below we simply used the objective value of tbe best sample in the
region. Other possibilities in this context would involve functions that took
into account both the best sample, which provides an upper bound for the
region, and the LP relaxation value, which provides a lower bound for the
region.) These promise indices are then compared to determine which region is
the most promising in the next iteration. If one of the child subregions is
found to have the best promise index, this subregion becomes the most
promising region. (In an ideal instance, an unbroken sequence of child regions
containing an optimal solution would be best, yielding a depth-first search
that quickly leads to an optimal solution.) If, on the other hand, the
surrounding region is found to have the best promise index, a subset of the
surrounding region becomes the most promising. The new most promising
region is then partitioned and sampled in a similar fashion. Since © is finite,
in a finite number of iterations we reach regions that contain only a single
point, and for such a region the sampling procedure generates the single
feasible point, and no further consideration of that region is required. As the
algorithm evolves, a sequence of most promising regions o (k) will be
generated, where o (k) is the most promising region in the k-th iteration. In
(Shi and Olafsson 2000), we have shown that o (k) is a Markov chain with all
the global optima as its absorbing states. Thus, global convergence is
guaranteed. The only requirement on the random sampling procedure is that
each point in the region has a positive probability of being selected. Hence
there is much flexibility in selecting a sampling procedure.

In order to take advantage of the supply chain problem structure via NP, we
first construct a heuristic as described below to develop a set of efficiency
indices for the warehouses. These indices provide a ranking of warehouses that
is then used as a basis for the selection of a subset of the warehouses as a
“warm start” promising region for NP. The ranking is then also used as a basis
for biased sampling approaches for an NP implementation that uses the
AMPL modeling language in conjunction with CPLEX to generate
subproblems for the promising region and complementary region and to
evaluate the samples for these regions.

7.1 A Heuristic Procedure for Ranking Warehouses

We generate via the following three step procedure a heuristic warehouse
ranking based on average unit costs for the warehouses by solving (via
CPLEX) an optimization problem for each warehouse and then scaling the
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optimal value by dividing by the warehouse capacity :
Warehouse Ranking

1: Pick a warehouse from the set of warehouses and open it . Close all other
warehouses. Solve the problem that requires that the total warehouse
throughput equal the warehouse capacity, replacing the customers' “demand”
equations by upper bounds that limit product-customer shipments to at most
the demand. (The integer variables corresponding to product-customer pairs
are relaxed to continuous variables.) The optimal value of this linear
programming problem (involving only one warehouse but all plants and
customers) yields the lowest total cost associated with full utilization of the
warehouse. (Note that this optimal value also includes the fixed cost of the
warehouse.)

2: Calculate an average unit cost for each warehouse by the dividing the total
cost by the (fully utilized) capacity of the warehouse.

3: Define an efficiency ranking for the warehouse according to the average unit
costs.

(We are currently experimenting with variants of this ranking process in which
the throughput is set to an appropriate fraction of the warehouse capacity.)

7.2 An NP Implementation

We now describe an NP implementation that uses these unit cost rankings to
generate a “warm start” followed by biased sampling guided by the global NP
viewpoint. This approach involves the following parameters and sets:

e Select the top R ranked warehouses and place them in a set called TOP,
and place the remaining warehouses are put into a set called BOTTOM.

e p: The probability of choosing a warehouse from TOP.

e initNP: The number of warehouses to be set as open at the starting
point of each major iteration. Here a major iteration is defined as the
branching process from the starting point to the first node at which all
warehouses are fixed (at which point a backtrack step is made to a new
starting point).

e S: The number of samples to be generated in each region (including the
complementary regions). Each sample is a set of W open warehouses in
the feasible set of the corresponding region, and the optimal cost of the
supply chain network with this set of warehouses is determined by
CPLEX. (In this context, each sample requires about 3 seconds to
evaluate on a ?? computer.)
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NP Implementation for Supply Chain Design

