
Baby-Step Giant-Step Algorithms for the Symmetric Group

Eric Bach∗
bach@cs.wisc.edu

Bryce Sandlund∗
sandlund@cs.wisc.edu

University of Wisconsin - Madison
1210 W Dayton St.
Madison, WI 53706

ABSTRACT
We study discrete logarithms in the setting of group actions.
Suppose that G is a group that acts on a set S. When
r, s ∈ S, a solution g ∈ G to rg = s can be thought of
as a kind of logarithm. In this paper, we study the case
where G = Sn, and develop analogs to the Shanks baby-
step / giant-step procedure for ordinary discrete logarithms.
Specifically, we compute two sets A,B ⊆ Sn such that every
σ ∈ Sn can be written as a product ab of elements a ∈ A
and b ∈ B. Our deterministic procedure is close to optimal,
in the sense that A and B can be computed efficiently and
|A| and |B| are not too far from

√
n! in size. We also analyze

randomized “collision” algorithms for the same problem.

Keywords
Symmetric group, group actions, discrete logarithm, colli-
sion algorithm, computational group theory.

1. INTRODUCTION
Collision algorithms have been used to obtain polynomial

(typically square root) speedups since the advent of com-
puter science. Indeed, there are even collision “algorithms”
in the world of analog measurement [9]. Most collision al-
gorithms exploit time-space tradeoffs, arriving at a quicker
algorithm by storing part of the search space in memory and
utilizing an efficient lookup scheme. One of the most famous
of these collision-style methods is Shanks’s baby-step giant-
step procedure for the discrete logarithm problem [17].

Traditionally, the discrete logarithm problem is the prob-
lem of finding an integer k such that bk = g, where b and
g are elements of a finite cyclic group of order n and b
is a generator (has order n). Then there is exactly one
k ∈ {1, . . . , n} such that bk = g. Shanks’s baby-step giant-
step algorithm then writes k = im+ j with m = d

√
ne and

0 ≤ i, j ≤ m and looks for a collision in the equation:

g(b−m)i = bj .

∗Research supported by NSF: CCF-1420750

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC ’16, July 19–22, 2016, Waterloo, ON, Canada
c© 2016 ACM. ISBN 978-1-4503-4380-0/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2930889.2930930

By precomputing values of bj (or b−mi) and storing them in
a hash table, a collision can be found in O(

√
n) time and

O(
√
n) space, recovering the solution k.

Various extensions of the baby-step giant-step algorithm
have been developed, mostly focusing on discrete logarithm
problems in groups that are important to cryptography. For
the classic problem, Pollard [14] contributed two elegant
methods that also exploit collision, but use very little space.
(They have yet to be rigorously analyzed, in their original
form.) For more information about these algorithms, and
more efficient methods that apply to specific groups of an
arithmetic nature, we refer to surveys by McCurley [11] and
Teske [18].

Ideas similar to the baby-step giant-step algorithm have
been used on 0-1 integer programming problems. (This
seems to be folklore.) Suppose we want to solve Ax = b,
where x is a 0-1 column vector. If we let x1 and x2 be half-
length column vectors, and split A down the central col-
umn into A1 and A2, we can use collision to solve A1x1 =
b−A2x2. (Here, we exploit not a group structure, but rather,
the associative law for matrix-vector multiplication.) For a
recent application, see [5].

In this paper, we focus on a different discrete log general-
ization that can be stated as follows.

Definition 1.1. Suppose that G is a finite group that
acts on a set S. Denote by rg the action of g ∈ G on
r ∈ S. Then, given elements r, s ∈ S, the group action
discrete logarithm problem is the problem of finding a g such
that rg = s.

The first step beyond brute force search for this problem
is to design an analog to the Shanks method. We will find
appropriate splitting sets A,B ⊆ G so that for any s in the
orbit rG = {rg : g ∈ G}, we have rab = s for some a ∈ A
and b ∈ B. A match in the two sets

{ra : a ∈ A} and {sb
−1

: b ∈ B}

recovers the solution g = ab.
In this work, we treat two situations. The first is one of

maximum generality: we know almost nothing about the
structure of G, and can only work with it by applying it
to elements of S. The second is maximally specific: G is
the symmetric group Sn. In neither case do we assume any
particular knowledge about the orbit of r or s.

For general groups (the first case), we analyze randomized
methods that achieve square root speedups when compared
to the naive approach of exhaustive search. For the impor-
tant second case, we develop deterministic algorithms that

http://dx.doi.org/10.1145/2930889.2930930

utilize the structure of Sn. These algorithms have close to
square root complexity.

To motivate our model and concentration on Sn, we give
several applications that fit into our framework.

2. APPLICATIONS
We first show how group actions lead to an unconventional

algorithm for the graph isomorphism problem (GI). Let S
be the set of adjacency matrices for graphs on n vertices.
The symmetric group Sn acts on S, via Mg = PgMP−1

g .
(Pg is just the permutation matrix for g.) In this case, the
group action discrete logarithm problem is exactly graph
isomorphism: given adjacency matrices M and N , find g ∈
Sn to make Mg = N . Using our results, we arrive at a
deterministic graph isomorphism procedure with run time
about

√
n!.

