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Multivariate testing is a popular method to improve the layout of digital products such as a website and

an application. Fractional factorial designs are usually used to perform online testing with large number of

attributes. However, digital spaces present a new design challenge that doest not exist in the traditional

experimental design literature: online testing is conducted across multiple platforms including desktops,

tablets, smart-phones, and smart-watches. The existing experimental design literature does not offer precise

guidance for such a multi-platform context. Sadeghi et al. (2016) introduced a statistical design framework to

address the multi-platform feature of digital experiments. Sadeghi et al. (2016) also introduced a novel “sliced

effect hierarchy” and formally defined sliced minimum aberration designs for two-platform experiments. In

this paper, we extend the sliced minimum aberration designs for four-platform experiments. We define and

provide guidance to construct sliced minimum aberration designs for a four-platform experiment using the

concepts provided in Wu and Zhang (1993) and the underlying structure of multi-platform experiments

provided by Sadeghi et al. (2016). We also tabulate sliced minimum aberration designs with 16, 32, and 64

runs for four-platform experiments.
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1. Multi-Platform Experiments

Online testing is a popular method to improve the layout of digital products such as a website and

an application. It is usually conducted for the purpose of increasing the engagement metrics, e.g.

page visitors and click-through rate. In its general form, online testing includes multiple attributes

of a digital product and the effects of these attributes are studied on a response variable simul-

taneously. Fractional factorial designs are used to perform online testing with large number of

attributes. One can use the rich literature of factorial designs (Wu and Hamada 2011, Montgomery

2008, Box et al. 1978) to perform an online testing. However, digital spaces present a new design

challenge that doest not exist in the traditional experimental design literature: online testing is con-

ducted across multiple platforms including desktops, tablets, smart-phones, and smart-watches. A

customer can interact with an application on one of these platforms, and a different set of attribute

combinations may optimize her engagement metric for each platform. For example, although pres-

ence of multiple images may work the best for an application on a tablet, a series of links might be

the best for the same application on a smart-watch. Sadeghi et al. (2016) introduced a statistical

design framework to address the multi-platform feature of digital experiments. Let us first provide

a formal definition of a multi-platform experiment, borrowed from Sadeghi et al. (2016).

Definition 1 (Multi-platform Experiment). Consider a multi-platform experiment for

studying k two-level design factors, denoted by 1, . . . , k, on s platforms P1, ..., Ps. The complete

design set d of the experiment consists of s sub designs, d1, . . . , ds, with dj associated with Pj. To

quantify the difference among the platforms, let S denote a categorical factor, called the slice factor,

with s levels. The jth level of S is associated with Pj.

Sadeghi et al. (2016) introduced two guiding properties to construct the designs for the experi-

ment in Definition 1:

Property 1. For j = 1, . . . , s, the sub design dj should achieve desirable estimation capacity

for the design factors on platform Pj.
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Property 2. Combined together, the complete design d should achieve desirable estimation

capacity for the slice factor S and the two-way interactions between S and the design factors.

As a result of Property 1, each sub design dj estimates the effects of design factors on platform

Pj, and according to effect hierarchy (Wu and Hamada 2011, p. 172), the focus of estimation is

on the lower-order effects - main effects and two-way interactions. On the other hand, Property 2

suggests for the complete design d to focus on the estimation of the slice factor S and its two-way

interactions with the design factors. This requires a different ordering of effects than the effect

hierarchy for the complete design d in which S is more likely to be important than main effects of

the design factors, and two-way interaction effects of S with the design factors are more likely to be

important than two-way interaction effects of the design factors. Sadeghi et al. (2016) proposed the

sliced effect hierarchy for the complete design d in order to accommodate Property 2. To formally

define this ordering of effects, for the design d in Definition 1, let EI be the set of all effects with

words that exclude the slice factor S and ES be the set of all effects with words that include

the slice factor S. Using this notation, Sadeghi et al. (2016) defined the sliced effect hierarchy as

follows:

Sliced Effect Hierarchy

(i) For EI or ES, the lower-order effects are more likely to be important than the higher-order

effects.

