
Large-Scale supply chain optimization via nested

partitions

Leyuan Shi

leyuan@ie.engr.wisc.edu

Industrial Engineering Department

University of Wisconsin–Madison

Robert R. Meyer

rrm@cs.wisc.edu

Computer Sciences Department

University of Wisconsin–Madison

Mehmet Bozbay

bozbay@cae.wisc.edu

Industrial Engineering Department

University of Wisconsin–Madison

Winston C. Yang

winston@cs.wisc.edu

Computer Sciences Department

University of Wisconsin–Madison

October 14, 2002

1 Introduction

We consider large-scale supply chain problems with the following properties:

• A set of plants and customers are geographically dispersed in a region.

• Each customer experiences a demand for a variety of products which are
manufactured at the plants.

• A given number of warehouses must be located in the distribution network
from a list of potential sites.

The goal is to identify the W best locations (for specified values W for ware-
houses that allow satisfaction of each customer’s demand for each product from
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a single warehouse, minimizing total cost. This particular format for supply
chain optimization problems was motivated by data for a very large real world
application furnished to us by Rockwell Automation (Milwaukee, Wisconsin).
The actual test problems considered below were generated via suitable approx-
imations to the data distributions provided by Rockwell.

Large-scale problems of this type are intractable when they are input as sin-
gle problems to general purpose branch-and-bound solvers such as CPLEX. In
this research we demonstrate that the nested partition (NP) method is capable
of efficiently producing very high quality solutions to large-scale supply chain
problems by taking advantage of their structure to generate an appropriate set
of restricted subproblems. The implementation of NP that we describe here first
employs an optimization-based heuristic to generate an efficiency ranking of the
available warehouses and then employs biased sampling (from the ranked ware-
house set) guided by the NP global optimization framework. The overall process
is implemented using the looping constructs available in the AMPL modeling
language and employs the CPLEX mixed-integer programming (MIP) code to
solve the optimization subproblems that arise. This implementation represents
a novel use of CPLEX as an evaluator of samples generated via a global view
that takes advantage of the stucture of the original problem. Our computational
results demonstrate that NP also outperforms specialized approaches such as the
Lagrange relaxation methods that previously have been regarded as the most
effective techniques for large-scale supply chain optimization.
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Figure 1: Products go from plants to warehouses to customers.

2 The supply chain model

We formulate the problem as a mixed integer program. The indices and sets
are as follows:

• i (I) customer(s)

• j (J) warehouse(s)

• k (K) product(s)

• ` (L) plant(s)

• W warehouses to locate
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The problem data are as follows:

parameter description
c`jk unit shipping cost from plant ` to warehouse j of product k
djik unit shipping cost from warehouse j to customer i of product k
fj fixed cost of opening and operating a warehouse at site j
wik demand of customer i for product k
sk volume of unit of product k
qj capacity (in volume) of warehouse located at site j
v`k supply at plant ` of product k

The problem variables are as follows:

decision variables description
Xjik ∈ {0, 1} is 1 iff warehouse j supplies customer i with product k
Yj ∈ {0, 1} is 1 iff warehouse is opened at location j
U`jk ≥ 0 shipment from plant ` to warehouse j of product k

3



The overall problem may now be stated:





































































































min
∑

j,k,`

c`jkU`jk plant-warehouse shipping costs

+
∑

i,j,k

djikwikXjik warehouse-customer shipping costs

+
∑

j

fjYj warehouse fixed costs

s.t.
∑

j

Xjik = 1 single supplier

∑

i,k

skwikXjik ≤ qjYj warehouse capacity

∑

i

wikXjik =
∑

`

U`jk conservation at warehouses

∑

j

U`jk ≤ v`k plant capacity

∑

j

Yj = W fixed number of warehouses

Xjik ∈ {0, 1}
Yj ∈ {0, 1}
U`jk ≥ 0





































































































3 Problem sets

Using a factorial design approach, we set min and max values (see Table ??) for
the 5 design parameters: plants, warehouses, open warehouses, customers, and
products. This resulted in 25 = 32 problem sets. After randomly generating
the data for each problem, we froze the data so that various solution strategies
could be compared for each problem.

plants warehouses open warehouses customers products
max 10 30 10 50 3
min 5 100 30 200 10

Table 1: Max and min values of design parameters.
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4 Lagrangian relaxation