Although there are much faster algorithms than this, they
are either conceptually involved [1, 2], cannot guarantee ef-
ficient performance in all cases [3], or both [12]. The baby-
step giant-step algorithm, on the other hand, gives an im-
mediate proof that exhaustive search through permutations
is not the best method for graph isomorphism.

There are a variety of other GI-related problems that also
fit in the discrete log symmetric group action framework. In
particular, hypergraph isomorphism and equivalence of per-
mutation groups via conjugation can both be formulated as
symmetric group actions. Furthermore, the latter problem
has no known moderately exponential (exp(n1−c) for c > 0)
algorithm [2].

We further note that in cryptography, the solution of it-
erated block ciphers [10] is closely related to a group-action
discrete logarithm problem in a symmetric group. Our ap-
proach may also be useful in computational Galois theory,
specifically, in computing the splitting field of a polynomial
[13].

Because our approach is orbit-oblivious, our framework is
very general. In some problems, however, algorithms aware
of orbit restrictions may benefit significantly by reducing the
number of g ∈ G to consider. This is true, for example, in
the graph isomorphism problem. An orbit-sensitive GI algo-
rithm can utilize the fact that a vertex can only be mapped
to another vertex of the same degree, whereas our approach
will test every permutation.

On the other hand, there seem to be problems where one
cannot exploit such orbit restrictions. We will now develop
such an example.

Our problem will rely on the existence of fully homomor-
phic encryption schemes. Such schemes were only recently
discovered, and utilize the presumed difficulty of the learn-
ing with errors problem [6]. We can explain the basic idea
of homomorphic encryption as follows.

Denote by E(x) the result of encrypting bitstring x into
ciphertext. Then in a fully homomorphic encryption scheme,
we may convert any function f to a function f ′ on ciphertext,
such that E(f(x)) = f ′(E(x)). This leads to the following
problem:

Definition 2.1. Let G be a finite group that acts on a
set S. Then G acts on {E(s) : s ∈ S} via the induced action
E(r)g = E(rg). Then, given E(r) and E(s), the obfuscated
group action discrete logarithm problem is the problem of
finding a g ∈ G such that E(r)g = E(s).

The obfuscated group action discrete log problem is a spe-

cial case of the general version. In this problem, we are not
given the decryption keys, r, s, or S. We may only work
with the ciphertexts of S and the action of G on these ci-
phertexts. Thus, we must utilize orbit-oblivious approaches.

Furthermore, observe that this problem can be applied to
any group G. In particular, this suggests there are actions
over the symmetric group such that there is no easily dis-
cernible relation between the action of Sn on {1, 2, . . . , n}
and the set S.

It is worth noting that in the above setting, no backtrack
search or other heuristical approaches will yield an efficient
solution in practice. In the case where backtracking can
yield an efficient solution, however, the worst case running
time of such backtrack approaches is typically exponential.
Additionally, their performance can vary from instance to
instance and is often hard to predict. Although there are
Monte Carlo procedures that can be used to estimate the
runtime on a particular instance, such methods exhibit large
variance. It is therefore of interest to develop techniques
with provable running times.

For the algorithm designer, realization of such a baby-step
giant-step algorithm for group actions reduces to efficient
construction of the sets A and B. In the remainder of this
paper, we discuss various methods for this.

3. A RANDOMIZED APPROACH
In this section our approach is general enough to work

over any group G where random elements can be generated
efficiently. In this setting, an obvious idea is to simply pick k
random elements of G for the set A and k random elements
of G for the set B. Then the probability a particular g ∈ G
is present in AB will depend on the value of k. For ease of
notation, let m = |G|. We have:

Proposition 3.1. Suppose we pick k random elements
of G without replacement for the set A and likewise for B.
Then the probability a particular g ∈ G is present in AB
satisfies:

Pr [g ∈ AB] ≥ 1− e−k
2/m.

Proof. Observe that g 6∈ AB precisely when each b ∈ B
avoids the set {a−1g : a ∈ A}. The probability of this event
is (

1− k

m

)(
1− k

m− 1

)
· · ·
(

1− k

m− k + 1

)
,

which is at most (1 − k/m)k. Rewriting the exponent and
utilizing that (1− x/n)n ≤ e−x gives us

Pr [g /∈ AB] ≤
((

1− k

m

)m)k/m
≤ e−k

2/m,

from which the claim follows.

By setting k = Θ(
√
m), we can make the probability that

g is present in AB constant. Our analysis, however, assumed
sampling without replacement. If we simply sample with
replacement and redraw when a duplicate is found, it is not
hard to see that as long as we are sampling o(m) elements,
the number of extra draws is O(1) in expectation.

Note that with this approach, there will always be a non-
zero probability that some group elements are missing in
AB, which will lead to one-sided error in our algorithm.

Namely, if no g is found where rg = s, the randomized
procedure only gives probabilistic evidence that no g exists.
Furthermore, checking for missing elements of G in AB takes
O(|G|) time. While this would only need to be done once
and work for any set G acts on, it is prohibitively expensive.

