
Chameleon: Operating System Support for Dynamic Processors

Sankaralingam Panneerselvam and Michael M. Swift
Computer Sciences Department, University of Wisconsin–Madison

{sankarp, swift}@cs.wisc.edu

Abstract
The rise of multi-core processors has shifted performance efforts
towards parallel programs. However, single-threaded code, whether
from legacy programs or ones difficult to parallelize, remains im-
portant. Proposed asymmetric multicore processors statically dedi-
cate hardware to improve sequential performance, but at the cost of
reduced parallel performance.

However, several proposed mechanisms provide the best-of-
both-worlds by combining multiple cores into a single, more pow-
erful processor for sequential code. For example, Core Fusion
merges multiple cores to pool caches and functional units, and
Intel’s Turbo Boost raises the clock speed of a core if the other
cores on a chip are powered down.

These reconfiguration mechanisms have two important proper-
ties. First the set of available cores and their capabilities can vary
over short time scales. Current operating systems are not designed
for rapidly changing hardware: the existing hotplug mechanisms
for reconfiguring processors require global operations and hun-
dreds of milliseconds to complete. Second, configurations may be
mutually exclusive: using power to speed one core means it cannot
be used to speed another. Current schedulers cannot manage this
requirement.

We present Chameleon, an extension to Linux to supportdy-
namic processorsthat can reconfigure their cores at runtime.
Chameleon providesprocessor proxiesto enable rapid reconfig-
uration, execution objectsto abstract the processing capabilities
of physical CPUs, and acluster schedulerto balance the needs of
sequential and parallel programs. In experiments that emulate a
dynamic processor, we find that Chameleon can reconfigure pro-
cessors 100,000 times faster than Linux and allows applications
full access to hardware capabilities: sequential code runs at full
speed on a powerful execution context, while parallel code runs on
as many cores as possible.

Categories and Subject DescriptorsD.4.7 [Operating Systems]:
Organization and Design

General Terms Design, Performance

Keywords Dynamic Processors, Hotplug, Processor Proxy, Re-
configuration, Scheduling

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS ’12 March 3–7, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-0759-8/12/03. . . $10.00

1. Introduction
Multicore processors require parallel code to achieve high perfor-
mance. However, parallel programming is hard, and legacy code
may never be rewritten to take advantage of extra processing cores.
Asymmetric chip multi-processors (ACMP) provision a chip with a
small number of powerful processors for sequential code and sim-
pler processors for parallel code [18, 32]. These processors also
improve power efficiency for code that sees little benefit from pow-
erful processors. Commercial examples of the ACMP architecture
include combined CPU/GPU chips such as AMD’s Fusion proces-
sor [8], and the TI OMAP 5 [56]. However, high performance on
sequential code sacrifices parallel performance: the chip area and
power dedicated to powerful cores could provide many more sim-
ple cores for parallel execution.

Hardware techniques that combine multiple cores or hardware
threads into a more powerful execution engine have the poten-
tial to provide high performance on both parallel and sequential
code. On parallel code, the processor can be configured into a large
set of less-powerful cores, providing performance through paral-
lelism. On sequential code, such a processor can combine several
of the cores to improve the performance of a single thread. Such
a dynamic processorcan provide high performance over a wide
range of workloads by switching between parallel and sequen-
tial modes [22]. For example, Core Fusion [26] pools execution
resources such as caches and functional units to improve perfor-
mance. Speculative multi-threading [20, 31, 37] executes different
portions of a single thread in parallel on different cores, and In-
tel’s Turbo boost increases the speed of one core when others are
disabled [9]. Such processors may be able to reconfigure between
sequential and parallel modes in microseconds.

Current operating systems are ill equipped for processors that
can be reconfigured at runtime. They must know at all times which
processors are available for cross-processor communication and
global operations, which occur tens to hundreds of times per sec-
ond. Furthermore, they require expensive global operations to re-
configure when changes occur. For example, the hotplug mecha-
nism in Linux can take more than 200ms to add a new processor,
far longer than the projected reconfiguration time for dynamic pro-
cessors. In addition, processors may have mutually exclusive con-
figurations, such as borrowing resources from one core to improve
performance of another, that existing schedulers do not support.

Chameleon is an operating system extension to Linux that sup-
ports dynamic processors with three new capabilities. First,proces-
sor proxiesenable rapid reconfiguration by removing global oper-
ations. Instead, another processor takes the place of an offline pro-
cessor in any communication or global operation. Second,execu-
tion objectsabstract physical cores and hardware threads into log-
ical objects against which threads are scheduled, so the scheduler
need not be aware of physical hardware details. Third, Chameleon’s
cluster schedulerdecides when and what to reconfigure and pro-
vides ataxationmechanism that allows a program or administrator

to balance the benefit of faster sequential execution against reduced
performance for other threads.

Chameleon focuses on the mechanisms needed to support re-
configuration but does not predict or measure the speedup a thread
achieves in different configurations. Recent work on asymmetric
processors addresses many issues that are also applicable to dy-
namic processors, such as identifying code that benefits from more
powerful processors [48] or sequential bottlenecks in parallel pro-
grams [55]. These mechanisms are orthogonal to Chameleon’s pur-
pose, and could be incorporated to notify the system of when faster
sequential performance is desirable or possible.

We evaluate Chameleon by emulating dynamic processors on
conventional hardware and show that: (i) processor proxies reduce
the latency of reconfiguration from 150ms to 2.5µs, (ii) Chameleon
can leverage idle cores to achieve maximum performance for either
parallel or sequential tasks via reconfiguration, (iii) fast reconfigu-
ration allows productive use of a configuration for even a single
scheduling quantum, and (iv) under contention, Chameleon’s taxa-
tion allows flexible control over whether parallel or sequential code
is favored. This can either allow high-priority sequential code to
preempt other processors or prevent important parallel programs
from having processors borrowed for sequential programs.

We begin by reviewing dynamic processor technology in Sec-
tion 2. We follow with the design of Chameleon in Section3 and
implementation details in Section4. We evaluate Chameleon in
Section5, and finish with related work and conclusions.

2. Dynamic Processors
While most computers have a static set of processors, hardware
trends indicate that future computers may support a dynamically
variable set of processors, either for performance, reliability, or
power efficiency.

2.1 Hardware Mechanisms

We see at least four reasons why the number of execution contexts
exposed to an operating system may vary at runtime.

Performance techniques. Many researchers have demonstrated
single-thread performance increases by combining several cores
into a single more powerful processing element. Core Fusion and
TRIPS increase performance by combining resources, such as func-
tional units, into a larger execution engine that can achieve higher
ILP [26, 50]. Core Fusion, for example, claims nearly 80% speedup
for some programs and requires only 400 cycles to reconfigure.
Speculative multi-threading executes loop iterations or function
calls in parallel [20, 31, 37, 44]. Sun’s canceled Rock processor
had SMT contexts that could switch to automatically prefetch data
into the cache [10] for improved sequential performance.

Figure1 shows an example of these architectures. Part (a) shows
the native cores on a system, and part (b) shows how cores can
be fused together to act as more powerful cores. This example is
representative of Core Fusion and speculative multithreading.

A common feature of all these mechanisms is that the perfor-
mance gain is less than linear in the number of cores: executing
two threads on two cores accomplishes more work than executing
a single thread on a fused core. Thus, a system must balance the
need for sequential performance against other uses of the cores.

Power management. Processors may disable cores to save power
or to transfer power to the remaining cores, as in Intel’s Nehalem
Turbo Boost feature [9]. In addition, processors may beover provi-
sioned, in that they contain more processing elements than can be
used simultaneously [15]. As a result, a system may switch between
a single large, fast core and a smaller number of more efficient and
slower cores when parallelism is available or better cores provide

Fused
Core

CoreCore

(b) Fused cores

(a) Native cores

Core Core

CoreCore

Core Core

CoreCore

Fused
Core

Figure 1. The native cores shown in (a) can be reconfigured, for
example into a 4-core unit and a 2-core unit shown in (b).

little benefit [42]. This also enables a variety of specialized proces-
sors for specific tasks, such as encryption.

Reliability techniques. Processing cores may be combined to
improve reliability. For example, redundant execution techniques
run a thread simultaneously on multiple cores and automatically
recover from failures when outputs differ [1, 47, 57]. When surplus
cores are available, these techniques promise inexpensive error
detection and fault tolerance.

Virtualization. When hosting a web site at a cloud provider, a
VM can drop to a single processor when workloads are light and
use more virtual processors when workloads are heavy.

2.2 Operating System Impact of Reconfiguration

These mechanisms all vary the set of processors available to
the operating system. However, most OSes must know exactly
which CPUs are available at all times. For example, interproces-
sor communication, whether through inter-processor interrupts or
lightweight RPC [5], requires that the OS know if the destina-
tion processor is available. In addition, operating systems main-
tainper-CPU data structures, such as run-queues or packet receive
queues, to avoid lock and memory contention. Finally, operating
systems performall-processor operationsthat require the coopera-
tion of all processors, such as read-copy-update (RCU) operations
on Linux [39]. Thus, the OS must reconfigure internal data struc-
tures whenever the set of available processors change.

