
Performance Analysis of Aerie under Mail Server Workloads

Sanketh Nalli, Salini Selvaraj Kowsalya, Zuyu Zhang

Computer Sciences Department

University of Wisconsin-Madison, WI

sankey@cs.wisc.edu, salinisk@cs.wisc.edu, zuyu@cs.wisc.edu

Abstract

Inspite of the rapid advancements in storage technology,

the fundamental architecture of storage in operating sys-

tem remains fixed. Applications invoke the kernel to

store and retrieve data and kernel invokes the file sys-

tem. Recent work suggests a new class of memory called

storage class memory(SCM) which blurs out the distinc-

tion between fast, expensive and volatile memory, and

slow, cheap and non-volatile storage. The file system for

such a class of memory does not need kernel interaction.

Applications can modify the file system and optimize it

according to their needs. One such flexible file system

architecture is provided by Aerie [13]. It exposes storage

class memory to user mode programs which allows di-

rect access to memory from user mode. Aerie[13] evalu-

ates the application level performance on three Filebench

profiles: file server, web server and web proxy. We are in-

terested in measuring the performance of Aerie for mail

server profiles. Mail servers usually deal with a large

number of small files which are in constant flux. It has

frequent reads/writes, create/delete and appends. In this

paper, we adopt two simple benchmarks which mimic the

behavior of a mail server and alter them to use the file

system APIs exposed by Aerie. We compare the perfor-

mance of Aerie with tmpfs and ext3 file system (with and

without caching) on linux 3.2.2.

1 Introduction

Storage-class memory is a new class of devices
that provide the interface of memory along with the
persistence of disks. It combines the benefits of a
solid-state memory (high performance and robust-
ness) with archival capabilities of conventional inex-
pensive HDD [3]. It is created out of flash-based
NAND that can provide read performance that is
nearly as good as DRAM and write performance that
is significantly faster than HDD technology. That
said, one may think of using a flash-based storage
devices as it can offer compelling economics versus
DRAM. In order to be considered as an accept-

able alternative to DRAM memory, it must pro-
vide near-RAM performance. Emerging device tech-
nologies such as phase-change-memory (PCM), spin-
torque transfer RAM (STT-RAM) and memristors
provide persistent storage near the speed of DRAM.
These technologies collectively are termed storage-
class memory (SCM) as data can be accessed through
ordinary load/store instructions rather than through
I/O requests.

Traditionally, persistent storage has resided be-
hind both a bus controller and storage controller.
Since the latency of a read or a write is domi-
nated by the access to this device, the overhead
of this architecture does not materially affect per-
formance. In contrast, technologies such as stor-
age class memories have access latencies of a few
nanoseconds. Thus keeping SCMs behind I/O bus
would waste the performance benefits of the storage
medium [6]. Instead, SCMs can be attached to the
memory bus, thus reducing the latencies to access
persistent storage. Since they allow processor to ac-
cess persistent storage through memory load/store
instructions, they can successfully provide simpler
and faster techniques for storing persistent data [14].
Thus with two significant features such as high speed
and direct access from user mode, SCM exhibits a
fundamental shift from the existing storage architec-
tures.

In present operating systems, file systems need
kernel intervention for dealing with storage : for data
protection and abstraction of storage device through
a driver. These kernel file systems significantly mar
performance when operating on SCMs. They are
designed for storage devices so as to support electro-
mechanical access to data. The existing OS structure
of file systems as a kernel-level service may no longer
be necessary with SCM. The cost of exposing storage
to user-code and enabling direct access to data is far
lesser than requesting the kernel to do so. Many file
systems designs have been proposed for effectively
utilizing SCM. File systems can also be customized

1

to improve I/O performance and the new interface
can be exposed to the application.

Aerie is one such flexible file system that exposes
SCM to user-mode processes. It allows users to en-
able their applications to define their own file system
interface and implementation without extending the
kernel. It also offers low-latency access to data by
removing layers of code otherwise present in the ker-
nel file system. In short, using Aerie, applications
can link to a file system library that provides logical
access to data and communicates with a service for
coordination. The OS kernel provides only coarse-
grained allocation and protection.