This leads us to ask for a deterministic algorithm to con-
struct the sets A and B. This question inherently asks about
structure of the group G that can be exploited, similarly to
the original Shanks method for the traditional discrete log-
arithm. Therefore, we will focus on the special case when
G = Sn.

4. BACKGROUND ON GROUPS
Our deterministic algorithm will rely on some elementary

group theory. For this, we state a few necessary results and
definitions.

All groups in this paper will be finite. If K is a subgroup
of G, we write K ≤ G, and K < G if the containment is
proper. We do not assume that K is normal in G.

When K ≤ G, its left cosets are the |G|/|K| sets gK with
g ∈ G. Right cosets are defined similarly.

Note that the set of left (or right) cosets of K in G forms
a partition of G. Thus if we have a subgroup K of G, we can
take B = K and A to be a set of elements of G such that
each left coset of K in G is represented in A. Then every
element of G will be present in AB.

In group theory, a minimal perfect set A of this kind is
called a transversal.

Definition 4.1 (Transversal). A left (right)
transversal T of a subgroup K of G is a set of elements of
G such that each left (right) coset of K in G has exactly
one representative in T . Thus, T is a minimal set of coset
representatives of K in G.

To make this definition clear, we give the following:

Example 4.2. Let G = Zn2 and let K be the unique
subgroup of G with n elements. Then |G : K| = n. If
G = {0, . . . , n2 − 1}, K = {0, n, 2n, . . . , (n − 1)n}. One
transversal of K in G is T = {0, 1, 2, . . . , n− 1}.

For this example, K and T are exactly the sets of giant
steps and baby steps that the Shanks algorithm would use.
However, transversals are not unique; for example, we could
have taken T to be any complete set of representatives mod-
ulo n.

Combinatorially, a subgroup B and its left transversal A
form a perfect splitting set for G, in the sense that every
g ∈ G is uniquely of the form ab, for a ∈ A and b ∈ B.
Perfect splitting sets need not be subgroups, as we could
always replace A by Ax and B by x−1B, choosing x ∈ G at
will.

Ideally, these splitting sets have cardinality exactly
√
|G|.

However, n! is never a square for n > 1, so such perfect
splitting sets cannot exist for G = Sn. Therefore, we will
either have to tolerate duplicated products (as we did in the
last section), or look for set sizes close to, but not exactly

matching,
√
n!.

We now give some concepts that provide a“data structure”
for working with permutation groups:

Definition 4.3 (Base). Let G act on Ω. A base B for
G is an ordered subset of Ω (i.e. a list) with the following
property: the only element of G that stabilizes everything in
B is the identity.

For our purposes G = Sn, which stabilizes no element
of Ω = {1, . . . , n}. So, we will use B := [1, 2, . . . , n]; that
is, B = Ω with the natural ordering of the integers. We
could choose to not include any single integer from B, since
the action of a permutation on the missing integer can be
inferred via its action on the other elements; however, it will
be easier to describe the transversal algorithm with a more
complete base, and no loss of efficiency will be incurred. A
base provides a convenient form to represent elements of G:

Definition 4.4 (Base Image). If g ∈ G and
B = [β1, β2, . . . , βk] is a base for G, then Bg := [βg1 , . . . , β

g
k]

is called the base image of g (relative to B).

Recall that βgi means the result of applying the group
element g to the object βi ∈ Ω.

With the base B := [1, 2, . . . , n], the base image gives the
typical vector notation of a permutation. The base image
Bg uniquely determines the element g ∈ G.

5. BIDIRECTIONAL COLLISIONS
In recent work [15], David Rosenbaum described a general

framework for applying collision algorithms to isomorphism
problems. Potential isomorphisms are represented by paths
in a tree. Given objects X and Y , we choose one set of
paths that exhaust all levels halfway down (the remainder
can be chosen arbitrarily), and apply these to X. Similarly,
for Y , we choose one path that goes halfway down, extend
it in all possible ways, and then apply each of these to Y . If
we denote the set of transformations applied to X as C and
to Y as D, then, borrowing the group action notation, this
framework finds some c ∈ C and d ∈ D so that

Xc = Y d

whenever there exists some g such that

Xg = Y.

Thus by taking A = C and B = D−1, where by D−1 we
denote the set of inverses of all elements of D, this approach
produces sets A and B with AB = G.

To split the search space for permutations, we choose a
k with 1 ≤ k ≤ n. The set C will consist of (n)k (n pick
k) permutations. Each permutation sends 1, 2, . . . , k to all
possible k-tuples in {1, 2, . . . , n}. We can choose arbitrarily
where to send k + 1, . . . , n.

To make D, choose an image tuple for the first k elements
arbitrarily (not moving them at all will do) and then extend
with all (n− k)! possible suffixes.

Since |C| = (n)k and |D| = (n−k)!, the counting functions
for these two sets are not interchangable. However, we can
try to balance the values of (n)k and (n − k)!. Since (n)k ·
(n − k)! = n!, finding a k such that (n)k ≈ (n − k)! will,
at least approximately, minimize (n)k + (n − k)!, the cost
of the collision algorithm. We will show that the “right”
value of k is roughly, but not exactly, n/2. Surprisingly, the
performance of the algorithm is very sensitive to k.