We examined the Linux 2.6.31-4 kernel to discover the extent
and frequency of these operations. We measure inter-processor
communication runningpmake to build the Linux kernel on a 24-
CPU machine with 24pmake processes.

• Inter-processor interrupts.Runningpmake resulted in delivery
of 40 IPIs/second/CPU for rescheduling and TLB shootdowns.

• All-processor operations.Global RCU callbacks were invoked
140 times per second per CPU when runningpmake.

• Per-CPU structures.We found 446 separate variables in Linux
that are defined as per-CPU. Thearch subdirectory defines
294 variables, which mostly refer to hardware structures. If the
set of processors change, these per-CPU data structures must
be updated or initialized to reflect the change: 15 subsystems
register 35 callbacks to update their per-CPU structures when
the set of CPUs change.

Based on these observations, we find that the Linux kernel is in-
timately aware of the set of available processors. If this set were to
change rapidly, numerous subsystems would have to be notified and
many per-CPU structures updated. Furthermore, operations that re-
quire all processors can only execute when the set of CPUs is stable,

either delaying these operations or blocking frequent reconfigura-
tion. While virtual machines can implement reconfiguration, fre-
quent cross-processor communication demonstrates that operating
systems must know the set of available processors.

3. Design
Chameleon is an operating system extension to support dynamic
processors. We have three design goals for Chameleon:

1. Rapid adaptationallows the use of a processor configuration
for short periods with low overhead.

2. Abstracted hardwareprovides the operating system with a set
of hardware configurations for scheduling threads.

3. Flexible, intuitive schedulingallows existing scheduling
paradigms/controls, such as fairness and priority, to apply to
dynamic processors.

We seek maximum flexibility in the use of dynamic processors,
and thus want to minimize the overhead introduced by the OS when
reconfiguring hardware. Low cost allows use of fine-grain reconfig-
uration, as often as every scheduling quantum. In addition, we want
to maintain the operating system’s abstract view of hardware so it
need not be aware of the details of how a dynamic processor re-
configures, just that other configurations are available. Finally, we
seek to extend existing thread schedulers to use dynamic proces-
sors, so that existing scheduling policies are naturally extended to
cover reconfiguration.

We target Chameleon at dynamic processors with a single in-
struction set that offer increased performance by disabling some
execution contexts and reusing the hardware or power from those
contexts. The rapid adaptation targets processors that cannot re-
ceive interrupts at all cores in some configurations, such as Core
Fusion. In contrast, with Intel’s Turbo Boost disabled cores can still
receive interrupts, and hence do not benefit from this mechanism.

Our design follows a best-effort approach: the system makes
no real-time guarantees, but strives to execute programs as fast as
possible. Furthermore, we designed Chameleon to improve perfor-
mance rather than manage power: the same mechanisms should ap-
ply, but must be driven by different policies because fusing CPUs
is likely to be less efficient than running on a native CPU. Finally,
Chameleon does not address uses of dynamic processors for relia-
bility [1, 57]. Such systems place mandatory requirements on the
OS like certain threads must always run in a reliable configuration.

3.1 Rapid Adaptation

Future dynamic processors may be able to change the set of avail-
able processors rapidly. Operating systems currently use ahotplug
mechanismor power managementto adapt to the changes in the set
of processors.

Hotplug. Processor hotplug mechanisms [33, 43, 53] allow an
operating system to accommodate the addition, removal, or re-
placement of a processor. They are designed for two uses: main-
tenance, to remove a failing processor or dynamically add capac-
ity; and virtualization, to change the allocation of processors to a
virtual machine. These are both infrequent events, so hotplug im-
plementations optimize for low overhead in the common (no recon-
figuration) case, rather than for frequent changes. Reconfigurations
that leave a processor able to receive interrupts, such as low-power
states [2], can be done with power management rather than hotplug
as we describe below.

We measured the performance of hotplug in Linux, and found
that it takes 150ms to take a processor offline and 220ms to bring it
online. In comparison, the hardware latency of starting a processor
is only 10ms. Much of the software overhead in hotplug comes

from constructing and distributing per-CPU data structures and
quiescing the system with a global barrier so that the mask of
available processors can change. The extra delay when bringing
a processor online is largely due to initializing architecture-related
registers.

Power management. Operating systems also support power man-
agement, which can take a processor offline for short periods to
conserve energy. The latency of entering a sleep state is on the or-
der of microseconds, of which very little is spent in software. How-
ever, in a sleep state the processor can still receive interrupts, so it
is still available to the operating system when needed and global
state updates are not necessary.

Thus, power management can only be used for reconfiguration
if a processor can still receive interrupts. While this is possible for
current architectures, such as Turbo Boost, it may not be possible
for architectures that reconfigure hardware, such as Core Fusion.

Thus, we find that both hotplug and power management are
inadequate for dynamic processors: hotplug is too slow for frequent
reconfiguration, and power management places requirements on the
hardware such as receiving interrupts.

Processor proxies. Chameleon provides rapid reconfiguration
throughprocessor proxies, which are agents running on a separate
processor that act on behalf of an offline processor. The proxy can
access the private per-CPU data structures of the unavailable CPU.
When a physical CPU is temporarily offline due to reconfiguration,
Chameleon creates a processor proxy for it on another CPU. The
kernel moves its communication endpoints, such as interrupts, to
that CPU. Operations that require the presence of a core, such as
a TLB shootdown or a read-copy-update (RCU) operation, invoke
the proxy and therefore can continue without waiting for the un-
available CPU.

Processor proxies are similar to multiplexing virtual CPUs on
a single processor with a hypervisor. However, processor proxies
only virtualize the external interface to a processor, such as inter-
rupts and RCU operations. Thus, a processor proxy does not sched-
ule or run threads. In contrast, a VCPU may run any code and forces
the hypervisor to schedule or timeslice multiple CPUs on a single
physical CPU.

3.2 Abstracted Hardware

Increasingly, operating systems must know the topology of the
processor on which they run: whether two execution contexts are
hyperthreads on the same core, whether they are cores that share
a cache, and whether they share an interface to memory as in a
NUMA configuration. The topology allows the operating system to
make intelligent scheduling and memory-management decisions,
such as to schedule threads from the same process on hyperthreads
that share a core, and to allocate memory from a region attached
to the thread’s core. Asymmetric multiprocessors similarly require
informing the OS of a core’s increased (or decreased) capabilities.

With dynamic processors, this need for hardware information
increases: in addition to the static configuration of hardware, the
OS must know about possible dynamic configurations. In Figure1,
for example, the OS must know that the four cores on the left and
the pair on the right can be fused into more powerful processors.

Execution objects. Chameleon abstracts the physical capabilities
of the machine with an indirection layer calledexecution objects.
We call the hardware state needed to run a thread (registers, pro-
gram counter) anexecution context, which may be a core, a hy-
perthread, or a fused set of cores. An execution object is a ker-
nel structure that represents a possible execution context, and con-
tains information about the capabilities of the context along with
activate anddeactivatemethods for reconfiguring the hardware.
The smallest native context (i.e., no combining of processors) is a

Figure 2. System with 12 CPUs (C1-12) managed through nodes.. E2
and E3 are execution objects with two CPUs and E1 with four CPUs.

CPU (also referred to as a thread context). Afused execution ob-
ject (or fused object) represents an object that requires more than
one native CPU. For example, in Figure1(b), Chameleon creates a
fused object for each fused core.

At any time, the current hardware configuration can be repre-
sented as a set ofactiveexecution objects. Chameleon creates an
object when needed by a thread, and the OS invokesactivatewhen
dispatching a thread to the hardware configuration represented by
the object. Each execution object identifies arepresentative CPU,
which is the CPU to which interrupts must be delivered when the
object is in use.

Execution objects exposepropertiesto aid in scheduling deci-
sions. A property is a characteristic of the underlying hardware,
such as the relative performance of the configuration or whether ad-
ditional features/instructions are available (e.g., if only some con-
figurations support SIMD or floating-point operations).

Nodes. Chameleon separates processors intonodes, which are
groups of CPUs managed together. Each node has anode manager,
which is responsible for selecting native CPUs within the node
to merge into an execution object. The node manager knows the
constraints of the hardware, such as which CPUs can be fused or
which CPUs can shift power. In addition, it knows the properties of
every execution object it can create. Figure2 shows an example of
2 nodes.

When a thread requests an execution object with a property
(described in Section3.3), the scheduler selects a node and invokes
its manager to request an execution object. The manager makes
its best effort to assign the requested resources to the application
from the CPUs it manages. As long as a thread is scheduled on
an execution object, the node manager keeps the execution object
alive. When the thread terminates or requests a different object,
the resulting free CPUs can now be assigned to another execution
object or left available. The manager prevents fragmentation, which
can occur when idle cores are available but hardware constraints
prevent them from being fused, by reshuffling the assignment of
physical resources to execution objects.