Aerie exposes POSIX APIs for legacy applica-
tions. It can be used to implement many other
file system interfaces as well. In Aerie [13], the
authors have evaluated the application-level perfor-
mance with three FilbBench profiles - file server
(which emulates file server activity and performs
sequence of creates, deletes, appends, reads and
writes), web server (which performs sequence of
open/read/close on multiple files and appends log
to a file) and web proxy (which performs sequence of
create/write/close, open/read/close on multiple files
in a single directory and appends to a log file). They
have compared the performance and reported the la-
tency against traditional and user mode file system.

In this paper, we evaluate Aerie’s application-
level performance with two mail server benchmarks,
PostMark and Bonnie. We modify the source code
of these benchmarks to use APIs provided by Aerie.
We replace open, read, write and close calls with cor-
responding libfs calls. We observe that Aerie is close
to tmpfs in performance for small reads and small
writes and is much faster than ext3 file system with-
out caching. With caching, all three perform alike.

2 Motivation

It is predicted that by 2020, server-room power
demands will be too high because of the advance-
ments in computer applications [8]. Compute cen-
tric and data centric programs will require more
power and storage space for keeping hard disks. The
cache/memory/storage hierarchy might soon become
the bottleneck for large systems. Though MIPS and
MFLOPS will be inexpensive, storing and retrieving
data through that will decrease the performance of
the system. It is time to identify the root cause of
this problem and build a technology that will solve
it. Careful studies tell us the root cause of this prob-
lem is the access time gap between memory and
storage. A solid-state memory like Phase-Change

memory (PRAMs), STT-RAMs and memristors that
blurs the boundaries between storage and memory by
being low-cost, fast, and non-volatile is found to be
the solution for this problem.

Despite rapid advancements in storage technol-
ogy, the fundamental architecture of storage in op-
erating systems has remained stable: applications
invoke the kernel to store and retrieve data, which
invokes a file system and then a block driver. As a
result, the overhead brought by I/O latency is much
higher than that of file system layer itself. But SCM
has no features that compel for a kernel implemen-
tation of file systems. Protection to the data can
be given by memory-translation hardware. Further-
more, it has much less need for scheduling to opti-
mize latency, as there are no long seek or rotation
delays. Because SCM provide speeds near DRAM,
caching data may be unnecessary. Finally, SCM does
not require a driver for data access as it can imple-
ment a standard load/store or protected DMA inter-
face.

Several file systems [9] [6] [10] [4] [7] [14] [1] [11]
have been developed for SCM (see Section 6). In
contrast to most of the file systems, Aerie [13] allows
users to build a file system as a library, offering great
flexibility to applications. In their paper, the authors
evaluated the flexibility and performance of differ-
ent aspects of file system with Filebench profiles(file
server, web server and web proxy). These file system
benchmarks emphasize on raw throughput or perfor-
mance on large, relatively long-lived groups of files.

But current file servers provide services such
as electronic mail, netnews, and commerce service,
which depend on enormous numbers of relatively
short-lived files. These systems are inherited from an
era predating the exponential growth of the Internet
and were never envisioned as being scalable to to-
day’s required levels. This encourages us to evaluate
Aerie’s performance on such short-lived files. Bench-
marks such as PostMark and Bonnie were designed
to create such a pool of short lived files, continually
changing files, to measure the transaction rates for
a workload approximating a large Internet electronic
mail server.

From our performance analysis, we try to de-
termine if Aerie is suitable for small files which
are in constant flux and which are frequently cre-
ated/read/written/appended/deleted.

3 Design

This section describes the design of our ex-
periments. We compare the mail server perfor-

2

mance of Aerie against tmpfs and ext3 file system
(with/without caching). We use two simple bench-
marks which mimics the behavior of a mail server.
The benchmarks which we considered are PostMark
and Bonnie. We ensured that the benchmark speci-
fies several options allowing us to configure and stress
the file systems in interesting ways.

Mail servers usually deal with a large number of
small files. Not only are these files relatively small
(from one kilobyte to over one hundred kilobytes,
depending on content), they are constantly in flux.
At any given time, files are being rapidly created,
read, written or deleted, all over the disk drives allo-
cated for these tasks. We are interested in observing
how the underlying file system performs under heavy
workloads. While performing the experiments, we
configure our benchmark accordingly.

In the following sections, we explain how Post-
Mark and Bonnie generates workloads.

