
Chapter 4: Instantiable Classes

Instantiable Class vs. Program Class

• Program class has main() method (entry point of the program)

• Generally don’t make instances of the Program class

• Instantiable class written separately from the Program class

(often by a different programmer)

• Instantiable class can be used by many different Programs

Overall Format of an Instantiable Class

1. File Header comments

2. Class Header comments

3. import statements (if necessary — often they are not)

4. Class declaration: public class MyClass



5. Class body:

• Data member declarations

• Constructor(s)

• Other methods

Data Members

• Declaration format: <modifiers> <type> <name>

• Modifiers

– public vs. private: public means the data member can

be directly accessed objects from another class. private

means only objects from this class can directly access the

data member. Data member are almost always private to

protect the integrity of the object. public data members

are usually used with the static and final modifiers to

create “class constants”.

– static: makes the data member belong to the entire class,



rather than having a separate copy for each instance of the

class.

– final: makes the data member constant, so that its value

can never be changed.

• Type

– can be a primitive type (e.g. int or boolean), or the name

of a class (e.g. String).

• Name

– the name, or “identifier”, that you will use throughout the

class to access the data member.

• Note that instance (non-static) data members are not given

an initial value when they are declared. All instance data

members are initialized in the constructors.

• Class (static) data members can be given an initial value at

the time they are declared.



Constructors

• Declared with the modifier public and the name of the class:

public MyClass(<parameter list>)

• <parameter list> used the same as in regular methods (see

below)

• Main purpose is to initialize all instance data members. Some

are given values from the parameter list, others are given

default starting values. It is up to the designer to decide which

data members are initialized in which way.

• Can be overloaded, just like regular methods (see below)

• Invoked using the new keyword:

MyClass myObject = new MyClass(<argument list>);

Of course, <argument list> must match the <parameter

list> in type and number of elements.



Methods

• Declaration format:

<modifiers> <return type> <name> (<parameter list>)

• Modifiers

– public, private, and static have the same meanings as

for data members.

– most methods are public, since this is how objects from

other classes interact with objects from this one.

– private methods are mostly used for convenience to allow

us to re-use chunks of code that we would otherwise have to

copy into several methods.

– class (static) methods are not associated with any given

instance, and so can not access instance data members.

• Return Type

– methods may return one piece of information:



<return type> specifies the data type of that piece of

information.

– may be a primitive type (e.g. int or boolean), or the name

of a class (e.g. String).

– if the method returns no information (which is often the

case), <return type> = void.

– data is returned from a method to the object that sent the

original message.

– data is returned by using the keyword return followed by

the data: return x;

• Name

– just the name, or “identifier”, to be used to invoke this

method.

• <parameter list>

– a comma-separated list of variable declarations. For example:



int x, String name, boolean b

– values from the message arguments are copied into the

corresponding parameter.

– Note that the type of the variable is part of the

paramter and NOT part of the argument!

parameters: int x, String name, boolean b

message: obj.myMethod(42, ‘‘Bob’’, true)

• Methods may be overloaded. This means that we can re-use the

same method name for two different methods, provided they

have a different list of parameters. The difference can be in the

order, number, or types of paramters (names are irrelevent).

The methods may also have different return types, so long as

they still have different paramters. The method abs of the

Math class is overloaded so that it can take (and return) ints,

longs, floats or doubles.