The node manager assigns the CPUs comprising an execution
object when creating the object, and does not choose from available
CPUs when dispatching a thread. However, a rebalancing mecha-
nism, described in Section4 can relocate threads and create new
execution objects if needed.

Node managers are similar to the system knowledge base (SKB)
in Barrelfish [5] and Linux and Windows scheduling domains used
for NUMA processors [40, 51]. Unlike the SKB, node managers
have a restricted focus on processing. Compared to scheduling
domains, nodes add constraints on which execution objects can be
used simultaneously.

3.3 Scheduling

Chameleon extends the OS to schedule threads on execution objects
in addition to physical CPUs. The major challenges Chameleon
addresses are:

• Which: Finding the possible execution objects upon which to
schedule a thread.

• When:Prioritizing threads relative to each other.

• Where:Moving threads to avoid conflicts and minimize recon-
figuration overhead.

The Chameleon scheduler leaves scheduling queues attached to
native CPUs. When a thread is ready to run, it decides whether to
activate an execution object.

Property matching. A key challenge for any asymmetric proces-
sor is determining whether and how much a thread benefits from an
enhanced execution context. Chameleon does not address this prob-
lem, but instead provides a general mechanism to match threads to
execution objects. As previously noted, node managers associate
properties with a fused object that describe its capabilities, and im-
plement logic to match a request for specific processing features
against the properties of different configurations. For example, an
execution object providing high instruction-level parallelism for
fast sequential execution could have the propertysequential.

Currently, Chameleon requires that threads specify their desired
properties. This could be done explicitly, through a system call, or
implicitly by a separate profiling mechanism as in ACMP sched-
ulers (e.g., CAMP [48]). However, Chameleon should work with
any mechanism that assigns properties to threads. In the case of a
single threaded program, the property might besequential, indi-
cating that the program wants fast execution and does not depend
on other threads.

When placing threads in a run queue, the Chameleon scheduler
selects a node and invokes its manager to match the desired proper-
ties of a thread with the properties offered by the node’s execution
objects. If there is a match, the node manager creates the object,
and Chameleon adds the thread to the run queue of the object’s
representative CPU and attaches the execution object to the thread;
otherwise, it relies on the native OS scheduler to place the thread.
This is similar to the matchmaking process of the Condor cluster
system [46], but with a restricted set of properties.

Cluster scheduling. Chameleon schedules a thread on an exe-
cution object as if it is gang scheduling a group of threads on
the constituent native CPUs: when all the CPUs are available, the
thread will activate the execution object to fuse them. However,
Chameleon’s scheduler can also elect not to use all the CPUs and
instead execute the thread on a single native CPU. Thus, when a
thread becomes the next to run, the scheduler determines whether
to activate an execution object. We term thiscluster scheduling.

Chameleon decides when to fuse CPUs together and when to
let them run their own threads. Each native CPU in an execution
object has its own run queue with threads to execute. When a
thread using an execution object becomes ready (i.e., runnable),
Chameleon adds it to the run queue for the execution object’s
representative CPU, and createsvirtual threadsthat represent it
in the run queues of the CPUs it will borrow. For example, in
Figure 2, a thread desiring to run on fused context E2 would be
placed in its representative, CPU C7, and would have a virtual
thread representing it on CPU C8.

Virtual threads represent a thread’s ability to borrow CPUs
to form a fused object: if a virtual thread has the priority to be
dispatched, then its thread can borrow the CPU. Until then, the CPU
is available for its own threads. When the scheduler dispatches a
thread using an execution object, it checks whether it can activate

Component Lines
Processor Proxies 600
Execution Objects 850
Cluster Scheduling 550

Table 1. Implementation Complexity

the execution object. For example, when the scheduler dispatches
a sequential thread on C7, it checks to see whether the virtual
thread would have been dispatched on the other CPU C8. If so, it
preempts any thread on C8, activates the execution object E2, and
then dispatches the thread. If not, the thread is directly dispatched
on C7.

Cross-CPU contention. Standard CPU scheduling assumes a
many-to-one relationship between threads and CPUs, in that many
threads share a single CPU and no thread uses more than one CPU.
As a result, traditional notions of priority and fair share for threads
apply only to a single CPU. However, dynamic processors intro-
duce a new possibility: a thread can preempt multiple CPUs. Thus,
threads must have a separate priority or a share for CPUs they bor-
row. Simply assigning a thread a global share across several CPUs,
as in Linux group scheduling [12] is insufficient because it does not
reflect the inefficiency of fused objects: under contention, a thread
does better on a single CPU than it does running half as long on two
CPUs, because speedups are less than linear. With a Linux process
group, both configurations would be treated as equivalent.

Chameleon extends the existing notion of priority and share by
allowing a thread to have different priorities on its representative
CPU and on the CPUs it wants to borrow. We term this mechanism
taxation: a thread is charged for its use of other CPUs adjusted
by a tax rate. Effectively, this means that virtual threads may have
different priorities than the thread on the representative CPU. If the
tax rate is high, then a thread is charged more for borrowing a CPU
than the threads that live on that CPU; thus, its priority is effectively
lower and it will not be able to preempt those threads. If the tax rate
is low, then it will be able to use other CPUs more cheaply than the
threads on those CPUs, and it will be able to preempt them.

4. Implementation
Chameleon is implemented as an extension to the Linux 2.6.31-4
kernel. The code changes required by Chameleon were largely con-
centrated in two Linux subsystems: inter-processor interrupts, to
implement proxies; and scheduling, to call into Chameleon during
a context switch when activating execution objects. Table1 shows
the amount of code comprising Chameleon’s major components.

4.1 Processor Proxies

Processor proxies speed reconfiguration because they remove much
of the work to change the set of processors. Proxies consist of
two elements: (i) methods to create and destroy proxies, (ii) a new
execution context for executing interrupts and bottom halves on
behalf of the disabled context. The CPU going offline is theproxied
CPU, and the one that will act as its proxy is theproxying CPU.

Proxy creation. The activation of an execution object launches
the creation of a proxy by sending a notification to the proxied
CPU. The CPU that sends this request will be the proxy. The
receiving CPU prepares to go offline by switching to the idle thread,
which removes the need to participate in RCU operations, and by
ensuring interrupts for the CPU will be delivered to its proxy. These
interrupts fall into two categories: device interrupts, which can be
redistributed to any online CPUs, and IPIs, which must be sent to
the proxying CPU. Each is handled by a separate mechanism.

For device interrupts, the IOAPIC maintains a redirection ta-
ble indicating the core to which external interrupts should be
sent [24]. However, reprogramming the IOAPIC is slow, as we

show in Section5. Instead, Chameleon leverages APIClogical ad-
dressingwhen possible: device interrupts are broadcast to a logi-
cal address and each CPU ANDs a local mask against the inter-
rupt’s address and delivers the interrupt if any common bits are set.
Chameleon therefore does logical-address renaming by adding the
proxied CPU’s identifier to the mask for the proxying CPU and re-
setting the identifier for the proxied CPU. This causes interrupts,
both external and inter-processor, destined for the proxied CPU to
be delivered to the proxying CPU automatically.

However, logical address renaming may not be available on all
systems because the number of bits representing different CPUs
is limited. Thus, we implemented a separate software mechanism
to redirect IPIs to the proxying CPU. When creating a proxy,
Chameleon records in aredirection tablethat the proxied CPU is
being proxied. When a CPU sends an IPI, it consults the redirection
table to learn where the IPI should be sent. In this case, Chameleon
reprograms the IOAPIC to redirect device interrupts.

When using logical address renaming, redirecting interrupts can
cause an IPI to be delivered to two CPUs or not delivered at all,
based on the order in which the mask of proxying CPU and proxied
CPU are changed. Since IPI handlers in Linux are idempotent and
may be called multiple times without harm, Chameleon always
updates the local mask of proxying CPU to include proxied CPU’s
identifier before resetting the mask of proxied CPU. Reversing this
order could result in loss of IPIs. Furthermore, when tearing down a
proxy, Chameleon invokes IPI handlers on the proxied CPU before
invoking the scheduler in case an IPI was lost. These issues do
not arise with device interrupts because the hardware ensures they
are delivered to only one CPU even if the logical address matches
multiple CPUs.

Proxy context. We add a new execution context to the OS, in
addition to process context and interrupt context, termed aproxy
context. A separate proxy context exists on a CPU for each of the
processors it proxies and executes only when the proxying CPU
receives inter-processor interrupts (IPIs) on behalf of the proxied
CPU. We augmented the per-CPU structures with two variables
to track proxies:proxied by for a CPU that is being proxied, and
proxying for on a CPU that is acting as a proxy.

