A Prototype Implementation of a Remote Storage System Driver

Sambavi Muthukrishnan

Computer Sciences Department

University of Wisconsin – Madison

{sambavi}@cs.wisc.edu

May 11, 2000

Abstract

Storage systems with high throughput are increasing in importance and methods to achieve such systems include parallelizing disk IO by striping across multiple physical devices and eliminating the file server from the data path using Network Attached Secure Disks (NASD). In this paper, an architecture and prototype implementation of a block device driver in Linux that presents a collection of NASDs as a single virtual storage system to the upper layer (a filesystem mounted on it) is presented. RAID level 0 (striping) across the NASDs is implemented in the driver.

1 Introduction

With the demands for storage throughput ever increasing, there is a need to develop storage systems that deliver high throughput. The current storage system architectures are all limited by the file server and storage controller bottlenecks. The concept of Network Attached Secure Disks (NASD) has been proposed to overcome this problem. In this model, disk management functions are embedded into the devices to able direct client communication with the devices provided they acquire capabilities from the file server [1]. This eliminates the file server from the data path, enabling high performance storage systems.

This paper presents a striping remote storage system architecture using NASDs as the remote storage devices, implementing the client as a block device driver in Linux. A file system can then be mounted on to the device corresponding to this driver. Due to the abstraction provided by Linux, all that any filesystem needs to be aware of is the device it is mounted on. This enables the presentation of a collection of remote storage devices as a single virtual device to the filesystem.

The main motivation behind implementing the model as a block driver is the abstraction that it provides. This model abstracts the storage system from the file system and hence allows for the storage system semantics to be decoupled from file system semantics. This enables mounting any filesystem on the driver, thus eliminating the need for a specialized file system that the user will need to use to be able to use a remote NASD storage system.

The platform chosen for the implementation of the block driver is Linux due to the need for change in kernel code and the fact that Linux is an open-source implementation of Unix. The version of Linux used is 2.2.12-20. The hardware platform consisted of a DEC Celebris XL 590 with a 90 MHz processor running Linux. The machine had 160 MB RAM and was connected to the local network in the University of Wisconsin-Madison through a 100 Mbps Ethernet.

The rest of this paper is organized as follows. Section 2 gives a brief introduction to Network Attached Secure Devices. Section 3 presents the overall architecture of the remote storage system driver model while Sections 4, 5, 6 and 7 describe the internals of the various components of the system. Section 8 presents some conclusions and directions for future work.

2 Network Attached Secure Devices

Demands for storage throughput continue to grow due to ever larger clusters sharing storage, rapidly increasing client performance, richer data types such as video, and data intensive applications such as data mining. For storage subsystems to deliver scalable throughput, that is, linearly increasing application bandwidth and accesses per second with increasing numbers of storage devices and client processors, the data must be striped over many disks and network links. Currently all access is through a storage controller and distributed file server which are bottlenecks. These bottlenecks arise because a single “server” computer copies data between the storage network and the client network while adding functions such as concurrency control and metadata consistency [4].

The NASD (Network Attached Secure Disk) architecture basically embeds disk management functions into the device, presenting storage through a variable length object interface. File managers allow clients to directly access specific storage objects repeatedly by granting a caching capability. Hence all data and control information travels across the network once and there is no expensive store-and-forward computer [4].

NASD presents a flat name space of variable length objects. NASD devices implement simple storage primitives efficiently and operate as independently of the file manager as possible. In addition, NASD partitions are variable-sized grouping of objects, not physical regions of disk media, enabling the total partition space to be managed in a manner similar to virtual volumes or virtual disks [4].

3 Architecture

Device drivers in Linux

The idea behind device drivers is that instead of putting code in each application to control a device, the device driving code is shared between applications. All versions of Unix have an abstract way of reading and writing devices. By making the devices act as much as possible as regular files, the same file handling calls such as read and write can be used for devices and files. Within the kernel, there are a set of functions registered with the file system, which are called to handle requests to do I/O on “device special files”, which are those which represent devices [5].

All devices controlled by the same device driver are given the same major number, and of those with the same major number, different devices are distinguished by different minor numbers [5].

