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Abstract

There is a huge semantic gap between file system and

storage in servicing an I/O request. In a virtual envi-

ronment the gap increases even more, as the hypervisor’s

I/O scheduler is not aware of the semantics of the I/O

request that the application issues. To address this limi-

tation and to retain the semantics of the I/O requests in

a virtualized environment, we tag each I/O request from

the guest application all the way down to the hypervi-

sor’s I/O scheduler. By segregating I/O requests, the

hypervisor can give differentiated I/O services to differ-

ent applications both within and across the guest virtual

machines. In this paper, we present the design and im-

plementation of such a system on Kernel Based Virtual

Machine. We evaluated our system on hard disks and

solid state disks for different workloads. Our results show

that preferential services are well achieved for applica-

tions running within and across guest virtual machines.

1 Introduction

A new era of cloud computing has begun with the
advent of virtualization. Virtualization has improved
hardware utilization allowing service providers to of-
fer a wide range of applications, platform and infras-
tructure solutions through low-cost, commoditized
hardware. However, virtualization introduces many
layers of abstraction such as nesting of guest and host
file system, making the system more complex. This
leaves a huge semantic gap between host and guest
file system in servicing an I/O request.

Multiple guest operating systems can run atop a
hypervisor and often each guest runs a lot of appli-
cations. In most cases each of the guest operating
systems has virtual disks which often share a single
shared physical disk. So the I/O requests from the
guests have to be scheduled in the hypervisor accord-
ingly. In real world settings, latency sensitive appli-
cations need their I/O requests to be served imme-
diately whereas I/O requests from applications like
log pushers are primarily used for data mining and
business intelligence and are not latency sensitive.

Hence different applications often need different lev-
els of I/O service.

VMwares Storage I/O Control [9] and Xen’s
credit scheduler [3] show that differentiated services
can be provided across the guests running on a phys-
ical machine. Preferential services to applications
running in a guest can be achieved by using appro-
priate scheduler in the guest. However this solution
does not solve the problem of providing a differenti-
ated service across applications running on different
guests. In a real world environment, often a low pri-
ority process running on a guest can block a high
priority process running on another guest. So it is
necessary to give differentiated access to applications
even across guests. This differentiated I/O service
cannot be achieved with VM level prioritization.

In this paper, we address this issue and propose
a solution for providing differentiated I/O services
for applications running within and across guest vir-
tual machines. This is enabled by passing the tags
through the I/O stack of the KVM [6] virtual envi-
ronment specifically modifying the I/O system call
interfaces and disk drivers.

The rest of the paper is organized as follows. Sec-
tion 2 motivates the need for providing differential
services for different applications running across dif-
ferent virtual machines and gives a background and
related work. We present our design in Section 3,
our implementation details in Section 4 and evalu-
ation in Section 5. We conclude with our learnings
and future works in Section 6 and 7.

2 Motivation

Cloud environments host heterogeneous set of ap-
plications with different I/O requirements. Prior
work related to I/O prioritization focusses on pro-
viding differentiated services between virtual ma-
chines or virtual disks. VMware’s Storage I/O Con-
trol (SIOC)[9] provides storage I/O performance iso-
lation for virtual machines to run important work-
loads in a highly consolidated virtualized storage en-
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vironment. It protects all virtual machines from un-
due negative performance impact due to misbehav-
ing I/O-heavy virtual machines, often known as the
noisy neighbor problem. Furthermore, the service
level of critical virtual machines can be protected
by SIOC by giving them preferential I/O resource
allocation during periods of contention. However it
doesn’t offer differentiated services across all applica-
tions accessing the datastore. Xen’s credit scheduler
is a proportional fair share scheduler that supports
shares at domain level granularity.

Linux’s Completely Fair Queuing(CFQ)[1] also
supports I/O prioritization. Yet, there is no mech-
anism in the original virtualized architecture to get
the priority of the I/O request in guest operating sys-
tem down in the hypervisor’s I/O scheduler. Hence
in order to get differentiated services out of CFQ, pri-
oritization must be enforced at the I/O schedulers of
both the guest and the hypervisor. CFQ scheduler
can then place synchronous requests submitted by
virtual machines into a number of per-virtual ma-
chine queues and then allocate time slices for each
of the queues to access the disk. The length of the
time slice and the number of requests a queue is al-
lowed to submit depends on the I/O priority of the
given virtual machine. Within the guest operating
system, differentiated services to processes could be
provided in the same manner. Nevertheless using the
above approaches leads to two issues

Figure 1: High and low priority process in differ-
ent VMs may be treated equally

1. A low priority process running in a virtual ma-
chine and a high priority process running in an-
other virtual machine may get treated equally.
This is because the hypervisor’s I/O scheduler
is not cognizant of the priorities of I/O requests.

