PREDICTING PROTEIN SIDECHAIN CONFORMATIONS – A NEW STRATEGY

IPiB Seminar - 30th March 2012 Sabareesh Subramaniam Senes Lab, UW Biochemistry

PREDICTING TRANSMEMBRANE HELICAL DIMERS

ITLIIFGVMAGVIGT ITLIIFGVRAGRIGT

SEARCH DIMER SPACE

TO EVALUATE EACH BACKBONE ORIENTATION - MODEL SIDECHAINS

SIDECHAIN MODELING AS OPTIMIZATION

Backbone

Add sidechains to achieve minimum energy configuration

Energy = 40000 kcal / Mol

Energy = 30000 kcal / Mol

SELECTED STRUCTURE – LOWEST ENERGY

DISCRETIZED CONFORMATION LIBRARIES

DEGREES OF FREEDOM

Bond distances

Bond Angles

Dihedral or torsional angles

*Figures from Wikipedia

STATISTICS OF DIHEDRAL ANGLES

COMBINATORIAL SEARCH SPACE (3-D JIGSAW PUZZLE)

No of conformations to search 36

COMBINATORIAL SEARCH SPACE (3-D JIGSAW PUZZLE)

No of conformations to search 36* 54

COMBINATORIAL SEARCH SPACE (3-D JIGSAW PUZZLE)

No of conformations to search 36*54*3 = 5832Typically > 10 ^ 60

ALGORITHMS TO SEARCH ROTAMER SPACE

- Dead End Elimination
- Self Consistent Mean Field
- A* search
- Monte Carlo Simulated Annealing
- Graph decomposition

SO WHAT IS THE PROBLEM?

ROTAMER LIBRARY DETERMINES QUALITY OF SOLUTION

ROTAMER LIBRARY DETERMINES QUALITY OF SOLUTION

ROTAMER LIBRARY DETERMINES QUALITY OF SOLUTION

MORE SAMPLING

MORE SAMPLING

GEOMETRIC FILTERS LEAD TO CONFORMER LIBRARIES

Conformers from high-res PDBs

Representative conformers

IGNORES THE NATURAL DISTRIBUTION

- People have been looking for solutions using the statistical distribution in structures
- However, the problem is that sampling is related to the <u>energetics</u> in a way that is difficult to predict

- People have been looking for solutions using the statistical distribution in structures
- However, the problem is that sampling is related to the <u>energies</u> in a way that is difficult to predict
- Solution: use <u>energetics</u> to identify the best sampling strategy for side chain optimization

BUILDING AN ENERGY BASED CONFORMER LIBRARY

GOALS

Can we create a library that can outperform existing libraries in terms of speed and/or Energies ?

Can we create a flexible library where the conformers are in some useful order?

Can we sort the conformers instead of extracting a fixed-size subset?

Can we sort the conformers instead of extracting a fixed-size subset?

5,000 conformers from high-res PDBs

Sorted list of 5,000 conformers

Conformers

Environments

Conformers

Environments

THE first conformer

1st

THE second conformer

CONFORMERS IN PROPORTION TO DISTRIBUTION

A walk in Trp space

560 complete protein repacks. The lower the energy, the better.

DIHEDRAL RECOVERY

DIHEDRAL RECOVERY RESULTS

ADVANTAGES OF ENERGY BASED LIBRARY

• Helps achieve lower energy structures

• Better dihedral recovery

 Unprecedented flexibility – the first 'n' conformers is probably the best set of 'n' conformers How to balance sampling across residue types?

NUMBER OF CONFORMERS FOR EACH AMINO ACID TYPE

Number of Conformers

Number of conformers at different levels

SEARCH DIMER SPACE

USE DIFFERENT LEVELS TO IMPROVE SPEED AND ACCURACY

RESULTS OF GLYCOPHORIN A

PERFORMANCE

- Predict a structure in 10 mins
- On a cluster with 128 cores
- Sidechain optimization ~ 3-8 seconds
- Glycophorin A
 - < 0.7 A RMSD from NMR structure</p>

RESULTS ON THE HUMAN GENOME

- High throughput screening of the human genome
 - CSF2R NLGSVYIYVLLIVGTLVCGIVLGFLF
 - KCNE1 ALYVLMVLGFFGFFTLGIMLSYI
 - LECT1 VVLISGAVLLLFGAIGAFYFW
 - MEP1A QVHGSVLGMVIGGTAGVIFLTFSIIAIL
 - NRP1 ILITIIAMSALGVLLGAVCGVVL

CSF2R - NLGSVYIYVLLIVGTLVCGIVLGFLF

KCNE1 - ALYVLMVLGFFGFFTLGIMLSYI

LECT1 - VVLISGAVLLLFGAIGAFYFW

MEP1A - QVHGSVLGMVIGGTAGVIFLTFSIIAIL

NRP1 - ILITIIAMSALGVLLGAVCGVVL

Thank You

Alessandro Senes

Ambalika Khadria Loren LaPointe Ben Mueller

Center for High Throughput Computing University of Wisconsin-Madison