4/3/17

An Analysis of Persistent
Memory Use with WHISPER

Sanketh Nalli, Swapnil Haria, Michael M. Swift,
Mark D. Hill, Haris Volos*, Kimberly Keeton*

University of Wisconsin-Madison &

Executive Summary
Facilitate better system support for Persistent Memory (PM)

Wisconsin-HP Labs Suite for Persistence, a benchmark suite for PM
¢ 4% accesses to PM, 96% accesses to DRAM
* 5-50 epochs/tx, contributed by memory allocation & logging
* 75% of epochs are small, update just one PM cacheline
* Re-referencing PM cachelines:
Common in a thread, rare across threads

Hands Off Persistence System (HOPS) optimizes PM transactions
*Hewlett-Packard Labs
WISCONSIN HP Labs WHISPER: research.cs.wisc.edu/multifacet/whisper
Outline Persistent Memory is coming soon

=) WHISPER: Wisconsin-HP Labs Suite for Persistence
WHISPER Analysis

HOPS : Hands-Off Persistence System

PM = NVM attached to
CPU on memory bus

Offers low latency
reads and persistent
writes

Cache hierarchy

Volatile Memory Allows user-level, byte-

addressable loads and
stores

What guarantees after failure ?
Durability = Data survives failure

Consistency = Data is usable

S =

1. Data update
followed by pointer
update in cache

2. Pointer is evicted

3. Data lost on failure,
from cache to PM

dangling pointer persists

Achieving consistency

e O @

1. Store data 2. Flush data

3. Store pointer
update in cache update to PM

update in cache

4 . Flush pointer
update to PM

Ordering = Useful building block of consistency mechanisms

Epoch = Set of writes to PM guaranteed to be durable before
ANY subsequent writes become durable

Ordering primitives: SFENCE on x86-64

4/3/17

PM systems for consistency
* Native

Application-specific ‘ App'i e
optimizations load/
store

* Persistent library load/store
Atomic allocations,
transactions

* PM-aware Filesystems
POSIX interface

What'’s the problem ?

Lack of standard workloads slows research
Micro-benchmarks not very representative

Partial understanding of how applications use PM

7 8
WHISPER benchmark suite outli
Benchmark Type Brief description (*Adapted to PM) u I ne
Echo™ KV store Scalable, multi-version key-value store
Nistore* Database Fast, in-memory relational DB / WHISPER: Wisconsin-HP Labs Suite for Persistence
Redis NVML Remote Dictionary service .
C-tree NVML Microbenchmarks for simulations -’ WHISPER AnaIVSIS
Hash NVML Microbenchmarks for simulati .
aenmap ronenchmaris for simations HOPS : Hands-Off Persistence System
Vacation* Mnemosyne Online travel reservation system
Memcached* Mnemosyne In-memory key-value store
NFS PMFS Linux server/client for remote file access
Exim PMFS Mail server;stores mails in per-user file
MysQL PMFS Widely used RDBMS for OLTP
10

How many accesses to PM ?

Total number of accesses in a WHISPER application

B Accesses to PM

Accesses to
DRAM

Suggestion: Do not impede volatile accesses
11

How many epochs/transaction ?
Durability after every epoch impedes execution
Expectation: 3 epochs/TX = log + data + commit

Reality: 5 to 50 epochs/TX

Suggestion: Enforce durability only
at the end of a transaction

4/3/17

What contributes to epochs ?

Log entries

* Undo log: Alternating epochs of log and data
* Redo log: 1 Log epoch + 1 data epoch

Persistent memory allocation

*1to 5 epochs

Suggestion: Use redo logs and reduce epochs
from memory allocator

Fraction of epochs

How large are epochs?
#of 64B
cachelines [81 82 B3 B4 B5@s53 @:-¢¢ | petermines amount of

100%
: H E state buffered per epoch
75% K A
. R E Small epochs are abundant
- - .
2% | : s * 75% update single
- - cacheline
O X & R . L L. N .
& E ST Large epochs in PMFS
& S & 4\& &
& & A & & &

Suggestion: Consider optimizing for small epochs

13 14
What are epoch dependencies ? How common are dependencies ?
W% cross-dep @Y% self-dep
@ @ Self-dependency: B> D echo 5
nstore-ycsh | E———— 1
tore-t) 7
: Cross-dependency: 2 > C " Orerezcé : o
ctree & 79
Why do they matter ? hashmap &
vacation | se————— 1
* Dependency can stall mer:,?éh:fi - —
execution prfs-exim (ke 45
pmfs-mysq| D_ 18
%ad1 Thread2 Measured dependencies in Suggestion: Design multi-versioned buffers
50 microsec window OR avoid updating same cacheline across epochs
15 16
Outline ACIATBrEactsaotiom$1OPS
________]
+/ WHISPER: Wisconsin-HP Labs Suite for Persistence L__DSmRT
4 WHISPER Analysis I Prepare Log Entry l Nl I Persistent Writes I
) HOPS: Hands-Off Persistence System n —— OFENCE
. SFENCE
P~ ew)
17 TTTTTTTTT 18

4/3/17

HOPBSPRasis Shsiféens

Persist Persist
Buffer Buffer
Front End Front End

Loads + Stores

DRAM M Persist

Controller Controller Buffer
Back End

Volatile Persistent

19

WHISPER HOPS

4% accesses to PM, 96% to » Volatile memory hierarchy
DRAM (almost) unchanged by PBs

5-50 epochs/transaction »

Order epochs without flushing

Allows multiple copies of same

Self-dependencies common S U
cacheline in PB via timestamps

Cross-dependencies rare »

Correct, conservative method
using coherence & timestamps

20

Runtime normalized

HOPS Evaluation with WHISPER

12
©

1

0.8

0.6

0.4

0.2

0
e&o ‘LA(‘%O 8’6 &
& <

to x86-64

21

Summary
* Persistent Memory (PM) is coming soon
* Progress is slowed by ad-hoc micro-benchmarks
* We contributed WHISPER, open-source benchmark suite
* HOPS design, based on WHISPER analysis

* We hope for more similar analysis in the future !

research.cs.wisc.edu/muItifacet/whisper/|

22

Extra

23

Summary
* WHISPER: Wisconsin-HP Labs Suite for Persistence
* 4% accesses to PM, 96% accesses to DRAM
* 5-50 epochs/TX, primarily small in size
* Cross-dependencies rare, self-dependencies common
* HOPS improves PM app performance by 24%
* More results in ASPLOS’17 paper and code at:

research.cs.wisc.edu/multifacet/whisper/

4/3/17

T™ BEGIN() ;

pobj.data = 42;

pobj.init = True;

T™ END() ;

A Simple Transaction using Epochs

transaction begin:

Epoch 1
log[pobj.init] ~ True
Log entries
log[pobj.data] ~ 42
stored &
write back (log)
- persisted.
wait for write_back()
Epoch 2
Variables
stored &
write_back (pobj) -
wait for write_back() persisted.
transaction end 25

Runtimes cause write amplification

Write Amplification

.
o
S
1S}

w
2
=
z
prr}
Q
3
wi
a

PMFS
Mnemosyne
* Logs every PM write
PMFS
NVML
* Clearslog
 Auxiliary structures
< 5% writes to PM
Non-temporal writes
* Mnemosyne logs
* PMFS user-data