(ii) For EI or ES, effects of the same order are equally likely to be important.

(iii) Any effect in the set ES is likely to be more important than an effect in EI that is of the

same order.

(iv) Any effect in the set ES is likely to be less important than an effect in EI that is of a

lower order.

In a multi-platform experiment, the slice factor is different from the design factors in two ways.

First, a multi-platform experiment aims to detect what level of the design factors should be chosen

for each platform, and is not trying to select between platforms. Second, according to the sliced
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effect hierarchy, the importance of the effects related to the slice factor is higher than the importance

of same-order effects of the design factors. A design set of a multi-platform experiment should be

able to distinguish between the slice factor effects and the effects of the design factors. Next we

use a simple example to illustrate the slice effect hierarchy and how it differs from the well-known

effect hierarchy in the literature.

Example 1. For the experiment in Definition 1, let k = 3 and s= 4 for four platforms P1, P2, P3

and P4. The slice factor S is a categorical factor with four levels such that its jth level is associated

with Pj. Sub designs d1, . . . , d4 are factorial designs with three factors such that each includes seven

factorial effects that are ranked in Table 1 following the effect hierarchy. All seven factorial effects

have one degree of freedom. The complete design d is a factorial design with three design factors

Table 1 Effect Hierarchy for Each Sub Design of the Experiment in Example 1

Rank Effects
(i) 1, 2, 3
(ii) 12, 13, 23
(iii) 123

and the slice factor S, and includes fifteen factorial effects (see Table 2). The two sets EI and ES

are {1,2,3,12,13,23,123} and {S,1S,2S,3S,12S,13S,23S,123S}, respectively. All effects of the set

EI have one degree of freedom although the effects of the set ES have three degrees of freedom.

Following the sliced effect hierarchy defined above, Table 2 ranks all fifteen factorial effects.

Table 2 Sliced Effect Hierarchy for the Complete Design of the Experiment in Example 1

Rank ES EI

(i) S
(ii) 1, 2, 3
(iii) 1S, 2S, 3S
(iv) 12, 13, 23
(v) 12S, 13S, 23S
(vi) 123
(vii) 123S
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According to Properties 1 and 2, existing methods in the literature fail to conform with the

sliced effect hierarchy in order to construct for the experiment in Definition 1. First, although it is

simple to implement a random splitting approach in which a complete design d is constructed and

split randomly into sub designs dj’s, there is no guarantee each sub design dj satisfies Property 1.

Second, independent construction of sub designs dj’s and combining them together to form d

cannot guarantee the complete design d satisfies Property 2. Third, blocked designs that are used

to form blocks of homogeneous units with the aim of reducing estimation variance are ill-suited

for multi-platform digital experiments. Blocking scheme suggests using the slice factor as a block

factor to construct s blocks d1, . . . , ds in order to form d. This assumes little to no change of the

design factors effects from a platform to another which means the interaction of the slice factor S

with the design factors are negligible. This assumption contradicts the ordering effect of the sliced

effect hierarchy and fails to satisfy Property 2.

In view of the drawbacks of the aforementioned methods, Sadeghi et al. (2016) proposed new

designs, called sliced factorial designs, for the multi-platform experiment in Definition 1. Their

basic idea for a sliced factorial design is that each sub design dj follows the effect hierarchy and

the complete design d follows the sliced effect hierarchy. Sliced factorial designs are constructed by

extending aberration based criterion to accommodate the sliced effect hierarchy. As each sub design

dj follows the effect hierarchy, minimum aberration criterion can be used to judge the goodness of

sub designs. However, for the complete design d, an extension of the minimum aberration crite-

rion is needed to accommodate the sliced effect hierarchy. Sadeghi et al. (2016) formally defined

sliced minimum aberration criterion for the experiment in Definition 1 with two platforms. They

