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PROTEINS

Peptide = chain of amino acids
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PROTEINS

* Perform important biological functions

e Structure and function ¢

e Structures VERY he

» X-Ray Crystallograp
structure

pfu

osely related
to study proteins

Ny, NMR to determine

» Computational modelling when structure not

available



Structure Prediction via Homology
Modeling




SIDECHAIN OPTIMIZATION

Add sidechains to achieve
minimum energy configuration

Backbone




COMPUTATIONAL MODELING

e Structure Prediction

* Sequence — backbone(from homolog) — Sidechain
optimization

* Protein Design
e Docking
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SIDECHAIN OPTIMIZATION

TRP




SIDECHAIN OPTIMIZATION




SIDECHAIN OPTIMIZATION

Energy = 40000 Kcal / Mol



SIDECHAIN OPTIMIZATION

Energy = 60 Kcal / Mol



SIDECHAIN OPTIMIZATION

Energy = 30000 Kcal / Mol



SIDECHAIN OPTIMIZATION

Energy = 70 Kcal / Mol



DEGREES OF FREEDOM

Bond distances

Bond Angles

Dinhedral or torsional angles

*Figures from Wikipedia




STATISTICS OF DIHEDRAL ANGLES
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DISCRETIZED CONFORMATION LIBRARIES




GLU

SIDECHAIN OPTIMIZATION

TRP




COMBINATORIAL SEARCH SPACE
(3-D JIGSAW PUZZLE)

GLU

No of conformations to search 36



COMBINATORIAL SEARCH SPACE
(3-D JIGSAW PUZZLE)

GLU TRP

No of conformations to search 36* 54



COMBINATORIAL SEARCH SPACE
(3-D JIGSAW PUZZLE)

.

No of conformations to search 36 54 * 3 = 5832
Typically > 10 » 60



SEARCH ALGORITHMS

 Dead End Elimination

o Self Consistent Mean Field

* A* search

* Monte Carlo Simulated Annealing
 Graph decomposition















We need more sampling



MORE SAMPLING

Side chain distribution
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MORE SAMPLING

ox expanded library
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ROTAMER LIBRARY DETERMINES QUALITY
OF SOLUTION

The template and the energy functions
define a continuum energy landscape
in side chain conformational space
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ROTAMER LIBRARY DETERMINES QUALITY
OF SOLUTION

The template and the energy functions The rotamer library samples the
define a continuum energy landscape landscape at discrete grid points
in side chain conformational space
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ROTAMER LIBRARY DETERMINES QUALITY
OF SOLUTION

The template and the energy functions The rotamer library samples the The search algorithm identifies
define a continuum energy landscape landscape at discrete grid points the grid's minimum
in side chain conformational space
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FIXED NUMBER OF CONFORMERS

ox expanded library

60 - = | 9 — 45 rotamers
No number in
between
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GEOMETRIC FILTERS LEAD TO CONFORMER
LIBRARIES

Conformers from high-res PDBs Representative conformers



IGNORES THE NATURAL DISTRIBUTION
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* People have been looking for solutions using the
statistical distribution in structures

 However, the problem is that sampling is related
to the energetics in a way that is difficult to predict




* People have been looking for solutions using the
statistical distribution in structures

« However, the problem is that sampling is related
to the energies in a way that is difficult to predict

» Solution: use energetics to identify the best
sampling strategy for side chain optimization




GOALS

Can we create a library that can outperform
existing libraries in terms of speed and/or
Energies ?

Can we create a flexible library where the
conformers are in some useful order?



Can we sort the conformers instead of
extracting a fixed-size subset?

5,000 conformers from high-res PDBs 50 representative conformers



Can we sort the conformers instead of
extracting a fixed-size subset?

O 000l O 1 oo ho, =

5,000 conformers from high-res PDBs Sorted list of 5,000 conformers



* Use energetics to identify the best sampling
strategy for side chain optimization

Conformers




* Use energetics to identify the best sampling
strategy for side chain optimization

Protein
Conformers environments

-
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* Use energetics to identify the best sampling
strategy for side chain optimization

Protein
Conformers environments

-
, .




