An Analysis of Persistent
Memory Use with WHISPER

Sanketh Nalli, Swapnil Haria, Michael M. Swift,
Mark D. Hill, Haris Volos*, Kimberly Keeton*

University of Wisconsin-Madison &

@ *Hewlett-Packard Labs
WISCONSIN :%(HP Labs

IIIIIIIIIIIIIIIIIIIII -MADISON

Executive Summary

Facilitate better system support for Persistent Memory (PM)

Wisconsin-HP Labs Suite for Persistence, a benchmark suite for PM

* 4% accesses to PM, 96% accesses to DRAM
e 5-50 epochs/tx, contributed by memory allocation & logging
* 75% of epochs are small, update just one PM cacheline
* Re-referencing PM cachelines:
Common in a thread, rare across threads

Hands Off Persistence System (HOPS) optimizes PM transactions

WHISPER:

Outline

WHISPER: Wisconsin-HP Labs Suite for Persistence
WHISPER Analysis
HOPS : Hands-Off Persistence System

Persistent Memory is coming soon

Cache hierarchy

Volatile Memory

PM = NVM attached to
CPU on memory bus

Offers low latency
reads and persistent
writes

Allows user-level, byte-
addressable loads and
stores

What guarantees after failure ?

Durability = Data survives failure

Consistency = Data is usable

1. Data update 2. Pointer is evicted 3. Data lost on failure,
followed by pointer from cache to PM dangling pointer persists
update in cache

Achieving consistency

1. Store data 2 . Flush data 3. Store pointer 4 . Flush pointer
update in cache update to PM update in cache update to PM

Ordering = Useful building block of consistency mechanisms

Epoch = Set of writes to PM guaranteed to be durable before
ANY subsequent writes become durable

Ordering primitives: SFENCE on x86-64

PM systems for consistency

* Native _
Application-specific Application T
optimizations load/ ﬁ ﬁ

store I read/write I

* Persistent library | toadsstore |

Atomic allocations,
transactions

 PM-aware Filesystems
POSIX interface

What’s the problem ?

Lack of standard workloads slows research
Micro-benchmarks not very representative

Partial understanding of how applications use PM

WHISPER benchmark suite

Benchmark Type Brief description (*Adapted to PM)
Echo* KV store Scalable, multi-version key-value store
N-store* Database Fast, in-memory relational DB

Redis NVML Remote Dictionary Service

C-tree NVML Microbenchmarks for simulations
Hashmap NVML Microbenchmarks for simulations
Vacation™ Mnemosyne Online travel reservation system
Memcached* Mnemosyne In-memory key-value store

NFS PMFS Linux server/client for remote file access
Exim PMEFS Mail server;stores mails in per-user file

MySQL PMES Widely used RDBMS for OLTP

Outline

' WHISPER: Wisconsin-HP Labs Suite for Persistence
WHISPER Analysis
HOPS : Hands-Off Persistence System

10

How many accesses to PM ?

Total number of accesses in a WHISPER application

B Accesses to PM

= Accesses to
DRAM

11

How many epochs/transaction ?

Durability after every epoch impedes execution

Expectation: 3 epochs/TX = log + data + commit

Reality: 5 to 50 epochs/TX

Suggestion: Enforce durability only
at the end of a transaction

12

What contributes to epochs ?

Log entries

* Undo log: Alternating epochs of log and data
* Redo log: 1 Log epoch + 1 data epoch

Persistent memory allocation

*1to 5 epochs

Suggestion: Use redo logs and reduce epochs
from memory allocator

13

How large are epochs?

of 64B
achelins B1@2m3 84 858663 B>264 | Determines amount of

< = state buffered per epoch
S 75%
q; o = Small epochs are abundant
c 7 :
2 5% 5 e 75% update single
O
LA 5 cacheline
O 0 (L & @ S O . N .
S L (,"’\\@’Z’Q L &® @s\‘ ,Qf‘(\((&“ Large epochs in PMFS
& R R NS
NG I\ ({\Q’ Q Q<°

Suggestion: Consider optimizing for small epochs

14

What are epoch dependencies ?

Thread 1

Thread 2

Self-dependency: B> D
Cross-dependency: 2 2 C
Why do they matter ?

* Dependency can stall
execution

Measured dependencies in
50 microsec window

15

How common are dependencies ?

B % cross-dep B % self-dep
echo

nstore-ycsb
nstore-tpcc |
redis

ctree
hash map \0— 81

. 0
vacation meessssssss————— 40

0
memcaChed e 64

54

40

27

83

0
79

I R —
pmfs-exim T —
0

pmfs-mysql m—— 13

Outline

' WHISPER: Wisconsin-HP Labs Suite for Persistence
¢/ WHISPER Analysis
HOPS : Hands-Off Persistence System

17

ACIATBriRacisaotam$iOPS

! TX_START I
- e e .- - e e s .
1
[- Prepare Log Entry]-N] [Persistent Writes]
[Mutate Data Structure®]_N] m— OFENCE

DAENICE

[Commit Transaction]

18

HOPBSPRasis Spsiffers

Persist
Private L1 Buffer
) Front End

Persist

Front End

Loads + Stores

Persist

Controller Buffer
Back End

DRAM

Controller

Volatile Persistent

19

WHISPER HOPS

Volatile memory hierarchy
(almost) unchanged by PBs

4% accesses to PM, 96% to
DRAM

5-50 epochs/transaction Order epochs without flushing
Allows multiple copies of same

Self-dependencies common o e
cacheline in PB via timestamps

Correct, conservative method

Cross-dependencies rare _ _
using coherence & timestamps

2 28 2B

20

Runtime normalized
to x86-64

HOPS Evaluation with WHISPER

1.2
1 Bé&xesine,
08 o 2% OBEMESEENCFENCE
0.6
0.4
0.2
0
P o
e A @ & ’b QY’
4 2,0 9 &
o%‘ok N

21

Summary

e Persistent Memory (PM) is coming soon

* Progress is slowed by ad-hoc micro-benchmarks

* We contributed WHISPER, open-source benchmark suite
* HOPS design, based on WHISPER analysis

* We hope for more similar analysis in the future !

research.cs.wisc.edu/multifacet/whisper/

22

Extra

23

Summary
WHISPER: Wisconsin-HP Labs Suite for Persistence

4% accesses to PM, 96% accesses to DRAM

5-50 epochs/TX, primarily small in size
Cross-dependencies rare, self-dependencies common
HOPS improves PM app performance by 24%

More results in ASPLOS’17 paper and code at:

research.cs.wisc.edu/multifacet/whisper/

24

A Simple Transaction using Epochs

transaction begin:

—
TM BEGIN() ;
pobj.data = 42; write back (log)
pobj.init = True; wait for write back()
TM END () ;

write back (pobj)

Epoch 1

Log entries

S—
stored &

persisted.

Epoch 2
Variables

stored &

wait for write back()

transaction_end

persisted.

25

Runtimes cause write amplification

1]
>
-
<
L
O
o
w
a

Write Amplification

1000

PMFS
* Mnemosyne

* Logs every PM write
PMFS
NVML

e Clearslog

e Auxiliary structures
< 5% writes to PM
Non-temporal writes

* Mnemosyne logs
* PMFS user-data

26