proved a theorem to help construct sliced minimum aberration designs for two-platform experi-

ments and generalized the same idea to propose an algorithm for a general multi-platform exper-

iment. Although Sadeghi et al. (2016)’s proposed algorithm to construct sliced factorial designs

works for the experiment in Definition 1, their mathematical extension of aberration based crite-

rion is only for the case with two platforms. In this paper, we formally define and extend the sliced
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minimum aberration designs for the experiment in Definition 1 with four platforms. Specifically,

we propose to extend the method of replacement, originally proposed by Addelman (1963), to

construct sliced factorial designs for four-platform experiments. Wu and Zhang (1993) proposed

an aberration based criterion for a combination of two-level and four-level factorial designs using

the method of replacement. We define a sliced minimum aberration criterion for a four-platform

experiment using the concepts provided in Wu and Zhang (1993) and the underlying structure of

multi-platform experiments provided by Sadeghi et al. (2016). Our extension is consistent with the

general algorithm of Sadeghi et al. (2016). We also tabulate sliced minimum aberration designs

with 16, 32, and 64 runs for four-platform experiments.

2. Construction of Sliced Factorial Designs for Four-Platform
Experiments

First, we briefly describe the construction of a full factorial design set d for the experiment in

Definition 1 with s= 4 using the method of replacement. Consider a saturated 2N−1 design with N =

2l runs where l = k+2. We can represent the N−1 columns of this saturated design by l independent

columns denoted by 1, . . . , l and their interactions of order 2 to l, that is 12,13, . . . ,12 . . . l (Wu

and Zhang 1993). Any three columns of the form (a, b, ab), where ab is the interaction column

between columns a and b, can be replaced by the 4-level column representing the slice factor S

without affecting orthogonality (Addelman 1963). This replacement can be done according to the

rule shown in Table 3.

Table 3 Rule for replacing any three columns of the form (a, b, ab) by the 4-level column S

a b ab 4-level column S
0 0 0 0
0 1 1 −→ 1
1 0 1 2
1 1 0 3

Next, we describe the construction of a design set d with 2k+2−p runs for the experiment in

Definition 1 with s = 4. Consider a full factorial design with 2k+2 runs, whose 4-level column is

represented by S = (s1, s2, s3), with s3 = s1s2, and 2-level columns are represented by 1, . . . , k. For a
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two-platform experiment, Sadeghi et al. (2016) defined the sliced wordlength pattern by extending

the wordlength pattern definition to the aliasing relation of the slice factor S. For a four-platform

experiment, however, the same definition of Sadeghi et al. (2016) does not work because there

are three aliasing relations for the slice factor S: aliasing relations of s1, s2, and s3. The aliasing

relation of sj is obtained by multiplying the defining relation of d by sj. Therefore, a word W in

the defining relation of d appears in three aliasing relations for the slice factor S as s1W , s2W , and

s3W . We extend Sadeghi et al. (2016)’s definition of the sliced wordlength pattern to be defined

over the minimum length of s1W , s2W , and s3W . This extension follows the main idea of the sliced

minimum aberration criterion, proposed by Sadeghi et al. (2016), which is minimizing the number

of shortest length of a sliced wordlength pattern. Defining the sliced wordlength pattern over the

minimum length of s1W , s2W , and s3W is to make sure that the sliced minimum aberration is

taking care of the worst case (Minimax principle).

We use Wu and Zhang (1993)’s definition of wordlength pattern for designs with two-level and

four-level factors to define the sliced wordlength pattern. For the design set d with 2k+2−p runs,

there are two types of words in its defining relation. The first involves only the design factors

1, . . . , k, which is called type 0, and the second involves one of the sj’s and some of the design factors

1, . . . , k, which is called type 1. Because of the relation s1s2s3 = I, any two sj’s that appear in a

word can be replaced by the third sj. Therefore, these two types considers all possible combinations.