3.1 PostMark

PostMark [12] generates an initial pool of ran-
dom text files ranging in size from a configurable low
bound to a configurable high bound. This file pool
is of configurable size and can be located on any ac-
cessible file system. Once the pool has been created
(also producing statistics on continuous small file cre-
ation performance), a specified number of transac-
tions occurs. Each transaction consists of a pair of
smaller transactions:

• Create file or Delete file

• Read file or Append file

Create/Delete files: The incidence of each
transaction type and its affected files are chosen
randomly to minimize the influence of file system
caching, file read ahead, and disk level caching and
track buffering. This incidence can be tuned by set-
ting either the read or create bias parameters to pro-
duce the desired results. When a file is created, a
random initial length is selected, and text from a
random pool is appended up to the chosen length.
File deletion selects a random file from the list of ac-
tive files and deletes it.

Read/Append files: When a file is to be read,
a randomly selected file is opened, and the entire file
is read (using a configured block size) into memory.
Either buffered or raw library routines may be used,
allowing existing software to be approximated if de-
sired. Appending data to a file opens a random file,
seeks to its current end, and writes a random amount

of data. This value is chosen to be less than the con-
figured file size high bound. If the file is already at
the maximum size, no further data will appended.
When all of the transactions have completed, the re-
maining active files are all deleted. It also produces
statistics on continuous file deletion.

3.2 Bonnie

Bonnie [2] performs a series of tests on a file of
known size. If the size is not specified, Bonnie uses
100 Mb. Bonnie can work with 64-bit pointers if they
are available. For each test, Bonnie reports the bytes
processed per elapsed second, per CPU second, and
the CPU usage (user and system). The tests are

1. Sequential write character wise

2. Sequential read block wise

3. Sequential write block wise

4. Sequential read character wise

5. Sequential rewrite block wise

Sequential write character wise: The files are
written using the putc() stdio macro. The loop that
does the writing has to be small enough to fit into
any reasonable I-cache.
Sequential write block wise: The files are created
using write(2). The CPU overhead would be just the
OS file space allocation.
Sequential rewrite block wise: Each chunk of
the file is read with read(2), dirtied, and rewritten
with write(2), requiring an lseek(2). Since space is
not allocated, and the I/O is well-localized, this will
test the effectiveness of the file system cache and the
speed of data transfer.
Sequential read character wise: The file is read
using the getc() stdio macro. Even in this case, the
inner loop is small.
Sequential read block wise: The file is read using
read(2). This is a very pure test of sequential input
performance.
Random Seeks: This test runs SeekProcCount
processes in parallel, doing a total of 4000 lseek()s
to locations in the file computed using by random()
in bsd systems, drand48() on sysV systems. In each
case, the block is read with read(2). In 10% of cases,
it is dirtied and written back with write(2).

4 Implementation

We performed our experiments with 64-bit
Intel(R) Core(TM) i5-2500K CPU at 3.30GHz

3

running GNU/Linux Kernel 3.2.2, with 16 GB of
physical memory. We altered the source-code of
PostMark and Bonnie to incorporate Aerie’s APIs
along with POSIX APIs and perform file operations
using either of them.

Postmark uses fwrite(), write(), fread()
and read() calls for file access. At run time,
one can choose between fwrite()/fread() or
write()/read() either by typing in set buffering
true or set buffering false respectively. We altered
parts of PostMark that use write()/read() to use
libfs write()/libfs read(). We also altered the
part of code that use fwrite()/fread() to use
write()/read(). libfs open() and libfs close()
replaced open() and close() respectively.

After successful modification of PostMark source
code, we built the benchmark by linking it against
client-dependent pxfs libraries provided by Aerie.
These libraries are the ones that implement all the
libfs APIs.

We then started off with our experiments by
creating 20 files of size ranging from 10KB to 15KB.
We increased the number of files in steps of 1000
till we observed a significant degradation in the
performance of Aerie. The reason behind starting
with a very small number(20) is that we wanted
to measure the performance of ext3 file system
without caching. With even 20 files, ext3 file system
(without caching) showed very poor performance.
The results are given in the next section.