Proposition 5.1. The method presented above finds
A,B ⊂ Sn such that AB = Sn and max(|A|, |B|) =

O(n1/2
√
n!).

Proof. Let x be the positive real solution to x! =
√
n!

(we use x! as an abbreviation for Γ(x + 1)). Stirling’s ap-
proximation says that

n! ∼
√

2πn
(n
e

)n
.

Use this on both variables in the defining relation for x,
and then take logarithms of both sides. We can then apply
“bootstrapping” [7] and show that

x =
n

2

(
1 +O

(
1

logn

))
.

Since x! increases for x ≥ 1, there is an integer m such that

(m− 1)! ≤ x! =
√
n! ≤ m!.

Choose k so that n − k (either m or m − 1) is the closest
integer to x. This will cause one of our sets to be larger than
its “ideal” value

√
n!, and we must estimate this disparity.

Let

n− k = x+ α, with |α| ≤ 1/2.

Recall that (x+α)! ∼ x!xα as x→∞, in the sense that the
limiting ratio is 1. Using this, and our asymptotic expression
for x, we have

(n− k)! = (x+ α)! ∼ x!xα ∼
√
n!
(n

2

)α
.

Similarly,

(n)k =
n!

(n− k)!
∼ n!√

n!(n/2)α
=
√
n!(n/2)−α.

The bound on |α| gives

max(|A|, |B|) = max((n)k, (n− k)!) = O
(
n1/2
√
n!
)
.

Probably, the factor n1/2 is best possible. Examination
of numerical data shows that α varies irregularly within the
interval (−1/2, 1/2), and we see no reason why this behavior
should not continue. In particular, there is likely to be an
infinite sequence of n’s on which α’s limiting value is 1/2.

It is also interesting to compare our procedure to one that
splits the permutation vectors exactly in half, as Rosenbaum
initially recommends [15, p. 193]. This splitting amounts to
taking k = n/2, and as a consequence of Stirling’s formula,

(n)n/2 = Θ(n−1/42n/2
√
n!)

when n is even. Therefore, the “overhead” for exact splitting
is exponential in n. It is not hard to see this intuitively,
by considering a decision tree for generating permutations.
Each of the “large” branching factors n − i, 0 ≤ i < n/2,
is roughly twice as large as its “small” counterpart n/2 − i.
By choosing the best splitting fraction for each n, we have
reduced this overhead to a small power of n.

Finally, we note that this approach indeed employs a sub-
group and a corresponding transversal of that subgroup.
The set D fixes the first k elements and permutes the re-
maining n − k elements amongst themselves in all possible
ways. So D is simply Sn−k. Because of this, D−1 = D.
Then, since CD−1 = CD = Sn, C is a left transversal of
Sn−k in Sn.

6. A BETTER SUBGROUP
We can improve the results of the last section by using

a different subgroup and its corresponding transversal. In-
tuitively, we can expect to get better results for the fol-
lowing reason: in bidirectional collision detection, we start
with a fixed-length code for group elements and seek a good
“halfway” point in the code words. This approach provides
only n subgroups to choose from. To improve it, we can
select our subgroup from a larger set.

A better choice of subgroup is the centralizer of a product
of bn/2c disjoint two-cycles. Recall that the centralizer of
an element h ∈ G is the set {g ∈ G | gh = hg}, and is always
a subgroup [4]. We have:

Lemma 6.1. The centralizer of a product of bn/2c disjoint
two-cycles, denoted H, is a subgroup of Sn. We have

|H| = Θ(n1/4
√
n!)

if n is even and

|H| = Θ(n−1/4
√
n!)

if n is odd. When n is odd, H is the same
subgroup as it would be for n − 1. When n is
even, write a = (1 2)(3 4) . . . (n − 1 n), and so
H = CSn(a) = {g ∈ Sn | ga = ag}.

Proof. When n is odd, no permutation σ that moves
the integer n can commute with a, because aσ and σa will
always move n in different directions. Therefore, when n is
odd, the group is the same as for n− 1.

Now, the centralizer of a in Sn, CSn(a), has order:

|CSn(a)| = |Sn|
Size of conjugacy class of a

.

See [4] for a proof. The size of the conjugacy class of a is
determined by its cycle type [4]. The number of possible
permutations with bn/2c disjoint two-cycles is given by:

Size of conjugacy class of a =
n!

2bn/2cbn/2c!
.

This can be explained as follows. First, take all possible
permutations on n items. Then, since the ordering of pairs
within two-cycles does not matter, we can divide by 2bn/2c.
Furthermore, how the two-cycles are arranged does not mat-
ter, so we can further divide by bn/2c!. Then:

|CSn(a)| = 2bn/2cbn/2c! .

We can transform this into the desired result. We will show
the algebra for the case that n is even, and then make a
small change for when n is odd.

