An Analysis of Persistent Memory Use with WHISPER

Sanketh Nalli, Swapnil Haria, Michael M. Swift, Mark D. Hill, Haris Volos, Kimberly Keeton

MOTIVATION: A STANDARD BENCHMARK SUITE FOR PERSISTENT MEMORY (PM)

- Address lack of understanding of PM usage
- Minimize use of ad hoc micro-benchmarks
- Study diverse, real interfaces for consistency and durability of data and metadata in PM
- Aid design of better PM runtimes
- Establish a standard for evaluating PM runtimes

WHISPER = Wisconsin-HP Labs Suite for Persistence research.cs.wisc.edu/multifacet/whisper/

Application	System	Brief Description	(*Adapted to PM)	
Echo*	Native	Multi-version KV store	(U of Washington)	
N-store*	Native	Fast, in-memory relational DB	(Carnegie-Mellon)	
Redis	NVML	In-memory KV store	(Intel)	
C-tree, Hashmap	NVML	Multi-threaded microbenchman	ks (Intel)	
Vacation*	Mnemosyne	OLTP travel reservation system	(U of Wisconsin)	
Memcached*	Mnemosyne	Distributed in-memory KV store	(U of Wisconsin)	
NFS	PMFS	Linux server/client for remote P	nt for remote PM access (Intel)	
Exim	PMFS	Popular mail server using mailbox format		
MySQL	PMFS	Widely used RDBMS for OLTP		

BACKGROUND: PM WORKLOADS, EPOCHS, CONSISTENCY & DURABILITY

Controlling order of writes to PM preserves consistency at all stages.

Epoch = Set of writes to PM guaranteed to be durable before any subsequent writes become durable.

SELECTED ANALYSIS RESULTS

Epoch 1

- What % of accesses in WHISPER applications are to PM?
- How many epochs are there in a transaction to PM?

(: Durability involves writes to PM & costly if enforced on each epoch)

How often do epochs from same or different threads write to the same cacheline to PM?

(: Epochs writing to same cache line depend on each other and stall execution)

Takeaway: Enforce durability only after last epoch in a transaction as enforcing it on each epoch can slow down execution and impede transaction performance.

Epoch 2

Takeaway: Design hardware with multiversioned buffers and optimize data structures in software to minimize dependencies among epochs.

ANALYSIS SUMMARY

HOPS DESIGN

Volatile memory hierarchy

- 4% accesses are to PM,96% are to DRAM
- (almost) unchanged by PBs
- 5-50 epochs per transaction
 Order Epochs without flushing (OFENCE and DFENCE)
 - Allow multiple copies of same cacheline in PBS via timestamps
- Cross-dependencies are rare

Self-dependencies common

Correct, conservative method using coherence, timestamps

PERSIST BUFFERS IN HOPS

24% faster than Intel extensions for PM