As for Bonnie, we also encountered sync()
and fsync(). We omitted these pieces of code
as the current PXFS writes synchronously
and hence sync() is unnecessary. We replaced
write()/fwrite()/putc() calls with libfs write()
calls. Similarly we followed the same suite for
read i.e replace read()/fread()/getc() calls with
libfs read() calls. libfs open() and libfs close()
replaced open()/fopen() and close()/fclose() re-
spectively. Once the porting is complete, we built
Bonnie by linking it against client-dependent pxfs
libraries provided by Aerie.

We collected the performance measurements for
Bonnie by generating files of sizes in the order of
megabytes. Bonnie gives the following performance
measures:

• Number of kilobytes of data read per second, if
we read one character at a time

• Number of kilobytes of data read per second, if
we read one block at a time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
at

a
re

ad
(M

bp
s)

Number of simultaneous files

tmpfs
libfs(Aerie)

ext3 without caching
ext3 with caching

Figure 1: PostMark: Performance comparison of
data read per second of various file systems

• Number of kilobytes of data written per second,
if we write one character at a time

• Number of kilobytes of data written per second,
if we write one block at a time

We present the results in the next section.

4.1 Challenges

When conducting our experiments, we were faced
with numerous challenges. The most frequent one
was the Aerie file server crash during most trials.
We are still unsure of the root cause but suspect that
the file server is simply unable to accept connections
from user-level applications beyond a certain limit.
The exact figures are reported in the section below.
Other issues were minor and involved claiming a pool
of memory to act as SCM, altering source-codes of
benchmark to adhere to standards imposed by PXFS
etc. These were resolved in time.

5 Evaluation

5.1 PostMark evaluation results

Figure 1 shows the performance comparison of
data read in the order of megabytes per second for
various file systems. Similarly, Figure 2 shows the
performance comparison of data written in the or-
der of megabytes per second for various file systems.
From the graphs it is evident that Aerie keeps up
with tmpfs in read/write performance. We observed
that when we increase the number of simultaneous
files greater than 5000, Aerie’s file server crashed.

The surprising observation here is that we did
not observe a gradual descent in Aerie’s performance.

4

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

D
at

a
w

rit
te

n(
M

bp
s)

Number of simultaneous files

tmpfs
libfs(Aerie)

ext3 without caching
ext3 with caching

Figure 2: PostMark: Performance comparison of
data written per second of various file systems

Rather we observed an abrupt crash after a certain
limit. We suspect that this might be because of some
of implementation bugs in Aerie. We are looking into
Aerie’s code to find the bug.

We also evaluated the file system performance of
ext3 with caching. Our results showed that ext3 with
caching performs as good as Aerie, and it contin-
ued to perform well even when the number of si-
multaneous files was increased to 10000. The eval-
uations results of ext3 file system without caching
showed poor performance in comparison with other
file systems. This is obvious because it is extrememly
time consuming to read/write data in hard disk, syn-
chronously.

5.2 Bonnie evaluation results

Figure 3 and Figure 4 show the performance com-
parison of data read per second(character wise/block
wise) of various file systems. From the experiments
we found that, Aerie’s read performance is almost as
good as tmpfs performance. But as said earlier, file
server crashes when we tried to read from a file of
size greater than 30 MB. But ext3 file system with
caching performed as good as Aerie and continued
to perform well even after we increased the file size
beyond 30 MB. We are still trying to figure out why
there is a steep decrease in amount of data read per
second when we increased the file size from 10 MB
to 30 MB. As you can see from the graphs that if we
read the file block wise, then amount of data read
per second is much greater than that of reading the
file character wise.

Similarly Figure 5 and Figure 6 show the
performance comparison of data written per sec-

 50000

 52000

 54000

 56000

 58000

 60000

 10 20 30 40 50 60 70

D
at

a
re

ad
 p

er
 c

ha
ra

ct
er

(K
bp

s)

Size of files(MB)

tmpfs
libfs(Aerie)

ext3 with caching

Figure 3: Bonnie: Performance comparison of
data read per second(character wise) of various
file systems

 860000

 880000

 900000

 920000

 940000

 960000

 980000

 1e+06

 10 20 30 40 50 60 70

D
at

a
re

ad
 p

er
 b

lo
ck

(K
bp

s)

Size of files(MB)

tmpfs
libfs(Aerie)

ext3 with caching

Figure 4: Bonnie: Performance comparison of
data read per second(block wise) of various file
systems

ond(character wise/block wise) of various file sys-
tems. Aerie’s write performance was also observed
to be almost as good as tmpfs performance. But file
server crash bug was still present when we increased
the file size beyond 30 MB. Our experiments proved
that the write performance of ext3 file system with
caching was same as that of Aerie and continues to
work even after we increased the file size beyond 30
MB. As you can see from the graphs, writing data
block wise is much more efficient than writing data
character wise.

