A machine learning based approach to sidechain optimization

Sabareesh Subramaniam Sriraam Natarajan Alessandro Senes

Sidechain Optimization

Backbone

Add sidechains to achieve minimum energy configuration

Conformer Library

Computational Complexity - Combinatorial

possible conformations = 10 * 3 * 10 * 3 * 10 * 9 = 81000

Varying sampling requirements

Exposed sidechain
Many isoenergetic
Conformations - Easy

Buried sidechain Fewer isoenergetic Conformations - Hard

Reduced Search Space and/or Better Energies

possible conformations = 5 * 3 * 15 * 3 * 2 * 9 = 12150

By moving sampling from the easy positions to the hard ones, we could be more efficient (fast) and/or achieve better energies

But, can we predict if a position is easy or hard?

Yes, use machine learning

Associate each sidechain in the database with a feature vector *X* and a label *Y*

$$X = \{ \varphi, \psi, SS, SE, PD, N, ... \}$$

 $Y = \{ \text{Hard, Medium, Easy} \}$

Achieve better energies

The biased sampling scheme using machine learning achieves better energies on majority of the proteins

Thank You!!