Many hard integer programming problems can be viewed as easy problems com-
plicated by a relatively small set of side constraints. Dualizing the side con-
straints produces a Lagrangian problem that is easy to solve and whose optimal
value is a lower bound (for minimization problems) on the optimal value of the
original problem. The Lagrangian problem can thus be used in place of a linear
programming relaxation to provide bounds in a branch and bound (BB) algo-
rithm (Fisher 1981).The computational experience below demonstrates that a
Lagrangian approach specialized to the supply chain problem yields significantly
better lower and upper bounds than BB. In particular, we relax single supplier
constraints (with multipliers λik) and conservation at warehouse constraints
(with multipliers θjk). The resulting problem is

min

(

∑

j,k,`

c`jkU`jk +
∑

i,j,k

djikwikXjik +
∑

j

fjYj

+
∑

k,`

θjk

(

∑

i

wikXjik −
∑

`

U`jk

)

+
∑

i,k

λik



1 −
∑

j

Xjik





)

,

subject to the following constraints: warehouse capacity (X , Y variables),
plant capacity (U variables), fixed number of warehouses (Y variables), and X ,
Y , binary variables.

Because the relaxation of conservation of flow decouples warehouses from
plants, this problem can be decomposed into two separate problems P1 and P2.
They are the following:

• Let Z1 be the optimal value of the plant-warehouse subproblem P1:













min
∑

j,k,`

(c`jk − θjk)U`jk

∑

j

U`jk ≤ v`k

U`jk ≥ 0
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• Let Z2 be the optimal value of the warehouse-customer subproblem P2:

























min
∑

i,j,k

(djikwik − λik + θjkwik)Xjik +
∑

j

fjYj

s.t.
∑

i,k

skwikXjik ≤ qjYj

∑

j

Yj = W

Xjik ∈ {0, 1}
Yj ∈ {0, 1}

























Let Zλ,θ be the optimal solution to this problem. Then Zλ,θ = Z1 + Z2 +
∑

i,k λik is a lower bound to the original problem. To maximize Zλ,θ, we use a
subgradient algorithm.

5 CPLEX results

For comparison with the Lagrangian approach discussed above and the nested
partitions approach to be discussed below, we applied CPLEX to each problem
in our test set. Table ?? shows the results of 1- and 2-hour CPLEX runs with
default settings. These results (and the results for additional problems of this
type that we also considered) show that most of these problems are quite difficult
for CPLEX, in the sense that it often produces no feasible solution within two
hours.

• NFSTL means CPLEX found no feasible solution within the time limit.

• OP means optimality after the stated number of seconds.

• ** means that the objective value did not improve in hour 2 of the run.

• CPLEX calculates % gap as 100(1 − LB/UB), where UB is the value of
the best feasible (integer) solution generated .

6 Lagrange/CPLEX results

Table ??: Combining the Lagrangian relaxation process described above with
a feasibility process (submission of “best” W warehouses as ranked by the La-
grangian process to CPLEX for completion of best feasible solution using exactly
those W warehouses), we obtained results that in many cases reflected signifi-
cant improvements relative to “pure” CPLEX runs. These are summarized in
Table ??. Note, however, that a number of problems are difficult for both pure
CPLEX and our L-CPLEX hybrid approach. For these problems (such as 12,
16, 28, 32), we would like to demonstrate that an NP approach provides a vehi-
cle for obtaining even better feasible solutions and also provides evidence that

6



prob plants warehouses open customers products % gap (1 hr – 2 hr)
1 5 30 10 50 3 720 OP
2 5 30 10 50 10 16.72 % – 15.05 %**
3 5 30 10 200 3 7.64 % – 5.45%
4 5 30 10 200 10 NFSTL
5 5 30 20 50 3 28 OP
6 5 30 20 50 10 0.12 % – 0.04 %
7 5 30 20 200 3 1200 OP
8 5 30 20 200 10 8.29 %–7.61 %**
9 5 100 10 50 3 6.89 % – 3.52 %