On receiving any IPIs, the proxying CPU invokes the corre-
sponding IPI handler natively for the proxying CPU in the prox-
ied CPU’s context. Handling IPIs requires access to per-CPU vari-
ables, which are normally accessed through the x86 segment regis-
ters. When entering proxy context, Chameleon sets the FS register
to point to the per-CPU data of the proxied CPU, and resets the
register when leaving proxy context. In addition, we modified the
thread info macro, which normally uses the stack pointer to find
the CPU state of the running task. In proxy context, the macro di-
rects accesses to the data for the proxied CPU.

With proxies, Chameleon ensures that kernel operations requir-
ing the involvement of an offline CPU can proceed, as the role of
that CPU is handled by its proxy. This includes inter-processor
interrupts for scheduling, read-copy-update operations, and TLB
shootdowns, which are dropped because the proxy code flushes the
TLB when resuming normal operation.

In some architectures processor proxies may not always be
needed: if CPUs can continue to receive interrupts when disabled,
the object does not create a proxy but instead halts the CPUs. This
occurs when using Chameleon with hyperthreads: the execution
object schedules the idle thread on the other hyperthread. Similarly,
with Intel’s Turbo Boost feature other cores enter a sleep state but
can still receive interrupts.

4.2 Execution Objects and Node Managers

Chameleon assigns all the CPUs on a socket to a node and instan-
tiates a node manager for each node. The node manager is a kernel

component that tracks the execution objects and CPUs on a node.
For now, Chameleon uses the existing topology information pro-
vided by platform drivers (e.g., ACPI). We emulate a dynamic pro-
cessor by informing node managers that they may construct fused
execution objects for pairs of hyperthreads on a core and pairs of
adjacent cores.

The only property we have implemented issequential with a
level, which is the log2 of the number of hyperthreads in the ob-
ject. Threads can request a sequential object of a specified level.
Property matching compares the desired level of a thread against
available execution objects to find one with the same level. The
activate method on an execution object configures the hardware
to create the desired execution context, and must be called from
the object’s representative CPU (the lowest numbered CPU in the
set). It also creates proxies for the native CPUs borrowed by the ob-
ject, and then directs the hardware to reconfigure. Thedeactivate

method does the reverse ofactivate; it directs the hardware to en-
able native CPUs and removes proxies for all the CPUs involved.

A thread invokes the node manager to request an execution
object. The node manager creates an execution object and assigns
unallocated CPUs that fit the object’s constraints (contiguous IDs
for our emulation) to the execution object. A CPU can only belong
to one non-nested execution objects. Thus, in Figure2, CPU C10
could not be part of objects E2 and E3. This constraint may be
mandatory for processors that share physical resources, such as
Core Fusion, but could be relaxed for systems with more flexible
resource sharing.

Any request for change in the type of execution object for a
thread also invokes the node manager. If the set of available native
CPUs changes, such as when a thread terminates or changes its re-
quest for an execution object, the node manager can reassign CPUs
between objects to avoid fragmentation that arises when enough
idle CPUs are available to create a fused object, but hardware con-
straints prevent its creation.

4.3 Cluster Scheduling

Chameleon’s cluster scheduler is built on top of the native Linux
scheduler, the Completely Fair Scheduler (CFS) [28]. CFS is simi-
lar to Borrowed Virtual Time scheduling [14], and schedules tasks
according to the CPU time they have used recently rather than pri-
ority. The tasks within a runqueue are ordered by avirtual runtime
value (vruntime in the task structure), which is a measure of how
long the task has run. The task with the lowest virtual runtime value
(i.e., is the furthest behind) is selected to run next. The virtual run-
time value increases in proportion to the time spent executing.

Chameleon schedules all tasks in native Linux run queues. For
threads requesting an execution object, Chameleon adds the thread
to the run queue of the object’s representative CPU. However,
virtual threads, used to track a thread’s priority on the borrowed
CPUs, arenot added to run queues. Instead, Chameleon leverages
the CFS scheduler design: it records the virtual runtime value a
threadwould receiveon another CPU had it been scheduled. This
value is set when a thread is added to the queue and does not
change, making it fast to record. When seeking to activate an object
for a thread, the cluster scheduler is allowed to borrow a CPU,
say C, if the thread’s recorded virtual runtime value for CPU C is
below the virtual runtime value of the thread currently running on
CPU C. This indicates that, had it been a real thread, it would have
been dispatched already. We describe below how this comparison
is performed efficiently.

4.3.1 Activating execution objects

When a thread reaches the head of the run queue, Chameleon con-
sults the thread’s task structure to see whether the thread requested
an execution object. If so, it checks whether it can activate the

object. To make this efficient, Chameleon extends the Linux task
structure with avruntimes[] array containing an element for each
CPU comprising an execution object. When adding a thread to a
run queue, the cluster scheduler updatesvruntimes[] for the CPUs
in the execution object. In addition, each CFS runqueue stores the
vruntime value a new thread would receive in itsmin vruntime
variable, and Chameleon copies this into the thread when initial-
izing vruntimes[].

When a thread finally becomes the next to run, the cluster
scheduler compares the thread’svruntimes[CPU] with the virtual
runtime value of the active thread for each CPU it needs to borrow.
It only preempts the neighboring CPUs if the thread’svruntime
is lower onall the needed CPUs. This requires preempting other
threads, so we enable kernel preemption.

If the scheduler cannot form the execution object desired by
a thread, it will try to instantiate an object with just the available
CPUs, if one has the thread’s requested properties (e.g., sequential).
For example, in Figure2, if a thread wants object E1 but either
CPU C5 or C6 is unavailable, the scheduler will see if it can form
an object from CPUs C3 and C4. If so, it activates the execution
object with just the available CPUs.

4.3.2 Preempting Execution Objects

While a thread executes on a fused object, threads scheduled on
its borrowed CPUs may wake up and become runnable at higher
priority. In addition, as a thread on a fused object executes, its
vruntime increases so that it may no longer be the highest priority
thread on all the borrowed CPUs.

Chameleon tracks how long a thread on a fused object can run
by calculating when the next thread on every borrowed CPU is al-
lowed to run, based onvruntime values of the threads it preempted
and the running thread’svruntimes[] values. During every timer
tick, the cluster scheduler checks whether any of the threads on a
fused object’s constituent CPUs are allowed to run, and if so deac-
tivates the object and reschedules the running thread.

Reconfiguration takes time, so care must be taken to avoid re-
configuring too often. As we show in Section5, fusing an execu-
tion object can take up to 8µs. Chameleon relies on the existing
sysctl sched min granularity variable from CFS to set how long
a thread can run before being preempted when it is no longer the
highest priority thread.

4.3.3 Taxation

Taxation controls the relative priority of threads executing natively
and threads that want to borrow a CPU for an execution object.
CFS already adjusts the rate at which virtual runtime accrues based
on priority: lower-priority tasks accumulate virtual runtime faster,
so they must wait longer to execute again, while high priority tasks
accumulate it more slowly, letting them run sooner. Taxation further
adjusts that rate. Much as priority adjusts both scheduling latency
and CPU share, taxation can act as a share, so that unimportant
tasks only use idle CPUs for fused objects, or as a mechanism to
reward threads that achieve high speedups with a fused object.

Chameleon adds aneo tax percent field to every task structure.
When a thread runs on an execution object, the scheduler calcu-
lates the delta to itsvruntime for the representative CPU and all
borrowed CPUs, weighted by its priority. For borrowed CPUs, the
scheduler multiplies the delta by the tax rate before adding to the
vruntimes[] array.

Figure3 shows the impact of changing the tax rate when run-
ning two CPU-bound tasks on neighboring CPUs. Task A requests
an execution object, while B runs on one of the CPUs assigned to
the execution object. If the tax rate is high (>> 1), then task A is
charged more than task B for using its CPU and thus it sticks with
native execution. If the tax rate is 1, then task A receives all of its

 0

 0.5

 1

 1.5

 2

 0.01 0.1 1 10 100

S
p

e
e

d
u

p

Tax rate

Task A
Task B

Figure 3. The effect of taxation on two identical tasks. Execution time
is relative to the thread executing alone on a single native CPU.

CPU plus half of task B’s CPU. If the tax rate is low (<< 1), then
task A can preempt task B much of the time because it is charged
less than B for using the CPU. Thus, taxation implements a cross-
CPU priority mechanism.

Tax rates can be set automatically from the speedup a thread
receives on a fused context. We observe that a thread that shows
a good speedup deserves more access to a fused object. If
progress rates metrics, such as hardware performance counters or
application-specific heartbeats [23] are available, a thread’s taxa-
tion rate can be set according to its speedup. Threads with good
speedups deserve lower tax rates, allowing them to borrow neigh-
boring CPUs aggressively, while threads with low speedups should
only borrow idle CPUs and deserve high tax rates.

4.3.4 Property Matching

A thread declares its properties of interest by providing the identity
of the property (an integer identifier), and a weight indicating the
importance of the property. The node manager matches properties
by comparing a thread’s requested properties against the properties
of all possible fused objects in the node. The matching process pro-
duces a list of possible execution objects. Currently, all properties
are optional, so a thread will still be scheduled on any available
CPU if an object with its requested properties is not available.