2. Another issue is that, this approach might in-
troduce unintended delay in read latency. Since

Figure 2: Blocking low priority reads in guest OS
may ignore hypervisor’s buffer cache

priorities are enforced at the guest I/O sched-
uler, it might block a low priority read request
to serve high priority within the guest OS. Yet,
if the data for the low priority read request is in
the hypervisor’s file system buffer cache, then it
could have been served without hitting the disk.
Thus blocking low prioritized I/O requests will
introduce unwanted delays in servicing read re-
quests.

Hence with no intrinsic support from virtualiza-
tion technologies to support guest process level pri-
orities for I/O requests, we need to design a system
that enlightens the hypervisor’s I/O scheduler about
the priorities of the I/O requests in the guest operat-
ing systems. As applications are well aware of their
workload, they can tag their I/O requests with ap-
propriate priorities. For tagging we use an approach
similar to Differentiated storage services[7].

3 Design

To notify the priority of the application’s I/O re-
quest, the system has to associate the tag which in-
dicates the priority of the I/O request through the
layers of I/O stack in the guest operating system and
hypervisor. In this paper, we will focus only on reads
and give pointers to our initial thoughts on designing
for writes in our future work. We have implemented
our design in KVM, while this approach could be
easily incorporated in other virtualization technolo-
gies as well. KVM module which is part of the Linux
kernel acts as the hypervisor and has three modes of
execution.

• kernel-mode: switch into guest-mode and han-
dle exits due to I/O operations
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• user-mode: does I/O when guest needs to access
devices

• guest-mode: execute guest code, which is the
guest OS except I/O

It relies on virtualization support from the proces-
sor. KVM uses Qemu[4] for machine emulation.
Qemu supports virtualization by co-operating with
the KVM kernel module in Linux. Each virtual ma-
chine is a user space process. In the context of KVM,
host and hypervisor can be used interchangeably.

3.1 Life cycle of a read request

We will briefly explain the lifecycle of a read re-
quest of an application in the guest operating sys-
tem. The application issues an I/O system call like
read, pread through the system call interface in the
user space context of the virtual machine. This will
lead to submitting an I/O request within the kernel
space context of the virtual machine. Then it will
pass through the VFS, file system buffer cache, block
layer and eventually to the device dependent driver
like SCSI, ATA compliant IDE. The device driver
will issue privileged instructions to read the memory
regions exported over PCI for the corresponding de-
vice. These instructions will trigger VM-exits that
will be handled by the core KVM module within the
hypervisor’s kernel-space context. A VM-exit will
take place for each of the privileged instructions re-
sulting from the original I/O request in the VM. The
privileged I/O related instructions are passed by the
hypervisor to the Qemu process. These instructions
will then be emulated by device-controller emulation
modules within Qemu (either as ATA or as SCSI
commands). Qemu will generate block-access I/O
requests which will be handled by the traditional
I/O stack of the hypervisor (Linux kernel). Upon
completion of the system call, Qemu will ’inject’ an
interrupt into the VM that originally issued the I/O
request. The guest operating system will complete
the read system call originally issued by the applica-
tion.

3.2 Modifications

We will now introduce the modifications that we
made to support differentiated I/O services in Qemu-
KVM.

3.2.1 New system calls to associate tags with
I/O requests

The conventional I/O system call interface doesn’t
have an inherent way to associate a tag with the I/O

Figure 3: Differentiated I/O Services System De-
sign

request. Hence we introduced two new system calls
to complement I/O tagging. Applications in guest
operating systems can either tag I/O request while
opening a file descriptors or during individual reads.
The process after obtaining a file descriptor upon
opening a file, calls fcntl to set a tag for the file de-
scriptor. Subsequent read system calls on the file
descriptor will carry the tags to the I/O scheduler
layer. Similarly we expose a new system call pread p
analogous to pread except that it carries tags to the
I/O scheduler layer. Applications can use this new
pread p system call to associate tags to individual
read requests. Thus the system supports prioritiza-
tion per read request within and across virtual ma-
chines.