* Use energetics to identify the best sampling
strategy for side chain optimization

Conformers
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* Use energetics to identify the best sampling
strategy for side chain optimization

Conformers
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* Use energetics to identify the best sampling
strategy for side chain optimization

Conformers

Environments




* Use energetics to identify the best sampling
strategy for side chain optimization

Conformers

Environments




Conformers
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THE first conformer

Conformers

Environments




Conformers
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THE second conformer

Conformers

1st
2nd
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CONFORMERS IN PROPORTION TO

DISTRIBUTION
ox expanded library Energy-Based Library
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/21 complete protein repacks.
The lower the energy, the better.




EBL vs BBD5x EBL vs SCL
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Flexible High-Perfomance Conformer Library

Conformers chosen using the same criterion as
the optimization algorithm - Energy

The new library is a sorted list of conformations

Unprecedented flexibility — the first 'n’
conformers is probably the best set of 'n'
conformers



of the side chain conformation library

/ side chain \ Nf
Optimization before the optimization

exceeds optimistic expectation

Alessandro Senes
IPiB Retreat 2011



NUMBER OF CONFORMERS FOR EACH
AMINO ACID TYPE

Single Repack
Coverage
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NUMBER OF CONFORMERS FOR EACH
AMINO ACID TYPE
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NUMBER OF CONFORMERS FOR EACH
AMINO ACID TYPE

Number of conformers at different levels
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NUMBER OF CONFORMERS FOR EACH
AMINO ACID TYPE

Number of conformers at different levels




Combinatorial search space

TRP

e e o

10

3 10 3 10 9

# possible conformations =10*3*10*3 * 10 * 9 = 81000



Do all positions have the same sampling
requirements?

Exposed sidechain
Many isoenergetic
Conformations - Easy

Buried sidechain
Fewer isoenergetic
Conformations - Hard




Smaller/Better search space with
distributed sampling

TRP - TRP - TRP GLU

10 3 10 3 10 9 81000
5 2 15 5 2 9 13500 (Faster)
7 3 17 7 3 11 82467 (Better)

By moving sampling from the easy positions to the hard ones,
we could be more efficient (fast) and/or achieve better energies

But, can we predict if a position is easy or hard?



SIDECHAIN OPTIMIZATION




Use Machine Learning

* |Information in the backbone - pattern
recognition problem?

* Use machine learning to predict requirements
based on features of the backbone



packing density

solvent ex-posed shape of the cavity
vs buried

interacting or
isolated
variable positions

neighboring
residues

secondary structure



Goals

 |dentify sampling requirements for each
position on backbone

* Reduce run time, find better conformations
(lower energy), or both



Issues

* |dentify useful features from the backbone
structure

* |dentify most meaningful labeling strategy to
label the dataset

* Devise the best machine learning strategy to
predict the label



Label the dataset using the EnergyTable

Conformers

N < O N «~ (N N ~
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Label the dataset using the EnergyTable

Conformers

Environments




Associate each sidechain in the database
with a feature vector X and a label ¥

AT
secondary

structure (S5S)
packing density (PD),
solvent exposure (SE),

neighbors (N) <

X=1¢,v,8S8,SE,PD,N, ...}
Y = {Hard, Medium, Easy}




Overall Strategy

N\
N -
Classifier learns a
>et of ™ Sidechain Dataset » mapping from env
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HOW EFFECTIVE ARE THE LABELS?

Actua Labels
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Results — Permuted labels
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HOW WELL DOES MACHINE LEARNING

Unbiased Sampling
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% of proteins with significantly lower energies

Results — All Classifiers
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Future Research

* More features
» Alternative labeling strategies
* Optimize classifiers performance



Thank You

Alessandro Senes

Sriraam Natarajan
Ambalika Khadria
Loren LaPointe
Ben Mueller

Center of High Throughput Computing
University of Wisconsin-Madison
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