The current Chameleon implementation relies on a programmer
or external agent to specify the properties a thread desires. To pri-
oritize threads that benefit more from a fused object, the node man-
ager uses the weight provided by a thread to identify which thread
receives more benefit from a fused object when there is contention.
Existing ACMP scheduling mechanisms or static profiling could
provide information about the speedup of fused objects [49].

4.3.5 Rebalancing

The node manager spreads out threads requiring a fused object
within a node so they can run concurrently, and to shift resources to
threads that benefit from them more. When an execution object is
freed, the CPUs it used are given to the active execution objects if
they need them, such as an execution object that requested 4 CPUs
but received only 2 CPUs. This assignment is prioritized based on
the weight assigned to threads’ properties.

When the node manager is not able to assign the requested
number of native CPUs to an execution object, it tries to reclaim
CPUs from low-priority threads and reassign these CPUs to a
new fused object. If this is not possible, the node manager breaks
the largest execution object and assign half the CPUs to a new
execution object. This ensures that native CPUs are not reserved
for a single thread when multiple threads request fused objects.

In addition, the node manager defragments execution objects. If
the requested number of CPUs for an execution object are available
within a node, but physical constraints prevent them from being
fused (e.g., they are not physically contiguous), the node manager
detects fragmentation. It will then migrate threads to create a con-
tiguous block of CPUs that can be used to satisfy future requests.
Whenever the node manager makes any change to the physical re-
source assignment to the execution object, it notifies the execution
object, which also updates thevruntimes[] for any threads sched-
uled on the object.

5. Evaluation
We evaluate Chameleon through emulation to answer these ques-
tions:

1. Cost:What is the latency of reconfiguring with processor prox-
ies, and the added costs of scheduling with execution objects?

2. Benefit: Does Chameleon enable threads needing higher se-
quential performance to receive it, while allowing parallel pro-
grams full use of the CPUs in a system?

3. Contention: Does Chameleon behave reasonably and pre-
dictably when there are many threads contending for resources?

As dynamic processing hardware is not yet available, we evaluate
Chameleon through emulation.

5.1 Experimental Platform

We emulate dynamic processors and ACMPs on a standard multi-
core system by varying the performance of the different CPUs. We
performed our experiments on 32-bit Linux kernel version 2.6.31-4
running on a system with 12 GB RAM and two Intel Xeon X5650
chips, each chip containing six cores and each core with two hy-
perthreads. We refer hyperthreads as CPUs in this section. We in-
structed Chameleon to create two nodes of 6 cores (12 CPUs) each,
and allow each node to create execution objects with 2 or 4 CPUs.
We disabled TurboBoost because it varied the frequency when the
system entered the P0 state, leading to widely fluctuating results.
We leave the minimum scheduling granularity at the default value,
16ms.

We could not use DVFS to emulate asymmetric performance,
as on our platform it applies to an entire socket rather than a sin-
gle CPU. Instead, we use Intel’sclock-modulationfeature [25, 58]
similar to past research on dynamic processors [3]. This mech-
anism is used for thermal throttling and controls the processor
duty cycle by stopping the clock for short periods (less than 3µs)
at regular intervals. There are eight levels available through the
IA32 CLOCK MODULATION model specific register (MSR). These lev-
els reduce performance from 100% down to 12.5% of full perfor-
mance in steps of 12.5%. For emulation, theactivate method on
an execution object creates the processor proxy and raises the duty
cycle. Unlike real ACMPs or dynamic processors, the performance
impact of clock modulation is independent of the code execution.
Thus, a program sees a performance drop of 50% if the duty cycle
is cut in half.

Table 2 lists the configurations we use in experiments. In all
cases, we assume the baseline performance is 50% of maximum,
and we emulate a faster CPU or fused object by increasing the duty
cycle. For a symmetric CMP, we set all 24 CPUs to the baseline
speed. For other models, we try to keep the approximate chip com-
plexity similar. The emulated asymmetric CMP systems have ei-
ther 3 or 6 fast CPUs with 75% or 100% of native performance. We
use the native Linux scheduler in ACMP configuration but pin spe-
cific threads to the more powerful CPUs. As different programs see
different speedups on asymmetric processors, we assign sequen-

Architecture CPUs Speedup in
Model Duty Cycle percent

slow, fast low med high
CMP 24, - 50 50 50

ACMP-3 12, 3 75 87.5 100
ACMP-6 12, 6 62.5 75 75

Dynamic
Fuse 2 threads 62.5 75 75
Fuse 4 threads 75 87.5 100

Table 2. CMP, ACMP, and Dynamic configurations

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

fibonacci pmake Blackscholes M-DB M-SB

S
p

e
e

d
u

p

Benchmarks

ACMP-3

ACMP-6

NATIVE

CHAMELEON

Figure 4. Performance of parallel programs.

tial programs to three performance categories (low, medium, high),
with different speedups on the fast CPUs.

For dynamic processors, we follow past work [22] and set the
maximum performance of fusing 2 threads to 75% (a 50% improve-
ment over the base CPU’s performance), and of 4 threads to 100%,
doubling the performance of a base CPU. Again, we set different
speedups for each sequential performance category to mirror the
ACMP speedups. Achieving the same speedups with ACMP and
dynamic processors may be optimistic, but it helps illustrate the
benefit of being able to reconfigure.

We do not add additional delay to emulate the hardware cost of
reconfiguring. Core Fusion estimates the delay at 400 cycles plus a
pipeline flush [26], and other systems do not give any latencies.
However, processor proxies flush the TLB when they are torn
down, so the flush plus cost of subsequent TLB misses is included
in our results.

5.2 Workloads

Past work has shown that I/O and memory-bound workloads re-
ceive little benefit from faster cores [4], so we largely evaluate with
CPU-bound programs. Table3 lists the workloads we use to eval-
uate Chameleon. As we do not have real hardware, variations in
how a program performs on specific hardware cannot be evaluated.
Thus, we instead evaluate on programs with different styles of a
parallelism: task parallel threads on Intel’s Thread Building Blocks
(Fibonacci), task parallel processes (pmake); data-parallel threads
(Blackscholes), OpenMP with a static binding of tasks to threads
(Mandelbrot-SB); and OpenMP with a dynamic binding of tasks
to threads (Mandelbrot-DB), which can execute more tasks given a
more powerful CPU. We ran a variety of SpecCPU benchmarks on
our emulator, and found they performed similarly to simple kernel
benchmarks, so we also use a simple N-Queen program for sequen-
tial programs. We repeat experiments at least three times and report
the average results. As there is little variance in the measurements,
we do not include error bars.

5.3 Baseline Results

We evaluate Chameleon on single workloads to validate the emula-
tor and to evaluate how close Chameleon gets to ideal performance.

Program Description
Fibonacci Task-parallel threads
pmake Task-parallel processes
Blackscholes [7] Data-parallel threads
Mandelbrot-DB (M-DB) OpenMP kernel, dyn. binding
Mandelbrot-SB (M-SB) OpenMP kernel, static binding
gcc [21] Low-CPU single thread
astar [21] Low-CPU single thread
dealII [21] Medium-CPU single thread
lbm [21] Medium-CPU single thread
sjeng [21] High-CPU single thread
N-Queen [34] High-CPU single thread
h264ref [21] High-CPU single thread

Table 3. Workloads

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

 2.5

gcc astar dealII lbm sjeng h264refn-queen

S
p

e
e

d
u

p

Sequential Benchmarks

ACMP-6 ACMP-3 DYN-2 DYN-4

Figure 5. Performance of sequential programs.

Parallel performance. Figure 4 shows the performance of par-
allel workloads on four configurations: the CMP, the two ACMP
models, and Chameleon. For all the parallel workloads, the best
performance comes from the CMP configuration, which provides
24 CPUs. In the ACMP models, the lost parallelism outweighs
the powerful CPUs present in the system except for Fibonacci and
Mandelbrot with dynamic scheduling. Programs with static thread
scheduling, such as Blackscholes, suffer from load imbalance when
the threads on the fast CPUs wait for the threads on slow ones to
finish. Chameleon uses all CPUs to achieve performance similar
identical to the CMP.

Sequential performance. Figure 5 shows the performance of
single-threaded workloads with varying benefit from faster CPUs.
We execute each program on a single hyperthread, with the rest
of the system idle. On ACMP systems we pin the program to a
powerful core. For Chameleon, we evaluate both fusing two and
four CPUs (DYN-2 and DYN-4). For these workloads, Chameleon
is able to achieve the same performance as the asymmetric sys-
tems, despite using processor proxies. These results demonstrate
that proxying introduces very little overhead and allow programs
full access to the hardware’s performance. In addition, they demon-
strate that our emulation mechanism provides identical speedups
across different programs.