When n is even we have (by Stirling’s approximation):

2n/2(n/2)! ∼
√
πn
(n
e

)n/2
,

√
n! ∼ 4

√
2πn

(n
e

)n/2
,

so

|CSn(a)| = 2n/2(n/2)! ∼ 4

√
π

2
n1/4
√
n!.

When n is odd, a similar argument yields

|CSn(a)| = 2(n−1)/2((n− 1)/2)! ∼ 4

√
π

2
n−1/4

√
n!.

We therefore see when n is even, |H| is Θ(n1/4
√
n!), and

when n is odd, |H| is Θ(n−1/4
√
n!).

The subgroup H gives an improvement on bidirectional
collision detection by a factor of Θ(n1/4). However, we also
must have that H is efficiently enumerable. By Lemma 6.1,
when n is odd, the group is the same as for n− 1. Thus we
need only concern ourselves with the even case:

Lemma 6.2. Let n be even. The centralizer of
a = (1 2)(3 4) . . . (n − 1 n) in Sn, denoted H, is generated
by:

H = 〈(1 2), (1 3)(2 4), (1 3 . . . n− 1)(2 4 . . . n)〉.

Proof. Any products of the disjoint two-cycles of a
will commute with a. The two-cycle (1 2) is present in
the generating set, and by conjugating (1 2) by powers of
(1 2 . . . n − 1)(2 4 . . . n), we may obtain the two-cycles
(3 4), (5 6), . . . , (n− 1 n).

Furthermore, we may permute any of the disjoint two-
cycles themselves by composing them with an appropriate
transformation permutation.

We give the following homomorphism ϕ : Sn/2 → Sn: For
each of the disjoint cycles of σ ∈ Sn/2, map (τ1 τ2 . . . τk) to

(2τ1 − 1 2τ2 − 1 . . . 2τk − 1)(2τ1 2τ2 . . . 2τk).

This map is clearly a homomorphism because all we have
done is replaced each cycle with two cycles, one of which
maps τi to 2τi − 1 and the other τi to 2τi. Since the two
cycles will never share the same integers (one contains odd
integers, the other even), we have effectively only relabeled
σ, and thus the group operations are preserved under ϕ.

Furthermore, ϕ represents the necessary mapping to per-
mute the two-cycles of a, since it is swapping both integers
within a cycle with another cycle. Then, since

Sn/2 = 〈(1 2), (1 2 . . . n/2)〉,

the transformations that permute the two-cycles of a are
generated by

〈ϕ((1 2)), ϕ((1 2 . . . n/2))〉,

which equals

〈(1 3)(2 4), (1 3 . . . n− 1)(2 4 . . . n)〉.

Note that any of the products of the disjoint two-cycles of
a can be composed with any of the permutations of the dis-
joint two-cycles of a to form a new element in the centralizer.
Thus the transformations described amount to 2n/2(n/2)!
unique elements. This is the size of the centralizer, so we
know we have accounted for every element.

With generators, we can run a closure algorithm to pro-
duce all the elements of H. This would achieve an O(n|H|)
time enumeration, but is slightly wasteful, because for each
element of H, we must compose it with all generators before
we can ensure all elements have been constructed. We can
avoid this factor of 3 overhead by explicitly generating the
elements of H themselves.

Note that the proof of Lemma 6.2 shows that H is isomor-
phic to the wreath product C2 o Sn/2, and gives an explicit
way to construct H given this property. We utilize this in
the following algorithm:

Algorithm 1 Enumeration of the elements of H

1. Generate all possible products of the disjoint two-
cycles of a = (1 2)(3 4) . . . (n− 1 n); call the set X.

2. Generate all elements of Sn/2; call the set Y .

3. Apply the homomorphism ϕ described in the proof of
Lemma 6.2 to each element of Y , resulting in a new
set, Y ′.

4. Compose every element of X with every element of Y ′

and return this set.

Before analyzing the algorithm, we make a few statements
regarding our model of computation. For the purposes of
this paper, we will charge O(1) space for each integer and
O(1) time for accessing elements of an array. This hides
logarithmic factors in runtime and space bounds. We will
additionally charge space for output, though a note on this
will be made after the proof of Lemma 7.4.

In this model of computation, a permutation can be rep-
resented in vector (base image) form using space O(n) and
two permutations can be composed in O(n) time. Further
note that we may choose to represent permutations as lists
of arrays representing cycle notation, and in section 7, we
will represent them as “partial base images” in a linked list
or array. All representations can be converted to and from
each other in O(n) time.

We then have:

Lemma 6.3. Algorithm 1 correctly enumerates the
elements of H in time O(n|H|) and space O(n|H|).

Proof. For correctness, Lemma 6.2 shows that the prod-
uct set XY ′ = H.

For runtime, observe that a backtracking procedure can
enumerate through all binary strings on n/2 bits in time

O(n2n/2). In practice, this can be done particularly effi-
ciently by incrementing an integer and accessing its binary
representation. Then for each binary string, we can concate-
nate the corresponding two-cycle of a for every set bit. If
we represent elements in cycle notation, this concatenation
can be done in O(1) time. Thus we can construct the set X

in O(n2n/2) time.
To construct the set Y , note that a backtracking proce-

dure can also enumerate every permutation of Sn/2 in time
O(n(n/2)!) (see [8] for the simple procedure). Applying the
homomorphism ϕ can then be done in O(n) time per ele-
ment, producing all of Y ′ in overall O(n(n/2)!) time.