From the above results, we conclude that Aerie
can be used for mail server applications and it can
achieve high performance by optimizing the file sys-
tem without any changes to complex kernel code.

5

 50000

 50500

 51000

 51500

 52000

 52500

 53000

 53500

 10 20 30 40 50 60 70

D
at

a
w

rit
te

n
pe

r
ch

ar
ac

te
r(

K
bp

s)

Size of files(MB)

tmpfs
libfs(Aerie)

ext3 with caching

Figure 5: Bonnie: Performance comparison of
data written per second(character wise) of vari-
ous file systems

 400000

 420000

 440000

 460000

 480000

 500000

 520000

 540000

 560000

 10 20 30 40 50 60 70

D
at

a
w

rit
te

n
pe

r
bl

oc
k(

K
bp

s)

Size of files(MB)

tmpfs
libfs(Aerie)

ext3 with caching

Figure 6: Bonnie: Performance comparison of
data written per second(block wise) of various file
systems

6 Related work

The complexity of kernel file systems is not nec-
essary for SCM. A plenty of studies focus on inte-
grating fast user level access of SCM, into existing
file system. In the rest of this section, we present a
summary of various file systems developed for SCM.

SCMFS [14] is a file system that aims to min-
imize CPU overhead of file system operations. It is
built on virtual memory space and utilizes the mem-
ory management unit (MMU) to map the file system
address to physical addresses on SCM. It is designed
to reuse the memory management infrastructure,
both in hardware and the OS. The space is kept con-
tiguous for each file in SCMFS to simplify the process
of handling the read/write requests in file system.

Further, frequent allocation and de-allocation can in-
voke many memory management functions and can
potentially reduce performance. To avoid this, space
pre-allocation mechanism is adopted. In this mech-
anism, when a file shrinks or is deleted, it is simply
marked as a null file. When space has to be allocated,
the system looks for the first null file. SCMFS was
implemented in Linux 2.6.33, as a prototype.

BPFS [6] is a file system designed to achieve
high performance, strong safety and consistency. It
guarantees that all system calls are reflected to the
storage atomically. It allows data to be made durable
as soon as the caches contents are flushed to per-
sistent storage. Consistency is enforced using short-
circuit shadow paging, which means that updates are
committed either in-place or using a localized copy-
on-write. Further, BPFS does not allow storage of
complex data structures such as hash tables. Instead,
simple, non-redundant data structures are stored in
persistent memory and this data is cached in more
efficient volatile structures. BPFS was implemented
in Windows driver model and supports open, read,
write, close operations.

Hitz et. al [9] designed a file system for
an NFS file server appliance, which uses Write-
Anywhere-File-Layout (WAFL) for NFS access pat-
tern. In order to avoid consistency checks af-
ter abnormal power-off, WAFL uses battery backed
NVRAM as write cache to store logs of NFS requests.
Conquest[10] is a hybrid file system that combines
persistent RAM with conventional disks. Conquest
stores meta data and small files in NVRAM that
emulated by battery-backed DRAM, while still uses
disks for large file storage. But both BPFS and NSF
doesnt implement file system as a library which can
be optimized for specific applications. Implementing
filesystem as a library might offer better flexibility
to the application program.

Moneta [4] was an initial study that adopted
NVRAM as memory for high performance purpose.
They proposed a storage array and their I/O sched-
uler to study the benefits from different kinds of
NVRAM, such as PCM, SSD. To eliminate the over-
head from file system, Moneta-Direct [5] virtual-
izes Moneta interfaces and adopts user level library
while enforces permission checks in the kernel. Thus,
Moneta-Direct has a direct data access from user
level. But metadata operations still need the involve-
ment of kernel mode for protection concerns.