There are two main types of devices under all Unix systems, character and block devices. Character devices are those for which no buffering is performed. For block devices, the buffer cache comes into play. Block devices must be random access. File systems can be mounted only on block devices [5].

Storage System Architecture

The overall architecture for the implementation of a device driver to communicate with multiple NASDs is indicated in Figure 1. The device driver is a block driver that communicates with multiple NASD drives and thus presents a virtual storage system to the higher layer (perceivably a file system mounted on the device). The individual components of the implementation are indicated in Figure 2. A brief description of the various components follows.

Communication Layer:

This is the lowermost layer, which provides network communication capabilities. The layer is responsible for exporting a general communication interface, which hides the details of the actual protocol/implementation. Since the driver works in-kernel and trapping out to user-space for communication is highly inefficient, every protocol implementation beneath this layer will have to be implemented both as an in-kernel version and a user-space version (for the user space NASD to use). The current implementation uses an in-kernel and user-space TCP implementation plugged in beneath this layer. Some experimentation with plugging in UDP has also been done but the addition of reliability features to UDP to be used in this model is yet to be explored.

Protocol client and server:

The protocol client on the driver side and the server on the NASD side essentially have an agreed upon common packet format which they use to send requests and get responses. At this layer, host to network order conversions and marshalling of parameters into the packet has to be done.

NASD implementation:

The NASD implementation basically exports an object-based interface for a drive. The interface functionality provided by the NASD is invoked by the server when it processes incoming packets. The current implementation provides a software prototype of a NASD, in that the prototype simply maps objects to files on the local file system instead of working on the hard disk directly. In the future, NASDs are expected to evolve as specialized hardware units and hence will provide much higher performance.

Figure 1: Architecture of the remote storage system driver

Block device driver

The block device driver is the core part of the implementation. It uses a configuration file as input to determine the NASDs it connects to. Each of the NASDs is described by a machine-port pair. The driver has the job of translating input requests specified in terms of the starting block number and number of blocks to process into output requests to the NASDs in the form of object identifier, starting offset and length of data to process. The driver stripes across the multiple NASDs it connects to. The current RAID level chosen is RAID 0 (striping) across the NASDs. The driver thus parallelizes IO operations by sending out non-blocking requests to the NASDs and then polling through the connections to the drives to get responses/acknowledgements. The driver maintains persistent connections with the drives to achieve maximum performance.

Figure 2: Detailed architecture of the remote storage system driver

4 Communication layer

The communication layer provides a general interface into which a particular mode of communication may be plugged in. In other words, it exports a general enough communication interface for any network protocol (like UDP, TCP, Active Messages) to be plugged in beneath it. This idea is shown in Figure 3 The idea behind generalizing this layer was to enable adding a faster network layer beneath as time progresses. Currently, the layer plugged in is TCP.

This layer is common to both the NASD server and the device driver. The only difference is that in the driver, the communication layer exports an in-kernel implementation of the layer using TCP. Essentially this involved programming for use of TCP sockets in kernel. On the NASD server side, since the NASD server is itself a user-level daemon, the TCP implementation is also user-level.

The exact interface exported by the communication layer is as follows:

Status netOpen(struct connId *retval, void *address)

Status netSend(struct connId *id, void *data, size_t len, void *toAddress)

Status netReceive(struct connId *id, void *data, size_t len, void *fromAddress)

Status netClose(struct connId *id)

Status netAccept(struct connId *retval, int *newFd)

Figure 3 The Communication Layer Interface

The connId structure describes the connection parameters. It consists of a pointer to an identifier for the connection, a field describing the type of the connection, a pointer to a structure containing protocol specific binding data and a set of flags. The identifier to the connection is for instance a file descriptor for TCP (when implemented at user-level) and a pointer to a struct socket when implemented in-kernel. The type of the connection basically indicates if it is a TCP connection or some other form of connection. This allows different applications written to use the communication layer to use different protocols beneath. The flags indicate connection flags like for instance whether the connection is blocking/ non-blocking.

In the netOpen call, the address parameter indicates the address to which a connection is to be made. This is used only in the case of a connection-oriented protocol like TCP being plugged in beneath and when the connection is opened up as a client. The server, instead, for connection-oriented protocols uses the netAccept call to accept connections to it. netSend and netReceive are generic data transfer functions and netClose serves to close the connection. The toAddress and fromAddress fields are provided in the data transfer functions to enable the use of these functions with non connection-oriented protocols.