Following Wu and Zhang (1993), the vector

W (d) = ([Ai0(d),Ai1(d)])i≥3, (1)

is the wordlength pattern of d in which Ai0(d) and Ai1(d) respectively are the number of type 0 and

type 1 words of length i in the defining relation of d. The term [A20(d),A21(d)] is not considered in

Equation 1 because any design d with positive [A20(d),A21(d)] is not useful as two of its main effects

are confounded. We use the concepts laid out in Wu and Zhang (1993) and Sadeghi et al. (2016)

to formally define the sliced wordlength pattern of a design set d for a four-platform experiment

as follows:
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Definition 2 (Sliced Wordlength Pattern). For a design set d with the wordlength pattern

W (d) = ([Ai0(d),Ai1(d)])i≥3 for the experiment in Definition 1 with s = 4, the sliced wordlength

pattern is the vector SW (d) = ([SAi0(d), SAi1(d)])i≥2, where

- SAi0(d) =A(i+1)1(d) where i≥ 2

- SAi1(d) =A(i−1)0(d) where i≥ 4

- SAi1(d) = 0 where i= 2,3,

i.e. SW = ([A31,0]2, [A41,0]3, [A51,A30]4, [A61,A40]5, ...).

A type 0 word W in the defining relation of d appears as a type 1 word in the aliasing relations

of the sliced factor S. Hence, it is counted as a type 1 word in the sliced wordlength pattern

resulting in SAi1(d) =A(i−1)0(d). On the other hand, a type 1 word W in the defining relation of d

appears as a type 1 word in the aliasing relations of two sj’s and as a type 0 word in the aliasing

relation of the third sj. It is counted as a type 0 word in the sliced wordlength pattern resulting

in SAi0(d) = A(i+1)1(d) because the sliced wordlength pattern is defined over the minimum length

of a word in the three aliasing relations.

The sliced resolution of d is defined to be the smallest i for which at least one of SAi0(d) and

SAi1(d) is positive. Additional discrimination among designs with the same sliced resolution is

made by sliced minimum aberration that we define next. To define the sliced minimum aberration,

the two types of words of the design set d are not treated the same. According to the sliced effect

hierarchy, a type 1 word in the aliasing relations of the slice factor S is more serious because it

involves one sj. This is consistent with Wu and Zhang (1993) justification that considers a type 0

word in the defining relation of d to be more important than a type 1 because a type 0 word in the

defining relation appears as a type 1 word in the aliasing relations of the slice factor S. Therefore,

it is usually more important to require a smaller SAi1(d) than a smaller SAi0(d) for the same i.

We thus define sliced minimum aberration designs for a four-platform experiment as follows:

Definition 3 (Sliced Minimum Aberration Designs). Suppose that, for the experiment in

Definition 1 with s = 4, two design sets d(1) and d(2) with 2k+2−p runs are to be compared. Let r
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be the smallest integer such that [SAr0(d
(1)), SAr1(d

(1))] 6= [SAr0(d
(2)), SAr1(d

(2))]. If SAr1(d
(1)) <

SAr1(d
(2)), or SAr1(d

(1)) = SAr1(d
(2)) but SAr0(d

(1)) < SAr0(d
(2)), then d(1) is said to have less

sliced aberration than d(2). If there is no design with less sliced aberration than d(1), then d(1) is

called a sliced minimum aberration design.

To illustrate the two Definitions 2 and 3, we consider the following example:

Example 2. For the experiment in Definition 1, let k = 5 and s= 4 for four platforms P1, P2, P3

and P4. Also, let s1, s2, 1, 2, and 3 be five independent columns of the 32-run 231 design. Consider

the following two designs:

d(1) : S,1,2,3,12,13

d(2) : S,1,2,3,123s1,23s2,

where S = (s1, s2, s1s2), and the last two columns represent the last two design factors. For example,

in d(1), we have 4 = 12 and 5 = 13 although they are 4 = 123s1 and 5 = 23s2 in d(2). Therefore, the

defining relations of d(1) and d(2) are as follows:

d(1) : I = 124 = 135 = 2345

d(2) : I = 1234s1 = 235s2 = 145s3.