The NP implementation is as follows:
1. If iteration = 1 then get the initial promising region by fixing the highest
ranked initNP warehouses as open. Else fix warehouses in the FIXEDatONE
(see below) as open, and fix warehouses in the FIXEDatZERO as closed
2. Generate S samples for each of the following regions:
a. Region 1 (first subset of the promising region): another warehouse is
selected and set as open ( this warehouse is randomly selected from the set
TOP with probability p, and from the set BOTTOM with probability (1-p))
b. Region 2 (remainder of the promising region): the newly selected warehouse
is closed
c. Region 3: complementary region (at least one of the warehouses used to
define the promising region is not allowed in the warehouse sets considered in
this region)
For each region the remaining warehouses needed to complete each sample of
W warehouses are chosen from TOP and BOTTOM, where the probability of
picking a warehouse from TOP is p and picking a warehouse from BOTTOM
is (1-p).
CPLEX is used to find the optimal shipping pattern for each sample (set of
warehouses). NP keeps track of the best sample from each region.
(BestOPEN) and uses this information to either continue the path down from
the promising region or to backtrack to a subet of the complementary region.
The remainder of the process is analogous to the generic NP procedure. If
backtracking is needed because the bottom of the tree is reached (all
warehouses are fixed) or because the best sample occurs in the surrounding
region, then we choose initNP warehouses from BestOPEN as the new starting
set (performing the selection so that this set does not coincide with a previous
starting set) and return to step 1. In summary, NP utilizes the results of the
warehouse ranking heuristic to begin a search process that is initially focused
around the warehouse sets predicted to be in the optimal solution according to
this ranking, but nevertheless maintains a global view of the feasible set and
therefore allows completely different solutions (unrelated to the ranking) to be
considered.
The results in table Table 7.2 show that the NP strategy is very effective in
using this heuristic information. Our testing focused on the four hardest
problems in the set, for which NP obtained higher quality solutions than either
CPLEX or Lagrange relaxation. Moreover, the solution times required by NP
in this context are roughly 1/3 of the 2-hour times used by CPLEX and
Lagrangian relaxation for each of the problems.

problem | CPLEX | Lagrange | nested partitions

12 NFSTL | 5,361,418 5,176,560
16 NFSTL | 4,217,126 4,161,450
28 NFSTL | 4,624,505 4,539,630
32 NFSTL | 3,592,618 3,251,090

12



8 Conclusions and Directions for Further
Research

Our computational results demonstrate that for large-scale supply chain
design problems, the nested partitions approach can substantially outperform
both general purpose combinatorial optimizers (such the branch-and-cut solver
within CPLEX) and specialized approaches such as Lagrangian relaxation.
Nested partitions can effectively utilize problem-specific heuristics that are
difficult to incorporate within other combinatorial optimization approaches,
and for this problem class we have developed a sophisticated warehouse
ranking heuristic and used this heuristic to construct a “warm start”
procedure followed by an effective biased sampling approach that is guided by
a global view of the problem. This research has also established the
applicability of the AMPL/CPLEX modeling-language/solver combination as
a vehicle for the implementation of global meta-heuristics, and this represents
a novel and successful use of these powerful software tools.

The success of this research opens many directions for further investigation.
One particularly promising direction that we are pursuing involves the
construction of composite lists of preferred warehouses. In the results above,
we used biased sampling based upon a split the warehouse list into a TOP
group of warehouses ranked highly by the average efficiency index, and a set
BOTTOM with the remaining warehouses. Rather than simply relying on one
ranking scheme such as the one corresponding to efficiency, we have also
considered more sophisticated approached such as composite TOP groups
comprised of warehouses selected from two different ranking schemes (for
example, combining warehouses ranked highly by either efficiency or capacity
has produced excellent results in some problems). Alternatively, the TOP
group could group could evolve dynamically by adding to it new warehouses
that appear in high-quality solutions. Finally, as suggested above, the
assignment of a promise index to a region could be made a function of both
lower bound (relaxation) and upper bound (sampling) information, since both
types of information are available within this hybrid approach.
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