The reason for choosing TCP for the current implementation was to ensure reliable sequenced data transfer without having to add this functionality over UDP. At a later stage, it makes sense to replace the use of TCP by a lighter-weight connection oriented protocol.

5 Protocol layer

The protocol layer is simply a layer that on the client side, marshals a request into a specific format and on the server side unmarshals it and executes it. Similarly responses are also marshalled and unmarshalled into the protocol format.

The packet structure in the protocol is indicated in Figure 4.

Request packet format

Response packet format

 Figure 4 Packet structure in the Protocol Layer

The request type denotes the particular functionality being requested from the NASD server (for instance, read a specified number of blocks) while the parameter length denotes the length of the parameters to be expected in the required parameters field or the return values field. The response status indicates the success or failure of the requested operation on the prototype NASD server.

6 Prototype NASD server

The prototype NASD server consists of two components – a server and the NASD interface implementation. The server is essentially a user-level daemon, which listens on a particular connection (socket bound to a port here since we use TCP) for requests made in the protocol format specified above to the NASD server. It then vectors the incoming request to the right function exported by the NASD server implementation. To enable the server to handle multiple connections at a time, the server has been multithreaded in the current implementation.

To get into more detail, the NASD server consists of a server component that starts up a daemon on a connection, accepts connections to it from potential clients and executes requests that come in on these connections in the specified protocol format. The requests that can come in are determined by the interface exported by the NASD drive. The current implementation of the NASD drive is a software prototype exporting the desired interface.

The chosen interface is a subset of the interface proposed in the Network Attached Secure Disks specification from CMU [1].

The interface exported is as follows:

1. create object

Input parameters [partition, input object attribute]

Return values [status, new object identifier, object attribute]

Creates a new object in the given partition. Currently, partitions are not considered and hence this will simply generate a new unique identifier for an object in the drive and create the object of the desired size as given in the input attribute value. This also adds an entry for the new object in the metadata information maintained for the drive.

2. remove object

Input parameters [partition, object identifier]

Return values [status]

Removes the object identified by the input identifier in the drive. The metadata maintained for the object also has to be cleaned up.

3. get attributes

Input parameters [partition, object identifier]

Return values [status, object attribute]

Gets the attributes for the object specified by the object identifier. This involves a lookup of the attribute for the object in the metadata information.

4. set attributes

Input parameters [partition, object identifier, input object attribute]

Return values [status]

Sets the attributes for the object specified by the object identifier. This involves a lookup of the attribute for the object in the metadata information and subsequent modification of the metadata.

5. read

Input parameters [partition, object identifier, data region]

Return values [status, data]

Read data from the specified region of the object identified by the input object identifier in the partition specified in the drive. The region identifies an offset into the object and a length of data to read.

6. write

Input parameters [partition, object identifier, data region, data]

Return values [status]

 Write the input data into the specified region of the object identified by the input object identifier in the partition specified in the drive. The region identifies an offset into the object and a length of data to write.

7. flush

Input parameters [partition, object identifier]

Return values [status]

Flushes the object identified by the object identifier to disk. This has been included as part of the interface to enable a caching implementation on these drives in the future.

8. Reformat/format drive

Input parameters [none]

Return values [status]

 Cleans up / formats drive.

The partition parameter is retained for the sake of adding functionality to the drive implementation later. In the current implementation, the partition is always set to default.

The attributes of an object in the drive consists of:

logical object size

object create time

object data modify time

object attribute modify time

In the current implementation, the drive is implemented as a software prototype on top of the local file system. The drive simply maps every object to a file in the local file system. Writing to the object involves a write into a specified location in the file and a read involves a similar operation.

The attributes of the objects are maintained in an in-core table in the drive. The table consists of one entry per object in the drive and this entry contains the object identifier, the corresponding file path and the object attribute record. This is maintained as a hash table that hashes on the object identifier.

The current implementation also includes a free identifier list to be able to reuse object identifiers. Whenever a new object identifier is to be generated, the list is checked to see if it has any available entries and if so, the entry is used as the new object identifier. This feature is currently not used in our implementation as described below.