The defining relation of d(1) has three words of type 0: two words of length three and one word of

length four. Therefore, the wordlength pattern of d(1) is W (d(1)) = ([2,0]3, [1,0]4). Multiplying the

defining relation of d(1) by sj’s provides three aliasing relations for the slice factor S as follows:

s1 = 124s1 = 135s1 = 2345s1

s2 = 124s2 = 135s2 = 2345s2

s3 = 124s3 = 135s3 = 2345s3.

Each type 0 word in the defining relation of d(1) appears with the same length and as type

1 word in all three aliasing relations of sj’s. Therefore, the sliced wordlength pattern of d(1) is
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SW (d(1)) = ([0,0]2, [0,0]3, [0,2]4, [0,1]5). On the other hand, the defining relation of d(2) has three

words of type 1: two words of length four and one word of length five. Therefore, the wordlength

pattern of d(2) is W (d(2)) = ([0,0]3, [0,2]4, [0,1]5). Multiplying the defining relation of d(2) by sj’s

provides three aliasing relations for the slice factor S as follows:

s1 = 1234 = 235s3 = 145s2

s2 = 1234s3 = 235 = 145s1

s3 = 1234s2 = 235s1 = 145.

The type 1 word 1234s1 in the defining relation of d(2) appears as type 0 word of length four

in the aliasing relation of s1 (because s1s1 = I) and as type 1 word of length five in the aliasing

relations of s2 and s3 (because s1s2 = s3 and s1s3 = s2). It is hence recorded as length four of

type 0 in the sliced wordlength pattern. Similar explanation can be used for the other two words

in the defining relation of d(2). Therefore, the sliced wordlength pattern of d(2) is SW (d(2)) =

([0,0]2, [2,0]3, [1,0]4, [0,0]5). To compare the two design sets d(1) and d(2), note that 3 is the smallest

integer such that [0,0]3(d
(1)) 6= [2,0]3(d

(2)). The design set d(1) has less sliced aberration than d(2)

because SA31(d
(1)) = SA31(d

(2)) = 0 and SA30(d
(1)) = 0 < 2 = SA30(d

(2)). Later, we will show that

d(1) is a sliced minimum aberration design with 32 runs. Note that d(2) is a minimum aberration

design with 32 runs according to Wu and Zhang (1993) which is inferior to a sliced minimum

aberration design for a four-platform experiment.

Having defined a suitable design criterion for a four-platform experiment, we are now ready

to construct sliced minimum aberration designs. Theorem 1 below guides the construction of the

sliced minimum aberration designs using readily available minimum aberration designs of fewer

number of factors.

Theorem 1. A sliced minimum aberration design corresponds to a defining relation in which

all words are type 0.
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Proof. It is sufficient to show that any defining relation with at least a type 1 word is inferior to

a defining relation in which all words are type 0. Any design with a type 1 word has at least one

sj involved in the generators of the design. We prove for the case where one generator uses one sj.

The proof can be easily generalized to the case where more than one generator uses sj’s. Consider

a design set d with 2k+2−p runs that has p− 1 generators not involving sj’s and one generator

g involving sj. It is sufficient to show that a design with all generators excluding sj’s is better

according to the sliced minimum aberration criterion. Form a new design set dnew by removing

sj from g. Call the new generator gnew. As sj only appears in g, the product of gnew with other

generators will result in a type 0 word in the defining relation of d. Therefore, the length of all

type 0 words formed by gnew in dnew has decreased by one compared to the length of all type 1

words formed by g in d. As a result, all these words formed by gnew of dnew appear as type 1 words

in defining relations of sj’s and are recorded with higher length in the sliced wordlength pattern

compared to the ones in d. The lengths of all other words of dnew not formed by gnew remain the

same as the ones in d not formed by g in their sliced wordlength patterns . Therefore, dnew is better

according to the sliced minimum aberration criterion.