Overhead. The overhead of Chameleon arises in two places: re-
configuration and scheduling. The latency of fusing and splitting
CPUs is shown in Table4. We present two versions of Chameleon’s
split and fuse operations:Proxy - APIC reprograms the IOAPIC to
deliver interrupts to the proxying CPU during a fuse, andProxy
- Logical uses the logical addressing technique described in Sec-
tion 4.1. When reprogramming the IOAPIC, proxy creation takes
between 250-375µs. Logical addressing does not communicate
with the slow IOAPIC and is 50-100 times faster. Compared to the
native Linux hotplug mechanism, Chameleon is up to 75,000 times

Operation Hotplug Proxy - APIC Proxy - Logical
Fuse 2 CPUs 150ms 250µs 2µs
Fuse 4 CPUs 430ms 375µs 8µs
Split 2 CPUs 220ms 20µs 1.5µs
Split 4 CPUs 640ms 60µs 4.2µs

Table 4. Latency of reconfiguration

faster at fusing (hotunplugging a CPU) and 160,000 times faster at
splitting an execution object of two CPUs (hot plugging a CPU).

The number of processors that can be addressed with logical
addresses may be limited in some systems, and in such cases
IOAPIC reprogramming is needed. The fuse case forProxy - APIC
is more expensive than splitting because Chameleon reprograms
the IOAPIC to remove the proxied CPU. When splitting a proxy, it
does not reprogram the IOAPIC to include the proxied CPU (this
is the same behavior as Linux hotplug). Fusing and splitting four
CPUs is costlier since the proxy creation and destruction phases are
carried out sequentially. The major savings compared to hotplug
come from avoiding the notification of subsystems that the set of
CPUs has changed. The remainder of our experiments uses the
IOAPIC reprogramming method, as logical addressing does not
currently support 24 CPUs.

We measured the added scheduling work during context
switches, and there was no difference between context switching
native threads on Chameleon and native Linux: both took between
2.5µs - 3µs. These results demonstrate that the added latency of
Chameleon’s scheduling techniques is low.

IPIs handled by proxy. We ran the pmake workload alongside
a sequential application making use of an execution object with
4 CPUs. The proxy created during the activation of the execution
object is responsible for handling the IPIs destined to the CPUs of
the execution object and in this case was proxying for 3 CPUs. The
proxy handled 10 IPIs per second, mostly TLB shootdowns. This
is lower than the 40 IPIs/second reported in Section2 because the
offline CPUs switch to the idle thread, which avoids rescheduling
IPIs. However, the proxy still receives TLB shootdowns because
the idle thread leaves the previous user-mode address space from
pmake on the processor.

5.4 Scheduling Mixed Workloads

We evaluate Chameleon with a mix of workloads under two situ-
ations:over-provisioned, when there are more CPUs than threads;
andunder-provisioned, where there are not enough CPUs. In each
case, we start a mix of parallel and sequential programs at the same
time and measure their completion time. If one program finishes
early, the other program can make use of its CPUs. We use the Man-
delbrot and N-Queen kernels because they are purely CPU bound
and their performance reflects only the added effect of scheduling
decisions by Chameleon, as shown in Figure5.

Ideally, when there are idle CPUs, Chameleon will opportunis-
tically use them to execute sequential tasks. When there is con-
tention, Chameleon should only use them if the tax rate allows se-
quential threads to preempt threads on neighboring CPUs.

Over-provisioned performance.We measure the performance of
executing a parallel program requiring 16 CPUs and 2-4 sequen-
tial programs simultaneously. The results in Figure6 show that for
two sequential programs, Chameleon creates a 4-CPU fused object
for each task that achieves almost double the baseline performance.
The four sequential threads are scheduled on 2-CPU fused objects,
and achieve 50% speedup over baseline. The case of 3 sequen-
tial threads is explained more in the following paragraph. Thus,
Chameleon is able to effectively place sequential threads when
there are idle CPUs, and can balance them to achieve maximum
performance.

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 2.25

2 3 3* 4

S
p

e
e

d
u

p

Instances of n-queen

Figure 6. Over-provisioned performance of 2-4 sequential programs
and a parallel program. The column marked by 3* was run without the
node manager notification mechanism.

This experiment also demonstrates Chameleon’s load balancing
capability. With three sequential threads and eight available CPUs,
one of the threads can run on a 4-CPU fused object, while the oth-
ers run on 2-CPU fused objects. When the faster thread completes,
the node manager distributes the physical resource used by the just
finished thread to currently active threads, allowing both remaining
threads to use 4-CPU fused objects. The column labeled 3* shows
the benefit of notifying the node manager when a task completes.
When we disable notification, which redistributes idle CPUs, per-
formance suffers because only one thread uses a 4-CPU fused ob-
ject even when idle CPUs are available.

Under-provisioned performance. We perform a similar test us-
ing three sequential programs and a parallel program with 24
threads. As there are no idle CPUs, Chameleon must decide
whether to timeshare CPUs between the two programs. For these
experiments, we test with both static and dynamic binding of the
parallel threads, and vary the tax rate between 0.01, 1, and 100.
We also present the result for the ACMP-3 configuration. In the
ACMP configuration, the sequential programs were pinned to the
fast CPUs while letting Linux schedule 15 parallel threads.

Figure 7 shows the speedup for the sequential and parallel
programs relative to running on a single baseline CPU. As this is a
single hyperthread, the speedup from using more CPUs is less than
linear in the number of CPUs available. With a low tax rate, the
sequential program is able to borrow the neighboring CPUs most
of the time for a speedup of 97% over baseline (the speedup is
less than 100% because the parallel thread occasionally uses the
CPU). With a tax rate of 1, the sequential program borrows CPUs
approximately half the time. But since the parallel threads also use
the CPU the observed speedup is less than 50%. With a high tax
rate, the sequential workloads were not able to preempt the parallel
threads. As a result they complete at baseline speedup.

The parallel program shows similar variation: for dynamic
scheduling where threads can have varying amounts of work, per-
formance drops in direct proportion to the time N-Queen borrows a
CPU: with the high tax rate, it gets a 11.4x speedup over baseline,
while with a low tax that drops to 10x. With a low tax, N-Queen
finishes quickly and the parallel program then uses all 24 CPUs.
With static scheduling, where every thread must perform the same
amount of work, performance varies from 11.4x speedup with the
high tax rate to 8.8x speedup with a low tax rate, because of load
imbalance while the N-Queen is running. Thus, the use of tax must
consider both the benefit to sequential programs and the cost to the
parallel programs that are preempted. The N-Queen program’s use
of the CPU is similar when run with both the static and dynamic
parallel programs, so its performance does not change.

 0

 2

 4

 6

 8

 10

 12

 14

 16

0.01 1 100 ACMP-3

S
p

e
e

d
u

p

Tax rate for Sequential task

Mandelbrot Static

Mandelbrot Dynamic

N-Queen

Figure 7. Under-provisioned performance of 3 instances of N-Queen
program and a parallel program with varying taxation rates.

Compared to the ACMP, Chameleon achieves the same sequen-
tial performance and parallel performance on the dynamic paral-
lel program with a low tax rate because it has more CPUs. The
higher tax rates trade lower sequential performance for parallel per-
formance exceeding the ACMP. These results show how taxation
adjusts the priority of sequential and parallel programs. Its benefit
may depend on how well parallel programs react to losing a CPU.

Mixed sequential workloads. This experiment demonstrates
Chameleon’s ability to prioritize the use of CPUs based on the
speedup a thread achieves. In this experiment we ran a mix of
sequential workloads of different classes: one high CPU (sjeng),
one medium CPU (lbm) and two low-CPU workloads (astar) with
staggered start times. We annotated each program’s thread with its
speedup as the weight on its sequential property, similar to what
might be provided by an ACMP scheduler. We constrained all the
programs to a single node with a total of 10 CPUs.

Ideally, the rebalancer will spread the available CPUs across the
sequential programs and prioritize remaining CPUs to the programs
with the best speedup. Figure8shows the results of this experiment.
The two low CPU (astar) workloads were started first and were
each given a 4-CPU fused object by the node manager. When lbm
– a medium speedup application – was started subsequently, the
manager borrowed 2 CPUs from one of the low-speedup astar
applications and gave them to lbm at eventa©. Similarly, when
sjeng – a high speedup application – started, it borrowed 2 CPUs,
one each from lbm the other astar, at eventb©.

In short, when the remaining two workloads started, the node
manager noted that the demand for sequential performance (a total
of 16 CPUs forming 4 fused objects) exceeded the supply (10
CPUs), and split the objects in use by the astar instances so the
two remaining programs could each receive a fused object. As
described in Section4.3.5, the node manager uses the speedups
of the programs to allocate the remaining CPUs to the program
receiving the most benefit, sjeng, which then runs on a 4-CPU
fused object. The other three programs all used a 2-CPU fused
object. Upon exit of any workload, the node manager distributes the
released CPUs to the active workloads based on their speedup. In
this case lbm completes first at eventc© and its resources are given
to one astar instance. After sjeng exits at eventd©, its resources are
given to the second astar.

Thus, Chameleon’s node manager and rebalancer are able to
allocate CPUs across a set of workloads with different speedups,
when notified of those speedups.