For the use of objects with a block device driver, we deemed it fit that there just be one object per drive and any block reference is translated to an offset within that object. So there is no reuse of object identifiers needed since there is only one object in each drive. However this feature has been retained for future use.

Further to enable the correct functioning of the drive when it is restarted (since it is a user-level daemon, this can happen), the in-core attribute table has to be made persistent by writing it to a file and reading it back on restarting the drive with that persistent image. The read-in values are used to load the attribute table on restart.

The NASD server is started up with the following parameters:

nasd-drive <port> <path> [persPath]

The port indicates the port number on which the server listens for connections. The path is the directory within which the drive creates files that map to objects. The persPath parameter is the filename of the persistent dump.

7 Block device driver

This is the essential component of the implementation on the client side. The client of the storage system is implemented as a block device driver in Linux that communicates using TCP with multiple NASD drives to achieve the goal of a remote storage system. By exporting a block driver interface, the NASD storage system is transparent to the user who can simply mount a file system on top of it.

Block device drivers in Linux

Whereas character device drivers provide procedures for directly reading and writing data from and to the device they drive, block drivers do not. Instead they provide a single request (strategy) procedure that is used both for reading and writing. The request procedure, instead of using explicit input and return values, looks at a queue of requests for I/O and processes the request one at a time in order. The requests are already sorted by the time the driver reads the queue. When this function is called, if the driver is not interrupt driven, it simply processes request for blocks to be read from or written to the device, until it has exhausted all pending requests. On the other hand, if it is interrupt driven,the request procedure schedules an interrupt to take place, and then lets the interrupt handling function end the request and call the request procedure again to schedule the next request (if any) to be processed [2]

The request at the top of the queue is represented as CURRENT. This request is basically a request structure. It contains all the information needed to process the request including the sector number, number of sectors to be retrieved/ written, the type of request (read/write), a pointer to a memory buffer (to store read in data or which contains the data to be written) and a pointer to the next request.

The length of a sector is defined by the driver on initialization. The driver also registers the strategy routine when it is initialized. Further it can set the maximum number of sectors per request and the maximum read ahead for the device. Sectors on the device are numbered consecutively starting from 0. If the physical device is addressed by some means other than sectors, it is the responsibility of the device to translate.

Within the above organization comes in the buffer cache. Any request which can be satisfied from the buffer cache is not queued on to the request queue for the driver but is instead handled in a higher layer which manipulates the buffer cache to satisfy the request.

When a file system is mounted on top of a block device, the file system uses the device by making requests to the block driver indirection functions (the layer above the drivers). This layer decides if the request can be satisfied from the buffer cache and if it cannot queues a request on to the device specific request queue using the elevator algorithm [2] to insert the request at the right place. The layer also does clustering/merging of the requests for the device if the device has been configured for clustered requests.

NASD device driver

The NASD block device driver is a non interrupt-driven block driver in Linux. The driver has been implemented as a dynamically loadable kernel module with minimum changes to the Linux kernel. The driver simply takes requests off its request queue and processes them until there are no remaining pending requests. The client protocol functionality and the in-kernel communication layer and TCP socket implementation are also dynamically loadable kernel modules.

The NASD driver takes as input a configuration file, which specifies the machine IP addresses and port numbers on which NASD drives are available and to which it should connect. Further input includes the number of blocks per NASD drive and the persistent dump file path. The persistent dump in the case of the NASD block driver consists just of the object identifiers on the various drives. The driver just uses one object per drive and translates incoming sector numbers to a drive address and offset within the object on that drive. On initialization, the driver first registers its strategy routine, sets its maximum read ahead, block size and maximum sectors per request. It then reads the configuration file and loads the address and port information into internal data structures (which are simply arrays of port numbers and machine IP addresses). It logically numbers the drives (for its reference) from 0 depending on the order in the configuration file. As a next step, it reads the persistent dump file (if it exists), to load another internal data structure which is simply an array of object identifiers corresponding to the drives in their logical ordering.