There are 2n/2(n/2)! elements in the product set XY ′,
and each can be computed by composing an element of X
with an element of Y ′ in O(n) time per element. Thus the
elements of H can be enumerated in O(n|H|) time.

Regarding space, note that the most space used is in rep-
resenting the output. We represent each h ∈ H in O(n)
space, and so the space complexity is O(n|H|).

7. CONSTRUCTING TRANSVERSALS
We now consider finding a transversal of H in Sn. Al-

though finding transversals can be complicated and require
backtrack search through the parent group G [8], we can
take advantage of having G = Sn.

We first give the following definition:

Definition 7.1. Let B = [β1, . . . , βk] be a base. Define a
partial ordering ≺ on elements of Ω by taking βi ≺ βi+1 for
all 1 ≤ i < k, and βi ≺ α, for every α ∈ Ω not present in B.
We extend this to base images by saying that for g, h ∈ G,
Bg ≺ Bh if g precedes h in the lexicographic ordering on the
base vectors.

For our purposes, this is the natural ordering of the inte-
gers in B. Furthermore, this defines lexicographical ordering
in the typical manner for base images Bg and Bh, g, h ∈ G.

Our transversal construction will exploit the following
lemma.

Lemma 7.2. Let K < G ≤ Sn and let B = [β1, . . . , βk] be
a base of G. Then g ∈ G is the ≺-least element of its coset
gK if and only if βgj is the ≺-least element of its orbit in
Kβ

g
1 ,...,β

g
j−1

for 1 ≤ j ≤ k.

In this lemma, Kβ
g
1 ,...,β

g
j−1

denotes the subgroup of K

consisting of the elements that fix each of the elements listed
as subscripts. (When j = 1, this subgroup is just K.)

Although the result has been known since the work of
Charles Sims, we present a proof in the interest of being
self-contained. This lemma can be found (without proof) in
[8, p. 115].

Proof. Suppose that g satisfies the property given in
Lemma 7.2. We must show g is ≺-least in gK. Write:

g = [α1, α2, . . . , αk].

Now suppose there exists some h ∈ gK such that h ≺ g.
Write:

h = [γ1, γ2, . . . , γk].

Since h ∈ gK, we can write h = gk for some k ∈ K. There-
fore we can think of h as applying some element k to g.
Now, since h ≺ g, there must be a first index j such that
γj ≺ αj ; so γi = αi for all 1 ≤ i < j. Then k must stabilize
α1, . . . , αj−1. Since γj ≺ αj , k must map αj to γj , there-
fore γj and αj are in the same orbit in Kα1,...,αj−1 . But by
assumption, αj is the ≺-least such element in its orbit in
Kα1,...,αj−1 . Therefore the element h cannot exist and so g
is minimal in gK.

In the other direction, suppose g does not satisfy the prop-
erty in Lemma 7.2. Let j be the first index such that αj is
not ≺-least in its orbit in Kα1,...,αj−1 . Then there must be
some k ∈ K that stabilizes α1, . . . , αj−1 and maps αj to
some η such that η ≺ αj . Then gk ≺ g.

We can apply Lemma 7.2 to find base images that satisfy
the property required to be ≺-least elements in their respec-
tive cosets. However, these base images might not necessar-
ily correspond to elements of G if G is an arbitrary permu-
tation group. Here we take advantage of the fact G = Sn.
Every base image that satisfies Lemma 7.2 corresponds to
some permutation on {1, 2, . . . , n}, which is necessarily an
element of Sn. Thus if it easy enough to find orbits after
stabilizing in H, a transversal of H in Sn can be calculated
efficiently. Below we have a useful fact about the structure
of H.

Lemma 7.3. Denote by Hn our subgroup H for G = Sn.
When n is even, we have that (Hn)(β)

∼= Hn−2. That is,
Hn stabilized by any β ∈ Ω is isomorphic to Hn−2. When
n is odd, Hn = Hn−1, so the result carries through for any
β ∈ Ω, β 6= n. If β = n, then (Hn)(β) = Hn.

Proof. For odd n, the proof of Lemma 6.1 shows thatHn
already stabilizes the integer n. Now, assume n is even. It
should be clear that H is symmetric around any β ∈ Ω, both
because H is the centralizer of a = (1 2)(3 4) . . . (n − 1 n),
where each β ∈ Ω plays the same role, and also by the proof
of Lemma 6.2. We therefore can assume without loss of
generality that β = 1.

Now, again observing the proof of Lemma 6.2, we can look
at permutations σ that do not move 1 and have the property
that aσ = σa. Clearly we cannot use (1 2) as a product in
any such σ, and additionally permuting the first cycle will
require that 1 is not stabilized in σ. It is then clear that:

CSn((1 2)(3 4) . . . (n− 1 n))(1)

= CSn((3 4)(5 6) . . . (n− 1 n)).