5.5 Chameleon on Real Hardware

The previous results show that Chameleon can exploit the flex-
ibility of dynamic processors to achieve improved performance.

Astar	
 -­‐	
 1	

Astar	
 -­‐	
 2	

lbm	

sjeng	

Time	

Execu5on	
 object	
 with	
 4	
 CPUs	

Execu5on	
 object	
 with	
 2	
 CPUs	

Va
ri
a)

on
	
 o
f	
 C

PU
	
 a
llo
ca
)o

n	

ba
se
d	

on

	

ap
pl
ic
a)

on
	
 s
pe

ed
up

	

a	

a	

b	

b	

b	

c	

c	

d	

d	

Figure 8. CPU allocation to execution object in a workload mix of
sequential programs with different speedups.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

gcc astar lbm dealII sjeng h264ref

S
p

e
e

d
u

p

Benchmarks

Linux

Chameleon

Figure 9. Chameleon on SMT.

Chameleon can also prioritize threads on existing hyperthreaded
processors. Since hyperthreads share the cache and processor
pipeline, running two hyperthreads on a core may reduce the per-
formance when compared to running a single thread. As a result,
the Linux scheduler tries to schedule threads on separate cores be-
fore using two hyperthreads on a single core. However, when there
are more threads than cores, it is possible that a thread that benefits
from running alone on a core may get scheduled on a shared CPU.

We apply Chameleon’s cluster scheduler to this problem by
treating each core as a fused execution object, which when acti-
vated forces one of the hyperthreads to idle. We ran one instance
of six SPEC application annotated by their corresponding speedup
values as listed in Table3 over 4 physical CPUs (8 hyperthreads)
with the native Linux scheduler and Chameleon. The baseline is
the application running on a non-shared CPU. Figure9 compares
the speedup achieved on the two systems. Linux has no knowledge
each application’s speedup and thus any application may be sched-
uled on a non-shared core. In this case, astar and sjeng achieve a
good speedup. Chameleon therefore prioritizes these two programs
and schedules them on non-shared cores. Thus, Chameleon is able
to prioritize resources for threads that benefit more from running
alone, while Linux treats all threads equally.

6. Related Work
Asymmetric Scheduling. Several recent works investigate
scheduling parallel and multiprogrammed workloads on asym-

metric or heterogeneous processors [19, 30, 35, 48, 49]. However,
many of these systems focus on power efficiency, so they seek to
identify which threads gain the most efficiency. Chameleon could
use these techniques to identify which threads would perform best
on a powerful execution object. Mogul et al. investigate the use of
ACMPs for operating systems [42], but focus on static assignment
of OS threads to simple cores; Chameleon could implement this
policy using its property mechanism. Most similar to Chameleon
is Luo et al.’s work on the use of helper threads and cache resizing
on an ACMP [38]. Similar to Chameleon, this work determines
when to allocate resources to speed sequential threads, but focuses
again on identifying which threads gain the most benefit. ACS
accelerates critical sections on an ACMP [55]. However, the
latency of Chameleon’s reconfiguration is still too long to help
individual critical sections.

Gang scheduling. Chameleon’s cluster scheduling is similar to
gang scheduling in that it will try to schedule multiple CPUs simul-
taneously. Past work on gang scheduling [45, 27, 16, 6] focuses pri-
marily on time-sharing gangs of threads. While Chameleon can do
this, there is little benefit because performance improves by running
time-sliced threads in parallel on separate cores. Thus, Chameleon
is most effective when there are idle threads to be used opportunis-
tically, or when a sequential thread has higher priority than com-
peting workloads.

Tesselation uses a form of gang scheduling to provide acell
of processors to an application, which is similar to Chameleon’s
execution objects [11]. However, it provides cores for software
process to use, while Chameleon provides cores to hardware for
an enhanced CPU.

Support for reconfigurable hardware. Recent work on schedul-
ing for reconfigurable hardware has largely focused on embedded
and real-time systems [52, 29, 17]. In these environments, precise
models of the transition costs and the execution time of code on
different hardware are needed. These systems also place mandatory
requirements on scheduling, so flexible tradeoffs like Chameleon’s
taxation are not used. In contrast, Chameleon focuses largely on
best-effort workloads and must rely on admission control to meet
performance goals.

Several projects discuss OS support for introducing reconfig-
urable logic onto a processor [13, 36, 54]. However, OS support for
these systems focuses on efficiently allocating the reconfigurable
logic to specific functions rather than on thread scheduling.

Windows 7’s support for core parking [41], which coalesces
threads onto a single core to disable the remaining cores, is similar
to Chameleon’s scheduling of threads on the execution object. It is
also used to balance threads between hyperthreads. However, core
parking targets all threads at a specific subset of CPUs, rather than
context switching between configurations.

7. Conclusions
Dynamic processors will lead to new opportunities for improv-
ing performance, reliability, and power consumption by reconfig-
uring the set of running processors. Existing operating systems
cannot react to changes fast enough to fully utilize reconfigura-
tion, and do not have scheduling mechanisms to take advantage
of them. Chameleon extends Linux to enable rapid reconfigura-
tion through processors proxies, allowing use of reconfiguration
even for short periods. It abstracts the reconfiguration abilities of
the hardware with execution objects and nodes, which expose the
new capabilities of the hardware to programmers and the sched-
uler. Chameleon’s cluster scheduling with taxation allows sequen-
tial code to use idle cores and provides a flexible tradeoff between
single-thread performance and parallel performance.

We plan to extend Chameleon for other uses of dynamic pro-
cessors. Chameleon focuses on performance benefits of dynamic
processors, but they should also promise power efficiency and reli-
ability, which demand different scheduling policies. In addition, we
plan to investigate other forms of dynamic processors that may not
fit Chameleon’s model. For example, processors with dark silicon
accelerators cannot be used unless other cores are powered off.

Acknowledgements
This work is supported in part by National Science Foundation
(NSF) grant CNS-0834473. We would like to thank our shepherd,
Angela Demke Brown, and the anonymous reviewers for their
invaluable feedback. Swift has a significant financial interest in
Microsoft.

References
[1] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith.

Configurable isolation: Building high availability systems with
commodity multi-core processors. InProc. of the 34th ISCA, June
2007.

[2] J. Allarey, V. George, and S. Jahagirdar. Power management
enhancements in the 45nm intel core microarchitecture.Intel
Technical Journal, 12(3):169–178, oct 2008.

[3] M. Annavaram, E. Grochowski, and J. Shen. Mitigating amdahl’s law
through epi throttling. InProc. of the 32nd ISCA, pages 298 – 309,
June 2005.

[4] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha:
A scalable architecture based on single-chip multiprocessing. InProc.
of the 27th ISCA, pages 282–293, June 2000.

[5] A. Baumann, P. barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schupbach, and A. Singhania. The multikernel: A new
os architecture for scalable multicore systems. InProc. 22nd SOSP,
Oct 2009.

[6] M. Bhadauria and S. A. McKee. An approach to resource-aware
co-scheduling for cmps. InProc. of the 24th ICS, pages 189–199,
2010.

[7] C. Bienia and K. Li. PARSEC 2.0: A new benchmark suite for chip-
multiprocessors. InProc. 5th Workshop on Modeling, Benchmarking
and Simulation, June 2009.

[8] N. Brookwood. Amd fusion. family of apus: Enabling a superior, im-
mersive pc experience.http://sites.amd.com/us/Documents/
48423B fusion whitepaper WEB.pdf, Mar 2010.

[9] J. Charles, P. Jassi, A. N. S, A. Sadat, and A. Fedorova. Evaluation
of the Intel Core i7 Turbo Boost feature. InProc. International
Symposium on Workload Characterization, Oct. 2009.

[10] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay. Simultaneous speculative threading: A
novel pipeline architecture implemented in sun’s rock processor. In
Proc. of the 36th ISCA, June 2009.

[11] J. A. Colmenares, S. Bird, H. Cook, P. Pearce, D. Zhu, J. Shalf,
S. Hofmeyr, K. Asanovic, and J. Kubiatowicz. Resource management
in the tessellation manycore os. InHotPAR, 2010.

[12] J. Corbet. CFS group scheduling.http://lwn.net/Articles/
240474/, 2007.

[13] M. Dales. Managing a reconfigurable processor in a general purpose
workstation environment. InProc. Design, Automation and Test in
Europe, 2003.

[14] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (bvt)
scheduling: supporting latency-sensitive threads in a general-purpose
scheduler. InProc. 17th SOSP, 1999.

http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://sites.amd.com/us/Documents/48423B_fusion_whitepaper_WEB.pdf
http://lwn.net/Articles/240474/
http://lwn.net/Articles/240474/

[15] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. InProc. of
the 38th ISCA, June 2011.

[16] D. G. Feitelson and L. Rudolph. Gang scheduling performance
benefits for fine-grain synchronization.JPDC, 16(4):306 – 318, 1992.

[17] W. Fu and K. Compton. Scheduling intervals for reconfigurable
computing. InProc. 16th FCCM, Apr. 2008.