3.2.2 Noop+ scheduler at the guest operat-
ing systems

Does Virtualization Make Disk Scheduling Pass [5]
shows that choosing the right schedulers at the ap-
propriate level of the virtualization stack can have
a significant impact on the performance of the sys-
tem. Because of the lack of coordination between the
guest and host in a virtual environment, scheduling
happens at two layers. First, by the I/O scheduler
in the guest and next by the I/O scheduler in the
host. This will hurt performance and wastes resource
as 50% of the CPU cycles spent in scheduling a re-
quest happens at the guest I/O scheduler. This is
not necessary as the request has to be scheduled at
the hypervisor anyway.

In addition to that, the guest I/O scheduler does
not have an overall picture about the I/O requests
issued by the other guest virtual machines. So it can-
not schedule the I/O requests efficiently. Scheduling
at the lowermost layer always leads to better schedul-
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ing decisions because of the global picture. Hence we
use a Noop+ scheduler in the guest akin to Noop[2]
which inserts all incoming I/O requests into a simple
FIFO queue. We call it Noop+ since it has extra
logic to pass down the tags in addition to the I/O
requests.

3.2.3 Editing disk driver to pass down the
priorities to the hypervisor

The next modification is in the disk driver layer of
the guest operating system to pass down the priori-
ties to the hypervisor. This necessitates changes to
the driver code for I/O protocols like SCSI, ATA,
virtio etc. Each such I/O protocol requires different
types of modifications to pass down the associated
metadata.

3.2.4 Qemu modification to support tagged
I/O requests

After all the interactions that we mentioned earlier
in the Qemu-KVM I/O stack, the I/O commands
are available in the Qemu emulation module. The
tag is thus extracted from the I/O command. The
underlying storage for the virtual disk can be either
virtual disk image formats such as vmdk, qcow2 or
physical disks. In both cases, Qemu I/O emulation
layer issues block I/O requests for the corresponding
I/O commands. We modified this part of Qemu to
use our custom system call pread p to pass down the
extracted tag to the hypervisor’s I/O stack.

3.2.5 Semantic aware I/O scheduler at the
hypervisor

Since the tags associated by the application to the
I/O requests have been passed down to the hypervi-
sor, it knows about the semantics of the I/O requests.
So based on the tags, the hypervisor’s I/O scheduler
can make intelligent scheduling decisions with any
policies.

We envision that the design should be flexible to
plug-in any scheduling algorithm and provide one
such implementation, a stride[8] based scheduler.
The details of the algorithm are presented in Section
4.

4 Implementation

In this section we will mention the specific
changes that we made for implementing differenti-
ated I/O services. We added a new fcntl function in
fcntl.c to associate the tag with the file descriptor. A
new system call was introduced in unistd.h. Changes

were also made in file system layers read write.c
and blk-core.c to passdown the tags. Two elevator
algorithms for I/O scheduling guest.c and host.c
were used in guest and host kernels respectively. We
edited the sd.c , the driver layer for disk. From the
SCSI specification we identified an unused byte in
the command descriptor block of READ, WRITE
commands and we leveraged that to inject the tags.
In Qemu, we edited block device emulation module
to use the custom system calls pread p to associate
tags to the I/O requests. These tags are used then
in the hypervisor’s I/O scheduler for scheduling.
IDi is the tag which gets passed along the I/O
stack. Whenever I/O scheduler has to dispatch a
request to the disk, it invokes Dispatchrequest().
The following is the algorithm.

