An Analysis of Persistent Memory Use with WHISPER

Sanketh Nalli, Swapnil Haria, Michael M. Swift, Mark D. Hill, Haris Volos*, Kimberly Keeton*

University of Wisconsin-Madison & *Hewlett-Packard Labs

Executive Summary

Facilitate better system support for Persistent Memory (PM)

Wisconsin-HP Labs Suite for Persistence, a benchmark suite for PM

- 4% accesses to PM, 96% accesses to DRAM
- 5-50 epochs/tx, contributed by memory allocation & logging
- 75% of epochs are small, update just one PM cacheline
- · Re-referencing PM cachelines:

Common in a thread, rare across threads

Hands Off Persistence System (HOPS) optimizes PM transactions

WHISPER: research.cs.wisc.edu/multifacet/whisper

Outline

→ WHISPER: Wisconsin-HP Labs Suite for Persistence

WHISPER Analysis

HOPS: Hands-Off Persistence System

What guarantees after failure? Durability = Data survives failure

Consistency = Data is usable

2. Pointer is evicted from cache to PM

3. Data lost on failure. dangling pointer persists

Achieving consistency

2 . Flush data 1. Store data update to PM

3 . Store pointer update in cache

Ordering = Useful building block of consistency mechanisms

Epoch = Set of writes to PM guaranteed to be durable before ANY subsequent writes become durable

Ordering primitives: SFENCE on x86-64

What's the problem? Lack of standard workloads slows research Micro-benchmarks not very representative Partial understanding of how applications use PM

WHISPER benchmark suite Brief description (*Adapted to PM) Echo* KV store Scalable, multi-version key-value store N-store* Database Fast, in-memory relational DB NVML Remote Dictionary Servic NVML C-tree Microbenchmarks for simulations Hashmap NVMI Microbenchmarks for simulations Vacation* Mnemosyne Online travel reservation system In-memory key-value store Linux server/client for remote file access PMFS Exim PMFS Mail server:stores mails in per-user file Widely used RDBMS for OLTP MySQL **PMFS**

Outline ✓ WHISPER: Wisconsin-HP Labs Suite for Persistence → WHISPER Analysis HOPS: Hands-Off Persistence System

How many epochs/transaction? Durability after every epoch impedes execution Expectation: 3 epochs/TX = log + data + commit Reality: 5 to 50 epochs/TX Suggestion: Enforce durability only at the end of a transaction

What contributes to epochs? Log entries • Undo log: Alternating epochs of log and data • Redo log: 1 Log epoch + 1 data epoch Persistent memory allocation • 1 to 5 epochs Suggestion: Use redo logs and reduce epochs from memory allocator

Outline

✓ WHISPER: Wisconsin-HP Labs Suite for Persistence

✓ WHISPER Analysis

→ HOPS: Hands-Off Persistence System

Summary

- Persistent Memory (PM) is coming soon
- Progress is slowed by ad-hoc micro-benchmarks
- We contributed WHISPER, open-source benchmark suite
- HOPS design, based on WHISPER analysis
- We hope for more similar analysis in the future!

research.cs.wisc.edu/multifacet/whisper/

...

Extra

Summary

- WHISPER: Wisconsin-HP Labs Suite for Persistence
- 4% accesses to PM, 96% accesses to DRAM
- 5-50 epochs/TX, primarily small in size
- Cross-dependencies rare, self-dependencies common
- HOPS improves PM app performance by 24%
- More results in ASPLOS'17 paper and code at:

research.cs.wisc.edu/multifacet/whisper/

24