Every driver implements an open and release function for the device that it drives. The NASD driver, on an open, sets up TCP connections to all the drives specified in the configuration file using the information in its internal data structures if it is the first time that the device is being opened. It uses the communication layer interface to achieve the above. Since the communication layer interface is generic, the device can easily be adapted to any other protocol other than TCP to achieve the communication with the drives. The driver basically sets up one connection per drive in client mode to the NASD drive servers Further it checks to see if it has been started from a persistent image. If not, it sends create requests to all the drives with the size of the object to create determined by the input parameter (as described before). It then increments the module usage count. In the release function it simply decrements the module usage count.

The reader may have noticed that the TCP connections are not closed in the release function. The reason for this is that for higher performance, persistent connections are maintained whereby for the entire life of the driver module, only one connection is used to communicate with each drive. The overhead of setting up the connection is incurred only once. After that all that is done is data transfer through the connection.

The crucial part of the driver is the request function/ strategy routine. The NASD driver operates on the NASD drives it connects to using RAID level 0. In other words, it does simple striping of the blocks on the various drives. The striping size is 1 block. Striping is of no use unless the requests to the driver are clustered. As already mentioned, the device has to be configured to accept clustered requests. What happens when clustered requests are accepted is that whenever a new request is added to the request queue of the driver, it is checked to see if it can be merged with the previous request. The merging can be done only if both of them request the same operation (read/write) and the ending sector for the operation of the first request is the sector exactly before the starting sector of the request being added. In this case both these requests can be run at one shot and hence can be merged. By default, the layer above the block drivers does not send clustered requests to a driver. To ensure that it does so, a change has to be made to the kernel code by including the major number of this device driver in the routine that adds requests to the request queue of a device.

Drive 0

Drive 1

Drive 2

Block number

 0

 1

 2

Block number

 3

 4

 5

Block number

 6

 7

 8

 …

(a)

Drive 0

Drive 1

Drive 2

Block number 0

 0

 1

 2

Block number 1

 3

 4

 5

Block number 2

 6

 7

 8

 …

(b)

Drive 0

Drive 1

Drive 2

Block number 0

 20

Block number 1

 21

 22

 23

Block number 2

 24

 25

 26

Block number 3

 27

 28

(c)

Figure 5 Striping across multiple NASDs

After performing some sanity checks on the request (for example, whether the sector number requested exists on the device at all), the actual handling of the read or write request is done. Read and write request handling is similar but for the direction of the data transfer. Only the read request handling is explained in detail below and this can be extrapolated to understand write request handling.

The first step in the read request handling is to translate the sector number and number of sectors to be read in into a set of requests to the NASD drives. These requests to the drives are specified in terms of the offset within the object on the drive and the size of the data to read in. To optimize the reading in of data, all the blocks to be read from a drive are read in at one shot and mapped back to the original block number after the data has been retrieved.

This process is explained in Figure 5 Consider the case depicted of reading in 9 blocks starting from sector number 20. The number of drives to which the device is connected is 3. By the striping principle described before, the blocks are striped with a striping size of 1 block leading to the blocks numbered from 0 onward to be stored on the drives as shown in Figure 5. The drives are logically numbered from 0 to 2 as per their order in the configuration file.

 Figure 5 shows the offset in terms of the block size within the drive for each of the blocks. So block 0 in the device is block 0 in drive 0 and block 3 in the device is block 1 in drive 0. Similarly block 1 in the device is block 0 in drive 1 and block 4 in the device is block 1 in drive 1. This thus gives the logical mapping of block numbers on the device to drive numbers and the offset within the drives.

Now consider Figure 5c, which indicates the incoming request for 9 blocks starting from block number 20. The figure indicates the blocks to be returned to satisfy the request. Given this information, the translation to the following information has to be done.

Retrieve 3 blocks from drive 0 starting from drive block 1,

Retrieve 3 blocks from drive 1 starting from drive block 1,

Retrieve 3 blocks from drive 2 starting from drive block 0.

So the information to be determined is the number of blocks to retrieve from each disk and the starting drive block number. This information is retained in arrays of size equal to the number of drives the driver connects to. Further, during this process of translation, a drive status array is also set up. This array indicates the status of the drive throughout the read/write process. It indicates if the drive is not functioning properly or if the drive is unable to satisfy the request made to it or if the drive has successfully completed the request made to it. If the number of blocks to read from the drive is 0, the drive status indicates this so that a request is not sent to the drive at all. The drive can be assumed to have completed its request.