10 5 100 10 50 10 NFSTL – 25.42 %
11 5 100 10 200 3 NFSTL
12 5 100 10 200 10 NFSTL
13 5 100 20 50 3 2900 OP
14 5 100 20 50 10 15.29 % – 15.29 %**
15 5 100 20 200 3 11.69 % – 11.11 %**
16 5 100 20 200 10 NFSTL
17 10 30 10 50 3 1100 OP
18 10 30 10 50 10 22.03 % – 18.47 %**
19 10 30 10 200 3 18.30 % – 16.82 %**
20 10 30 10 200 10 NFSTL
21 10 30 20 50 3 160 OP
22 10 30 20 50 10 3.09 % – 0.09 %
23 10 30 20 200 3 0.75 % – 0.12 %
24 10 30 20 200 10 7.02 % – 6.57 %**
25 10 100 10 50 3 8.27 % – 6.64 %**
26 10 100 10 50 10 NFSTL
27 10 100 10 200 3 NFSTL
28 10 100 10 200 10 NFSTL
29 10 100 20 50 3 6.99 % – 0.21 %
30 10 100 20 50 10 19.64 % – 19.32 %**
31 10 100 20 200 3 11.63 % – 11.35 %**
32 10 100 20 200 10 NFSTL

Table 2: Gaps for 1- and 2-hour CPLEX runs (using default CPLEX settings).

the lower bounds generated by pure CPLEX and by the L-CPLEX hybrid are
unrealistic in the sense that the distribution of objective values of randomly gen-
erated solutions suggests that those lower bounds are well below any objective
value that is likely to obtained.

Table ?? and Table ??: We also tried “starting” CPLEX with the La-
grange LB and UB information, using somewhat different CPLEX strategy
options (see Table ?? and Table ??). CPLEX was not able to produce any
significant improvements relative to the best Lagrange solution. An alterna-
tive approach worth trying is to consider an NP-based approach using sampling
based on the Lagrangian; that is, introducing some randomness in the updating
of the multipliers and then using the resulting warehouse set (in conjunction
with CPLEX) to construct a feasible solution (see notes below regarding the
promising region and its complement).
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7 Nested partitions

Insert general NP description here
We use procedures described below to develop rankings for warehouses as

starting information and to develop biased sampling approaches for an NP ap-
proach that uses AMPL and CPLEX to set up problems for the promising region
and complementary region and to evaluate the samples for these regions.

To complete the NP approach, we constructed the complementary region
by adding instead the complementary constraint (which states that the set of
open warehouses contains at most W − t−1 of the selected warehouses), and we
sampled this region by constructing warehouse sets meeting that complementary
constraint. .

Experience with our problem set indicates that the ranking process can gen-
erate warehouse sets that lead to good feasible solutions when these warehouses
are fixed as “open” in a CPLEX run. In our initial trials of an NP strategy,
we specified the promising region by adding the constraint that a subset (as
opposed to all) of warehouses from this open set (the subset is designated as
OPEN below) must be open:

∑

j∈OPEN

Yj = W − t.

In this case, the complementary region is defined by the following constraint:

∑

j∈OPEN

Yj ≤ W − t − 1.

Our current strategy is

1. Let CPLEX sample both the promising region and complementary region
for a fixed amount of time (say, 5 minutes) with its uppercutoff param-
eter set to the objective value of the best Lagrange solution and with a
depth-first search strategy.

The uppercutoff strategy ensures that branch and bound nodes with worse
lower bounds worse are closed; they cannot contain a better solution.

The depth-first search strategy makes CPLEX focus on generating better
solutions, as opposed to increasing the lower bound.

2. If CPLEX finds a better solution in either the promising region or com-
plementary region within the time alloted, we define a new fixed set based
on that solution (the size of the new fixed set is 1 more than the size of
the old fixed set), and we repeat Step 1.

3. If CPLEX does not find a better solution, we construct a new fixed set
by selecting an arbitrary element of the open set, adding it to the fixed
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set, and repeating Step 1. Note that after a few applications of this of
this process, the fixed set equals the open set, and CPLEX solves the
subproblem in a few seconds.

4. If neither Step 2 or 3 has produced a better solution, and the size of
the fixed set equals the number of required warehouses, then we choose a
different subset of the open warehouses to be the fixed set, and we repeat
Step 1.
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Lagrange/CPLEX CPLEX
prob LB objective value % gap LB objective value % gap

1 351,773 366,541 3.51% 340,180 364,588 0%
2 1,267,118 1,355,928 6.55% 1,015,490 1,355,928 25.11%
3 1,545,949 1,590,121 2.62% 1,314,379 1,587,551 17.21%
4 4,244,436 5,468,330 22.38% 3,959,420 5,468,330 27.59%
5 322,986 337,099 4.09% 322,322 336,749 4.28%
6 1,070,914 1,104,525 2.98% 1,019,990 1,103,766 7.59%
7 1,341,723 1,386,138 3.19% 1,320,117 1,385,964 4.75%
8 3,228,681 4,439,958 27.14% 3,984,895 4,431,639 10.08%
9 296,468 325,675 8.97% 216,196 325,675 33.62%