4.1 Stride Scheduler Algorithm

Idi - Identity(ID) of the application Ai

Sharesi - Shares assigned to Idi
V IOi - Virtual I/O counter for Idi
Stridei - Global-shares / Sharesi

Dispatch request()
{

• Select the request k which has the lowest virtual
I/O counter

• Increase V IOk by Stridek

• If process k has slept for long time then

– V IOk = max(min(V IOi which are non
zero), V IOk)

• if (V IOk reaches threshold)

– Reinitialize all V IOi to 0

• Dispatch the request

}

5 Evaluation

We implemented our system, as described in the
previous sections, in the KVM hypervisor. This sec-
tion evaluates the functionality and performance of
our implementation on hard disks and solid state
drives(SSD).
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5.1 Experimental setup

We consider two metrics - throughput and la-
tency, for checking whether differentiated service is
achieved across different applications running in the
guests. A careful reader may think that checking
for preferential service using throughput and latency
will be a similar kind of measurement as latency of a
process having higher throughput will be lesser than
that of the process that has the lower throughput.
But in some situations, two or more processes may
have the same throughput, but their latencies may
be different. Preferential service is considered to be
achieved even in such situations.

We tested our system on a machine running
Kubuntu 12.04 with Linux Kernel 3.2. The system
includes 8GB of memory. The hard disk rotates at
a speed of 7200 rpm and SSD delivers 35000 and
85000 IOPS for reads and writes respectively. Each
guest virtual machine launched has a memory of 1GB
and runs Ubuntu Server 12.04 with Linux Kernel 3.2.
Our experiments involve launching same or different
set of applications simultaneously in different guests
and checking for differentiated services by measuring
their throughput and latency.

We benchmarked our system with various work-
loads which tested the file I/O performance. The
workloads which we used are as follows. Sysbench
sequential read and random read workload checked
for differentiated service across the applications dur-
ing sequential reads and random reads respectively.
These workload tested on 2000 files, each having a
size of 16 MB(since the guest memory size is 1GB).

In order to check whether preferential service is
obtained in real world workloads, we tested our sys-
tem on filebench’s web-server and mail-server work-
loads. The former emulates a simple web-server
I/O activity while the latter emulates a simple file-
server I/O activity. We also tested our system on
DHT(Distributed Hash Table) reads which is emu-
lated by voldemort performance analysis tool. All
the above workloads were run for three minutes. We
also compare our results with linux’s CFQ(Complete
Fair Queuing) scheduler which has the ability to
schedule different process with different I/O prior-
ities.

5.1.1 Hard disk

This section shows the throughput and performance
of I/O activity generated by different workloads on
hard disks.

Figure 4 and Figure 5 shows the throughput and
latency of our system while running the same kind
of workload on five different applications(launched

Figure 4: Shares vs Throughput for different
workloads

Figure 5: Shares vs Latency for different work-
loads

across different virtual machines) with different num-
ber of shares allocated to each of them. The shares
are represented in X axis. Figure 4 shows that, for
sequential read, random read and web-server work-
loads, there is an increase in throughput as the num-
ber of shares increases for different applications . But
for mail-server workload, the throughput remains
constant across applications with different shares.

Figure 5 shows that as the number of shares
allocated to the applications increases, the latency
decreases for random read, web-server and DHT
workloads, whereas latency is not affected by shares
for sequential read and mail server workloads. From
these graphs we infer that preferential service is ob-
tained in sequential read, random read, mail-server
and web-server workloads. Mail-server workload
does not obtain preferential service because it is
dominated by both reads and writes. Since we have
not implemented the I/O tagging for write system
calls, preferential service is not observed.
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Figure 6: Priority/Shares vs Throughput for dif-
ferent schedulers

Figure 6 is an interesting graph which shows the
comparison between running our system and running
CFQ scheduler with priority. CFQ can run different
processes with different I/O priorities levels. So one
can use CFQ I/O scheduler in the hypervisor and
launch virtual machines with different priority lev-
els. Then we can check if we can achieve preferential
service by running different applications with differ-
ent virtual machines.

We compared the throughput obtained for appli-
cations from our system with that of the one ob-
tained by launching different virtual machines hav-
ing different I/O priorities. In CFQ, lower number
corresponds to higher priority. Figure 6 shows that
preferential service is obtained as expected in our
system since the throughput increases as the num-
ber of shares increases[Noop+lkms]. But in CFQ
with priority[Noop+CFQ-WP], clearly preferential
service is not obtained as the throughput for a lower
priority process is higher than that of the higher pri-
ority process.

We also checked for preferential service within the
guest by launching different applications with dif-
ferent priorities with CFQ scheduler running in the
guest. Figure 6 shows the graph obtained in such a
setup. Even in this case, preferential service is not
obtained.