The next step is to send out requests for the data to the drives. This is done using the client protocol functions exported in accordance with the protocol layer. The block number abstraction used to calculate the drive requests to make are now translated to raw requests of the form

Retrieve 3 * BLOCKSIZE bytes from drive 0 starting from offset 1*BLOCKSIZE,

Retrieve 3 * BLOCKSIZE bytes from drive 1 starting from offset 1*BLOCKSIZE,

Retrieve 3 * BLOCKSIZE bytes from drive 2 starting from offset 0*BLOCKSIZE.

After the requests are sent out, the connections to the drives are polled for responses to the requests. The responses are thus polled for using non-blocking receive on sockets. As and when responses come in the drive status array is updated and the return value of the request determined to be an error value or success. Only if all the drives succeed in processing the requests to them, does the request to the driver succeed. Thus the drives can process the requests made to them in parallel.

Once data is retrieved from a drive, it has to be sorted out and put back into the right location in the return memory buffer for the request. This remapping takes place such that once the block offset for the first sector returned from a drive is determined, the rest of the blocks returned from the drive simply go into the return buffer at intervals of BLOCKSIZE*(number of drives). As an example, the data returned from drive 0 in the above example will be remapped as follows:

Transfer 0th drive block to return buffer block 1,

Transfer 1th drive block to return buffer block 4,

Transfer 2th drive block to return buffer block 7.

A similar translation has to be done for data returned from drives1 and 2. This translation, once done for data returned from all the drives, will lead to the return memory buffer being filled.

Writes are handled in a similar manner except that the first step is to take the input memory buffer and sort it into data to be transferred to the respective drives. The write requests are then called with these respective data buffers. The driver then polls through the drives waiting for acknowledgements from them for the writes.

This completes the discussion on the driver and how it functions. The concept of the driver striping across multiple drives may be easily extended to other RAID levels (like striping with mirroring).

8 Conclusions and future direction

This paper presents an implementation of a block device driver in Linux that presents a virtual storage system interface to the higher level filesystem mounted on it. The actual device that the driver works with is a set of remote Network Attached Secure Disks that export an object based interface.

The first step for future work is a performance study and comparison of the performance of a file system mounted on a device using the developed block driver against a filesystem mounted on a device using the usual hard disk driver. This would give valuable insight into performance bottlenecks and possible performance tuning measures.

There are a lot of other possible directions for future research. One includes incorporating concurrent drivers connecting to the same set of NASD drives. Also, the effects of mounting multiple filesystems on a single device are to be studied. The driver currently starts up from a static configuration file, which specifies the drives to connect to. Future work includes dynamically adding drives and dynamically handling failure of drives.

One important area of future work is the study of including adaptation techniques to be able to change the striping ratios on the drives according to their performance. This would involve collecting implicit or explicit information on the state of the drives and then using this to determine performance faults in drives and change striping ratios accordingly.

References

[1] Gibson, A. Garth, et al. ,‘Filesystems for Network-Attached Secure Disks’, Technical Report, CMU-CS-97-118,

 http://www.pdl.cs.cmu.edu/PDL_FTP/NASD/ CMU-CS-97-118.ps

[2] Johnson, K. Michael, ‘Kernel Korner – An Introduction to Block Device Drivers’.

[3] Beck, M., et al., ‘Linux Kernel Internals’, Second Edition, Addison Wesley, 1998.

[4] Gibson, A. Garth, et al. , ‘NASD Scalable Storage Systems’, USENIX99, Extreme Linux Workshop, Monterey,

 CA, June 1999.

[5] The HyperNews Linux KHG Discussion Pages.

Active Messages

TCP

UDP

Communication Layer

Return values

Parameter length

 Response status

Required parameters

Parameter length

 Request type

Protocol Server

Protocol Server

Protocol Server

Communication Layer

 Protocol Client

NASD interface implementation

NASD interface implementation

 User Space

NASD interface implementation

Device driver

Kernel Space

 File System

Kernel Space

 User Space

File System

NASD

NASD

NASD

Device driver

5
15