DFS [11], a file system for flash storage, stores
the files directly in a single very large virtual storage
address space considering it as a single level store.
And then it leverages the virtual flash storage layer

6

to perform virtual to physical block allocations.It is
a generic kind of file system which any applications
can use. Though it reduces the data path to access
flash memory, it does not provide application-specific
optimization.

Logical Disk [7] and ZFS [1] have built file
systems using system primitives higher than block
abstraction. Logical disk provides a clean separation
of file and disk management by providing an abstract
interface to disk storage by using logical block num-
bers and block lists. The file system writes to the log-
ical block, and the logical disk chooses the physical
location on the disk where the block will be written.
It is flexible because different logical disks can be im-
plemented according to the different access patterns
and different disk can use different implementation
of logical disk. On the other hand, ZFS provides
abstraction by decoupling file systems from physical
storage. Allocation and deallocation functionalities
should be provided by storage space allocator by allo-
cating permanent storage space from a pool of stor-
age devices as file system requests it. Our system
will also similarly expose the primitive structures to
the file system interface layer.

7 Conclusions

From our experiments, we realize that Aerie has
the capability to perform similar to tmpfs. Ext3 with
caching can act as a good substitute for SCM but is
prone to power failure leading to loss of data stored
in memory. tmpfs too is prone too such a loss and
hence data must be written to disk at regular inter-
vals. These problems can be avoided with the use of
SCM. Research on SCM is in its infancy and can see
the light of day in near future if we continue to put
consistent efforts.

References

[1] J. Bonwick, M. Ahrens, V. Henson, M. Maybee,
and M. Shellenbaum. The zettabyte file system.
Technical report, 2003.

[2] T. Bray. Bonnie.
[3] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H.

Lam, K. Gopalakrishnan, and R. S. Shenoy.
Overview of candidate device technologies for
storage-class memory. IBM Journal of Research
and Development, 52(4-5):449–464, 2008.

[4] A. M. Caulfield, A. De, J. Coburn, T. I. Mol-
low, R. K. Gupta, and S. Swanson. Moneta: A
high-performance storage array architecture for

next-generation, non-volatile memories. In Pro-
ceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture,
MICRO ’43, pages 385–395, 2010. IEEE Com-
puter Society.

[5] A. M. Caulfield, T. I. Mollov, L. A. Eisner,
A. De, J. Coburn, and S. Swanson. Provid-
ing safe, user space access to fast, solid state
disks. In Proceedings of the seventeenth in-
ternational conference on Architectural Support
for Programming Languages and Operating Sys-
tems, ASPLOS ’12, pages 387–400, 2012. ACM.

[6] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
B. C. Lee, D. Burger, and D. Coetzee. Better
i/o through byte-addressable, persistent mem-
ory. In SOSP, pages 133–146, 2009.

[7] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh.
The logical disk: A new approach to improving
file systems. In SOSP, pages 15–28, 1993.

[8] B. Geroffrey.
[9] D. Hitz, J. Lau, and M. Malcolm. File system

design for an nfs file server appliance. In Pro-
ceedings of the USENIX Winter 1994 Technical
Conference on USENIX Winter 1994 Techni-
cal Conference, WTEC’94, pages 19–19, 1994.
USENIX Association.

[10] A. i A. Wang, P. Reiher, and G. J. Popek.
Conquest: better performance through a
disk/persistent-ram hybrid file system. In In
Proceedings of the 2002 USENIX Annual Tech-
nical Conference, pages 15–28, 2002.

[11] W. K. Josephson, L. A. Bongo, D. Flynn, and
K. Li. Dfs: A file system for virtualized flash
storage. In FAST, pages 85–100, 2010.

[12] J. Katcher. Postmark: A new file system bench-
mark. Technical Report TR3022, Network Ap-
plicance Inc., 1997.

[13] H. Volos and M. M. Swift. Aerie : Distribut-
ing file system functionality for direct access to
storage class memory.

[14] X. Wu and A. L. N. Reddy. Scmfs: a file system
for storage class memory. In SC, page 39, 2011.

7

http://www.textuality.com/bonnie/

	Introduction
	Motivation
	Design
	PostMark
	Bonnie

	Implementation
	Challenges

	Evaluation
	PostMark evaluation results
	Bonnie evaluation results

	Related work
	Conclusions