The real world setting often is a mixed workload
setting where different services run on different
applications across virtual machines. So we tested
our system by running different kind of workloads
on three applications with different number of
shares allocated to each of them. For comparison,
we tested the same experiment with CFQ having
different priorities for different guests.

Figure 7: Priority/Shares vs Throughput for dif-
ferent schedulers

Figure 8: Schedulers vs Throughput for different
workloads

Figure 9: Schedulers vs Latency for different
workloads

We compared the throughput and latency ob-
tained for mixed workload applications obtained
from our system with that of the ones obtained by
launching different virtual machines having different
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I/O priorities. We also compared our system with
the default system which will not provide any differ-
entiated services. Figure 7 and 8 show that through-
put and latency of the mixed applications with differ-
ent number of shares/priorities. Even in this setting,
our system(Noop+lkms) gives preferential service as
expected. In CFQ with priority (Noop+CFQ-WP),
a lower priority process gets higher throughput and
less latency than a higher priority process. Figures 6,
7 and 8 imply that CFQ with priority cannot operate
in virtualized environments.

Figure 10: Throughput for different dispatches

Figure 10 is an interesting graph which shows the
effective throughput for different dispatch numbers
while running sysbench random read workload on
applications having different number of shares. Dis-
patch number represents the maximum number of
uncompleted requests a disk can have before I/O
scheduler issues further more requests to it. Different
colors in the graph represents different applications
and applications are arranged in descending order of
shares from top to bottom. For dispatch is 1 and 3,
the system gives preferential service across different
applications whereas for dispatch 5 and dispatch in-
finity preferential service is not obtained. But the
effective throughput of the disk is high for dispatch
5 and dispatch infinity in comparison with dispatch
1 and 3. As our goal was to provide differentiated
services, in our system reduction in effective through-
put was compromised. However this situation can be
eliminated by having smart disks. In this paper, we
did not talk about smart disks.

5.1.2 SSD

We ran the same set of experiments on SSDs. This
section shows the throughput and performance of
I/O activity generated by different workloads on

hard disks.

Figure 11: Schedulers vs Throughput for differ-
ent workloads

Figure 12: Schedulers vs Latency for different
workloads

Figure 11 and Figure 12 show the throughput
and latency of our system while running the same
kind of workload on five applications(across different
virtual machines) with different number of shares,
which is represented in X axis. Figure 11 shows that
the throughput of applications increases as the num-
ber of shares allocated to them increases for sequen-
tial read and random read workloads. However, for
mail-server and web-server workloads, the through-
put remains almost constant. Figure 12 shows that
as the number of shares allocated to the applications
increases, the latency decreases for random read,
web-server and DHT workloads, whereas latency is
not affected by shares for sequential read and mail
server workloads. These graphs show that preferen-
tial service is obtained in sequential read, random
read, DHT reads, but not for mail server and web-
server workloads. This is because SSDs are faster
than hard disks, and hence all the read requests are
satisfied way faster than that of the hard disk. In
order to observe the differentiated services in SSDs,

7



we have to generate a larger number of read requests
from the applications.

6 Future Work

So far we have provided differentiated access to
only read requests. For providing differentiated ac-
cess to writes, we have to find a mechanism to pass
information from the guest to the hypervisor and
vice versa. In the current implementation, we have
assumed that the guest virtual machines are coop-
erative. But to deploy in a real world environment
such as cloud, we need to incorporate mechanisms for
security. We can also use our system for accounting
purposes: one can account for the number of requests
an application issues to the disk storage. If a smart
disk is available, we can pushback the tags to the
disk controller layer in the smart disk and thereby
improving the effective throughput of the storage as
well. We are also planning to compare our results
with VMwares ESX server with SIOC.

7 Conclusions

In summary, we have presented a system to pro-
vide differentiated access to I/O storage on KVM
hypervisor by reducing the semantic gap between
the guest and host filesystem in a virtual environ-
ment. Our evaluation results show that by tagging
each I/O request, one can improve the performance
of latency sensitive applications in a virtual environ-
ment by giving higher priority to them. I/O requests
of applications which collect statistics for business
intelligence can be given lower priority. Since vir-
tualization has marked a new era in the computer
world, reducing the semantic gap in processing I/O
requests may open a new area of I/O optimizations
and many new conferences such as CADAVER!
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