[18] R. Grant and A. Afsahi. Power-performance efficiency of asymmetric
multiprocessors for multi-threaded scientific applications. InProc.
20th IPDPS, Apr. 2006.

[19] B. Hamidzadeh, Y. Atif, and D. J. Lilja. Dynamic scheduling
techniques for heterogeneous computing systems.Concurrency:
Practice and Experience, 7(7):633–652, 1995.

[20] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and
K. Olukotun. The stanford hydra cmp.IEEE Micro, pages 71–84,
March-April 2000.

[21] J. L. Henning. Spec cpu2006 benchmark descriptions.Computer
Architecture News, 34(4):1–17, 2006.

[22] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era.IEEE
Computer, pages 33–38, July 2008.

[23] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E., Miller, and
A. Agarwal. Application heartbeats: A generic interface for
specifying program performance and goals in autonomous computing
environments. InProc. 7th ICAC, 2010.

[24] Intel Corp. 82093AA I/O ADVANCED PROGRAMMABLE
INTERRUPT CONTROLLER (IOAPIC). http://www.intel.
com/design/chipsets/datashts/29056601.pdf, 1996.

[25] Intel Corp. Thermal protection and monitoring features: A soft-
ware perspective.http://www.intel.com/cd/ids/developer/
asmo-na/eng/downloads/54118.htm, 2005.

[26] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core fusion:
Accomodating software diversity in chip multiprocessors. InProc. of
the 34th ISCA, June 2007.

[27] Y. Jiang, X. Shen, J. Chen, and R. Tripathi. Analysis and approxima-
tion of optimal co-scheduling on chip multiprocessors. InProc. of the
17th PACT, 2008.

[28] M. T. Jones. Inside the linux 2.6 completely fair scheduler, Dec 2009.
http://www.ibm.com/developerworks/linux/library/l-completely-fair-
scheduler/.

[29] H. Kooti, E. Bozorgzadeh, S. Liao, and L. Bao. Transition-aware
real-time task scheduling for reconfigurable embedded systems. In
Proc. Design, Automation and Test in Europe, Mar. 2010.

[30] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in heterogeneous
multi-core architectures. InProc. EuroSys, 2010.

[31] V. Krishnan and J. Torrellas. Hardware and software support for
speculative execution of sequential binaries on a chip-multiprocessor.
In Proc. ICS, pages 85–92, July 1998.

[32] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.
Tullsen. Single-isa heterogeneous multi-core architectures: The
potential for processor power reduction. InProc. of the 36th MICRO,
Dec. 2003.

[33] M. Laux. Solaris processor sets made easy.http://developers.
sun.com/solaris/articles/solaris processor.html, 2001.

[34] C. Letavec and J. Ruggiero. The n-queens problem.INFORMS
Transactions on Education, 2(3), 2002.

[35] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient
operating system scheduling for performance-asymmetric multi-core
architectures. InProc. of SC2007, Nov. 2007.

[36] E. Lübbers and M. Platzner. Reconos: Multithreaded programming
for reconfigurable computers.ACM Trans. Embed. Comput. Syst., 9,
October 2009.

[37] P. Marcuello, A. Gonzalez, and J. Tubella. Speculative multithreaded
processors. InProc. of the 1998 ICS, pages 77–84, July 1998.

[38] Y. Luo, V. Packirisamy, W.-C. Hsu, and A. Zhai. Energy efficient spec-
ulative threads: dynamic thread allocation in same-isa heterogeneous
multicore systems. InProc. 19th PACT, pages 453–464, 2010.

[39] P. E. McKenney, J. Appavoo, A. Kleen, O. Krieger, , R. Russell,
D. Sarma, and M. Soni. Read-copy update. InProc. of the Ottawa
Linux Symposium, July 2001.

[40] Microsoft Corp. New NUMA Support with Windows Server 2008
R2 and Windows 7.http://archive.msdn.microsoft.com/
64plusLP, 2008.

[41] Microsoft Corp. Processor power management in windows 7
windows server 2008 r2.http://download.microsoft.com/
download/3/0/2/3027D574-C433-412A-A8B6-5E0A75D5B237/
ProcPowerMgmtWin7.docx, Jan. 2010.

[42] J. C. Mogul, J. Mudigonda, N. L. Binkert, P. Ranganathan, and
V. Talwar. Using asymmetric single-isa cmps to save energy on
operating systems.IEEE Micro, 28(3):26–41, 2008.

[43] Z. Mwaikambo, R. Russell, A. Raj, and J. Schopp. Linux kernel
hotplug CPU support. InProc. of the Ottawa Linux Symposium, pages
181–194, 2004.

[44] J. T. Oplinger, D. L. Heine, and M. S. Lam. In search of speculative
thread-level parallelism. InProc. 8th PACT, Oct. 1999.

[45] J. Ousterhout. Scheduling techniques for concurrent systems. InProc.
of the 3rd ICDCS, pages 22–30, 1982.

[46] R. Raman, M. Livny, and M. Solomon. Matchmaking: distributed
resource management for high throughput computing. InProc. HPDC,
pages 140 –146, July 1998.

[47] S. K. Reinhardt and S. S. Mukherjee. Transient fault detection via
simultaneous multithreading. InProc. of the 27th ISCA, pages 25–36,
June 2000.

[48] J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. A comprehen-
sive scheduler for asymmetric multicore systems. InProc. EuroSys,
2010.

[49] J. C. Saez, D. Shelepov, A. Fedorova, and M. Prieto. Leveraging
workload diversity through os scheduling to maximize performance
on single-isa heterogeneous multicore systems.J. Parallel Distrib.
Comput., 71:114–131, January 2011.

[50] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger,
S. W. Keckler, and C. Moore. Exploiting ilp, tlp, and dlp with the
polymorphous trips architecture. InProc. of the 30th ISCA, pages
422–433, June 2003.

[51] S. Siddha and V. Pallipadi. Chip multi processing aware Linux kernel
scheduler. InProc. of the Ottawa Linux Symposium, pages 337–348,
2006.

[52] S. P. Smith. Dynamic scheduling and resource management
in heterogeneous computing environments with reconfigurable
hardware. InInternational Conference on Computer Design, 2006.

[53] W. Stanek. Windows Server 2008 R2: A primer.http://technet.
microsoft.com/en-us/magazine/ee677582.aspx, Nov. 2009.

[54] C. Steiger, H. Walder, and M. Platzner. Operating systems for
reconfigurable embedded platforms: online scheduling of real-time
tasks.IEEE Trans. Computers, 53(11), Nov. 2004.

[55] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating
critical section execution with asymmetric multi-core architectures.
In Proc. 14th ASPLOS, 2009.

[56] Texas Instruments. OMAP 5 platform.http://www.ti.com/ww/
en/omap/omap5/omap5-OMAP5430.html, 2011.

[57] P. Wells, K. Chakraborty, and G. Sohi. Mixed-mode multicore
reliability. In Proc. of the 14th ASPLOS, Mar. 2009.

[58] X. Zhang, S. Dwarkadas, and K. Shen. Hardware execution throttling
for multi-core resource management. InProc. USENIX ATC, 2009.

http://www.intel.com/design/chipsets/datashts/29056601.pdf
http://www.intel.com/design/chipsets/datashts/29056601.pdf
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/54118.htm
http://www.intel.com/cd/ids/developer/asmo-na/eng/downloads/54118.htm
http://developers.sun.com/solaris/articles/solaris_processor.html
http://developers.sun.com/solaris/articles/solaris_processor.html
http://archive.msdn.microsoft.com/64plusLP
http://archive.msdn.microsoft.com/64plusLP
http://download.microsoft.com/download/3/0/2/3027D574-C433-412A-A8B6-5E0A75D5B237/ProcPowerMgmtWin7.docx
http://download.microsoft.com/download/3/0/2/3027D574-C433-412A-A8B6-5E0A75D5B237/ProcPowerMgmtWin7.docx
http://download.microsoft.com/download/3/0/2/3027D574-C433-412A-A8B6-5E0A75D5B237/ProcPowerMgmtWin7.docx
http://technet.microsoft.com/en-us/magazine/ee677582.aspx
http://technet.microsoft.com/en-us/magazine/ee677582.aspx
http://www.ti.com/ww/en/omap/omap5/omap5-OMAP5430.html
http://www.ti.com/ww/en/omap/omap5/omap5-OMAP5430.html

	Introduction
	Dynamic Processors
	Hardware Mechanisms
	Operating System Impact of Reconfiguration

	Design
	Rapid Adaptation
	Abstracted Hardware
	Scheduling

	Implementation
	Processor Proxies
	Execution Objects and Node Managers
	Cluster Scheduling
	Activating execution objects
	Preempting Execution Objects
	Taxation
	Property Matching
	Rebalancing

	Evaluation
	Experimental Platform
	Workloads
	Baseline Results
	Scheduling Mixed Workloads
	Chameleon on Real Hardware

	Related Work
	Conclusions