Again, by the symmetry in H, we have for even n and any
β ∈ Ω, (Hn)(β)

∼= Hn−2.

This leads to the following algorithm to compute a
transversal of H in G = Sn:

Algorithm 2 Transversal of H in G = Sn

If n is even:

1. Recursively obtain a transversal for n − 2. As a base
case, if n = 2, let T = {[1, 2]}.

2. Increase every integer in the base images returned for
n− 2 by 2.

3. Prepend 1 to the base images.

4. Put 2 in all possible locations after 1 in each base im-
age, increasing the number of base images by a factor
of n− 1, and return this set.

If n is odd:

1. Obtain a transversal for n− 1.

2. Put n in all possible locations in each base image re-
turned for n−1, increasing the number of base images
by a factor of n, and return this set.

By design, the algorithm finds the transversal consisting
of the ≺-least element in each coset. We then have:

Lemma 7.4. Algorithm 2 correctly computes a trans-
versal of H in G = Sn in time O(n|G : H|) and space
O(n|G : H|).

Proof. We first prove correctness. We use Lemma 7.2 to
find the ≺-least element of each coset of H in G. From the
list of generators, it is clear that if n is even, all objects of Ω
are in the same orbit inH, and if n is odd, the two orbits of Ω
are {1, 2, . . . , n−1} and {n}. Focusing on the even case, the
first base element of every transversal base image will be 1,
since it is the ≺-least of {1, 2, . . . , n}. Furthermore, when we
stabilize 1, by Lemma 7.3, we are left with a smaller instance
of the same problem, with one caveat; the base element 2
is in its own orbit, and so can exist in any position after 1.
We then see we can compute the transversal efficiently by
recursively computing a solution to the smaller problem and
then inserting 2 in all possible positions after 1. As a base
case we have H2 = S2, so the transversal is T = {[1, 2]}. For

the odd case, we now must simply place n in every possible
location within the entire base image of every transversal
element for n− 1.

We now prove runtime. Ignoring the recursion, in the
even case the algorithm must add 2 to each integer of
the base images and place 2 in all possible locations after
1. In the odd case the algorithm must do similarly but
with n. Both cases must also copy the new transversal
elements into the updated list T . With appropriate
data structures, this can easily be accomplished in time
O(n · number of transversal elements). Since the number

of transversal elements is |G : H| = |G|
|H| , we then have the

following recurrence for the runtime, when n is even:

T (n) = T (n− 2) +O(n3/4
√
n!).

This implies

T (n) = O(n3/4
√
n!) +O

 ∑
2≤i≤n−2
i even

i3/4
√
i!

≤ O(n3/4

√
n!) +O

(
n7/4

√
(n− 2)!

)
= O(n3/4

√
n!).

When n is odd, we can first compute the transversal for n−1
in time O((n−1)3/4

√
(n− 1)!) = O(n1/4

√
n!). We can then

add n in the necessary locations and produce output in time
O(n·n1/4

√
n!) = O(n5/4

√
n!). So the runtime when n is odd

is O(n5/4
√
n!). Both of these runtimes are O(n|G : H|).

Regarding space, note that the most space used is in rep-
resenting the final output. Representing each permutation
takes O(n) space, so the space cost is O(n|G : H|).

As a further remark, we note the O(n|G : H|) runtime
can be improved by a factor of O(n) if instead of writing
the output, it is iterated. By iterating, we mean cycling
through the transversal, rather than writing each element of
the transversal to a list. In this same model, we can make
the space bound as little as O(n).

Let us consider the even n case, and the same logic ap-
plies to the case of odd n. Assume we can cycle through the
output at the level of recursion for n − 2. For each output
given by n− 2, prepending 1 and inserting 2 in all positions
after 1 can be done in O(1) time per insertion if the base
images are represented as integers in a linked list. Further-
more, we must only maintain O(1) bits of information per
level. Therefore, since there are O(n) levels of recursion,
we do amortized constant amount of work per element of
the transversal, resulting in a runtime that is improved by
a factor of O(n) and a space bound that is simply O(n).

This same logic applies to enumerating the elements of H,
though we omit the argument for brevity. In general, the
collision framework for our discrete logarithm problem will
have each s ∈ S taking at least O(n) space and O(n) time
to hash into a dictionary, so this observation will only bring
a slight improvement in the space bound for our problem in
certain cases.

Finally, we note that the property exploited in computing
the transversal was that every base image found directly via
stabilizers and orbits is necessarily an element of the parent
group G if G = Sn. This observation can be combined with

black-box orbit, stabilizer, and base changing methods as
discussed in [8] to compute a transversal of an arbitrary per-
mutation group K < Sn efficiently. We will not discuss the
details here, nor give exact asymptotic guarantees. For more
information, consult the transversal algorithms discussed in
Holt’s book.

8. THE MAIN RESULT
We have the following theorem:

Theorem 8.1. We can compute sets A and B such that
AB = Sn with max(|A|, |B|) = O(n1/4

√
n!). The com-

putation can be done deterministically in time and space
O(n5/4

√
n!).