10 1,083,576 1,276,077 15.09% 738,298 1,276,077 42.14%
11 1,153,796 1,357,120 14.98% 869,286 1,357,120 35.95%
12 2,974,974 5,518,485 45.94% 2,941,679 5,503,354 46.55%
13 243,339 260,485 6.32% 216,349 259,753 16.71%
14 827,694 1,013,161 18.31% 739,594 1,013,161 27%
15 877,432 1,093,835 19.44% 869,260 1,089,151 20.19%
16 1,759,122 4,474,570 59% 2,940,637 4,290,237 31.46%
17 306,293 330,743 5.79% 325,068 325,109 0%
18 1,088,941 1,158,005 5.96% 867,714 1,158,005 25.07%
19 1,295,622 1,380,124 5.94% 1,056,061 1,377,479 23.33%
20 3,854,825 5,013,557 21.15% 3,472,365 4,888,939 28.98%
21 263,175 272,737 3.48% 252,973 272,658 7.22%
22 920,158 951,563 3.21% 878,393 950,696 7.61%
23 1,116,495 1,156,966 3.5% 1,067,217 1,156,966 7.76%
24 3,013,531 3,917,006 23.07% 3,477,645 3,917,006 11.22%
25 292,049 329,536 11.38% 212,751 329,536 35.44%
26 868,815 1,126,558 22.88% 645,700 1,126,558 42.68%
27 1,039,545 1,282,424 18.94% 764,004 1,282,424 40.42%
28 2,219,316 4,739,747 53.18% 2,668,318 4,739,747 43.7%
29 244,325 268,113 8.87% 211,999 268,113 20.93%
30 577,921 864,222 33.13% 644,588 864,222 25.41%
31 752,219 975,645 22.9% 763,491 975,645 21.75%
32 1,234,746 3,646,808 65.88% 2,668,207 3,618,478 26.26%

Table 3: Using 1-hour Lagrange/CPLEX run LB and objective solution in 1-
hour CPLEX run with no cuts and with depth-first search.

8 Appendix

These additional problems also demonstrate that our problem generator pro-
duces problems that are hard for CPLEX.

cost ratios of the solution be in the ranges given by the 1996 paper “Produc-
tion, transportation, and distribution planning in a multi-commodity tri-echelon
system” by H. Pirkul and V. Jayaraman).

Table ?? shows the results of 1-hour CPLEX runs on problems with various
numbers of plants, warehouses, open warehouses, customers, and products. The
data was randomly generated by AMPL code different from that in Table ??.
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plants warehouses customers products open warehouses % gap
5 30 50 3 10 5.71%
5 30 100 3 10 16.08%
5 30 150 3 10 15.95%
5 30 200 3 10 21.43%
5 30 100 1 10 0%
5 30 100 2 10 9.68%
5 30 100 3 10 16.08%
5 30 100 4 10 18.54%
5 30 100 5 10 22.91%
5 30 100 6 10 30.74%
5 30 100 7 10 31.16%
5 30 100 8 10 33.51%
5 30 100 9 10 16.08%
5 30 100 10 10 35.93%
5 30 10 10 10 0%
5 30 20 10 10 7.00%
5 30 30 10 10 22.20%
5 30 40 10 10 24.68%
5 30 50 10 10 33.81%

10 100 10 10 20 0%
10 100 20 10 20 3.57%
10 100 30 10 20 17.97%
10 100 40 10 20 29.12%
10 100 50 10 20 30.82%
10 100 100 10 20 NFSTL
10 100 200 1 20 4.68%
10 100 200 2 20 25.33%
10 100 200 10 10 NFSTL
10 100 200 10 20 NFSTL
10 100 200 10 30 NFSTL
10 100 200 10 40 NFSTL
10 100 200 10 50 23.62%
10 100 200 10 60 16.53%
10 100 200 10 70 12.76%
10 100 200 10 80 7.55%
10 100 200 10 90 1.47%
10 100 200 10 100 0%

Table 4: 1-hour CPLEX runs on some randomly generated data. Note that
% gap is calculated as 100((best objective value)/(linear relaxation value)− 1),
which is different from the way CPLEX calculates % gap.
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