�

As a result of Theorem 1, to find a sliced minimum aberration design, it is sufficient to search

among possible design sets for which all the words are type 0 in the defining relations. Therefore,

minimizing the number of shortest length in the sliced wordlength pattern of d with 2k+2−p runs

is equivalent to minimizing the number of shortest length in the wordlength pattern of a 2k−p

fractional design consisting of design factors only. For a four-platform experiment, we thus use

Theorem 1 to provide sliced minimum aberration designs with 16, 32, and 64 runs in Tables 4, 5,

and 6 receptively.

Table 4 Sliced minimum aberration designs with 16 runs, S = (s1, s2, s1s2)

k Design set d SW (d)i≥4

3 S,1,2,12 ([0,1]4)
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Table 5 Sliced minimum aberration designs with 32 runs, S = (s1, s2, s1s2)

k Design set d SW (d)i≥4

4 S,1,2,3,123 ([0,0]4, [0,1]5)
5 S,1,2,3,12,13 ([0,2]4, [0,1]5)
6 S,1,2,3,12,13,23 ([0,4]4, [0,3]5)
7 S,1,2,3,12,13,23,123 ([0,7]4, [0,7]5, [0,0]6, [0,0]7, [0,1]8)

Table 6 Sliced minimum aberration designs with 64 runs, S = (s1, s2, s1s2)

k Design set d SW (d)i≥4

5 S,1,2,3,4,1234 ([0,0]4, [0,0]5, [0,1]6)
6 S,1,2,3,4,123,124 ([0,0]4, [0,3]5)
7 S,1,2,3,4,123,124,134 ([0,0]4, [0,7]5)
8 S,1,2,3,4,123,124,134,234 ([0,0]4, [0,14]5, [0,0]6, [0,0]7, . . .)
9 S,1,2,3,4,123,124,134,234,1234 ([0,4]4, [0,14]5, [0,8]6, [0,0]7, . . .)
10 S,1,2,3,4,123,124,134,234,1234,34 ([0,8]4, [0,18]5, [0,16]6, [0,8]7, . . .)
11 S,1,2,3,4,123,124,134,234,1234,34,24 ([0,12]4, [0,26]5, [0,28]6, [0,24]7, . . .)
12 S,1,2,3,4,123,124,134,234,1234,34,24,14 ([0,16]4, [0,39]5, [0,48]6, [0,48]7, . . .)
13 S,1,2,3,4,123,124,134,234,1234,34,24,14,23 ([0,22]4, [0,55]5, [0,72]6, [0,96]7, . . .)
14 S,1,2,3,4,123,124,134,234,1234,34,24,14,23,13 ([0,28]4, [0,77]5, [0,112]6, [0,168]7, . . .)
15 S,1,2,3,4,123,124,134,234,1234,34,24,14,23,13,12 ([0,33]4, [0,105]5, [0,168]6, [0,280]7, . . .)

3. Conclusion

A unique aspect of multivariate testing in the online space is that testing needs to be conducted

across multiple platforms. The existing design literature does not offer precise guidance for such

a multi-platform context. The primary focus of this paper is to fill this void by developing over

the factorial design literature that allows us to uncover effects for each platform and compare test

results across different platforms. We begin by a novel sliced effect hierarchy that generalizes the

widely used effect hierarchy to the multi-platform context. Based on the sliced effect hierarchy, we

develop sliced factorial designs for four-platform experiments. Specifically, we propose to extend

the method of replacement, originally proposed by Addelman (1963), to construct sliced factorial

designs for four-platform experiments. We define and provide guidance to construct sliced minimum

aberration designs for a four-platform experiment using the concepts provided in Wu and Zhang

(1993) and the underlying structure of multi-platform experiments provided by Sadeghi et al.

(2016). We also tabulate sliced minimum aberration designs with 16, 32, and 64 runs for four-

platform experiments.
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