Proof. Let H be the subgroup of Sn specified in Lemma
6.1. It has size O(n1/4

√
n!) when n is even and O(n−1/4

√
n!)

when n is odd. Using Algorithm 1, it can be enumerated
deterministically in time and space O(n|H|). Furthermore,
by employing Algorithm 2, its transversal can be found and
enumerated deterministically in time and space O(n3/4

√
n!)

when n is even and O(n5/4
√
n!) when n is odd. This means

we can find sets of permutations A and B deterministically
such that every σ ∈ Sn can be represented as a product ab,
a ∈ A and b ∈ B in time O(n5/4

√
n!).

This lemma implies that the group action discrete loga-
rithm problem in the symmetric group can be solved de-
terministically in roughly O(n5/4

√
n!) time. The specifics

depend on the ability to hash or compare elements of S
generated for the collision procedure. We note that while
randomization may be used in the analysis of such hashing
functions, the algorithm itself will always produce correct
results.

In comparison, the computation of sets A and B by the
randomized approach will take time O(n

√
n!) and by bidi-

rectional collision detection time O(n1.5
√
n!). In this sense,

our result shows the difference between randomized and de-
terministic algorithms for this problem can be made as lit-
tle as O(n1/4). It is unclear if this can be eliminated en-

tirely, but O(n1/4) is so small when compared to O(
√
n!)

that the improvement would be very minor. In particular,
since 34 = 81 and

√
81!

.
= 2.4× 1060, for practical values of

n, n1/4 will not exceed 3.
Furthermore, in computing (an upper bound of) the ex-

pected number of permutations needed to achieve various
reliability percentages, we note that our deterministic ap-
proach uses fewer permutations for reliability > 80% for
n < 12, and > 90% for all other reasonable values of n.
Thus due to the simplicity of Algorithm 1 and Algorithm 2,
we consider our approach a viable practical alternative to
the randomized one.

9. ACKNOWLEDGEMENTS
We thank Derek Holt, Gene Cooperman, and László Babai

for correspondence on computing transversals in permuta-
tion groups. We additionally thank the stackexchange com-
munity for their input on subgroup choices and the anony-
mous reviewers for their constructive feedback.

10. REFERENCES
[1] L. Babai, W. M. Kantor, E. M. Luks. Computational

complexity and the classification of finite simple groups.
In Proc. 24th Ann. Symp. Found. Comp. Sci., 1983, pp.
162-171.

[2] L. Babai. Graph isomorphism in quasipolynomial time.
Manuscript, 2016.
http://arxiv.org/pdf/1512.03547v2.pdf.

[3] J. Cai, M. Fürer, N. Immerman. An optimal lower
bound on the number of variables for graph
identification. Combinatorica, v. 12, 1992, pp. 389-410.

[4] D. Dummit, R. Foote. Abstract Algebra. Wiley, 2004.

[5] C. J. Etherington, M. W. Anderson, E. Bach, J. T.
Butler, and P. Stănică. A parallel approach in
computing correlation immunity up to six variables. Int.
J. Found. Comp. Sci., to appear.

[6] C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proc. 41st ACM Symp. on Theory of
Computing. 41, 2009, pp. 169-178.

[7] D. H. Greene and D. E. Knuth. Mathematics for the
Analysis of Algorithms. Birkhäuser, 1982.

[8] D. Holt. Handbook of Computational Group Theory.
Chapman & Hall, 2005.

[9] A. Kwan. Vernier scales and other early devices for
precision measurement. American J. Physics, v. 79,
2011, pp. 368-373.

[10] R. C. Merkle and M. E. Hellman, On the security of
multiple encryption. Comm. ACM, v. 24, 1981, pp.
465-467.

[11] K. S. McCurley, The discrete logarithm problem.
Proc. Symp. Appl. Math., v. 42, 1990, pp. 49-73.

[12] B. McKay, A. Piperno. Practical graph isomorphism,
II. J. Symb. Comp., v. 60, 2014, pp. 94-112.

[13] S. Orange, G. Renault, K. Yokoyama. Computation
schemes for splitting fields of polynomials. In Proc. 2009
Int. Symp. on Symbolic and Algebraic Computation,
2009, pp. 279-286.

[14] J. M. Pollard. Monte Carlo methods for index
computation (mod p). Math. Comp., v. 32, 1978, pp.
918-924.

[15] D. Rosenbaum. Quantum Computation and
Isomorphism Testing. Dissertation, U. Washington, 2015.

[16] A. Seress. Permutation Group Algorithms. Cambridge
Univ. Press, 2003.

[17] D. Shanks. Class number, a theory of factorization
and genera. Proc. Symp. Pure Math., v. 20, 1969, pp.
415-440.

[18] E. Teske, Square-root algorithms for the discrete
logarithm problem (a survey). In Public Key
Cryptography and Computational Number Theory, de
Gruyter, 2001, pp. 283-301.

	Introduction
	Applications
	A Randomized Approach
	Background on Groups
	Bidirectional Collisions
	A Better Subgroup
	Constructing Transversals
	The Main Result
	Acknowledgements
	References

