
MapReduce for Repy

Alper Sarikaya
Dist. Sys. Capstone – CSE 490H

March 18, 2009

alpers@cs.washington.edu

Quick Recap of MapReduce

• Functional
programming is
powerful!

• Easy to parallelize
map() and reduce()
passes on data

• Utilizing multiple nodes, a
MapReduce implement-
ation must also be fault-
tolerance as to not waste
work

• Great for pre-computing
indices and repetitive tasks

Seattle: The Internet as a Testbed

• A platform for education use for networking
and distributed systems research & teaching

• Initiated by Justin Cappos, post doc. at UW

• A time-sharing application similar to
SETI@home or Rosetta@home
– Instead of running only when idle, Seattle uses up

to 10% of a machine’s resources (fully-
customizable)
• This include HD space, RAM usage, CPU usage, port

usage/binding, thread-spawning, etc..

• Users of Seattle
can acquire
nodes through
GENI

• Can use a
shell-like
interface (seash)
to connect to
vessels and run Repy code

Seattle: The Internet as a Testbed

Repy ⊂ Python

• Since vessels are not fully virtualized, need to
create a safe language

– Repy aims to be secure, robust, and simple

• Repy limits the use of hazardous calls

– e.g. bin, callable, delattr, dir, eval, execfile, globals,
input, iter, raw_input, reload, staticmethod, super,
unicode, __import__

– Cannot dynamically import code

• Repy provides nice abstracted constructs

– e.g. sockobj.recv(52) will block until 52 b recv’d

Example of Repy Code

def get_data(ip, port, socketobj, thiscommhandle, listenhandle):

get a list of all of our neighbors!

mycontext['primary'] = recv_message(socketobj)

print "Primary init thread: got primary loc:", mycontext['pri']

we need to know how many peers we have..

mycontext['num_peers'] = int(socketobj.recv(4))

print "Primary init thread: got num_peers: ",

mycontext['num_peers']

mycontext['peers'] = []

for i in range(mycontext['num_peers']):

mycontext['peers'].append(recv_message(socketobj))

parse and save data file:

buf = recv_message(socketobj)

print "Primary init thread: got file data"

dataobj = open("map_data.dat", "w")

dataobj.write(buf)

dataobj.close()

How does Repy code affect porting
MapReduce functionality?

• Code to be imported (e.g. include mapper.repy) must
be pre-processed by repypp.py

– repypp.py simply copies the included file into the
current file; skips include loops

• This isn’t dynamic in the least!

– Impossible with current Seattle implementation to
utilize new map(), partition(), hash(), reduce()
methods on the fly

• Since python module pickle can’t be used,
have to make serialization from scratch!

How does Repy code affect porting
MapReduce functionality?

• Since methods can’t be added dynamically,
map-reduce replicas must be initialized with
these methods pre-processed

• MapReduce implementation in Repy is not a
job manager (e.g. Hadoop), but more like an
individual task manager

Primary -> Replica -> Primary

• Simple data pass, no partitioning/collecting

• Message sending scheme: 14*128.208.1.121:
Size (B)

sep

Data

Primary -> n Replicas -> Primary

• Input data split into equal chunks for each peer

– Another limitation of Repy (no advanced FS ops)

• What happens when a node dies?

– Wasted work…

• Semi-transitivity of connections will halt all
progress

Partitioning

• A lot of python list, set, and dict mutations to
arrive at a list of data to send to each node

– List of (k,v) -> list of h1: (k1,v1,v2), h2: (k2, v3) .. ->
list of n1 -> (k1, [v1,v2,v3]), n2 -> …

• Needs to hold the property that identically
hashed keys get shuffled to the same reducer.

Add in some preliminary
fault-tolerance..

• Primary keeps a ‘scoreboard’ of replicas

• ACKs implemented to ensure all nodes get
initialized

• Peer-peer sockets initialized and retained early

Avenues for fault-tolerance

• Fix semi-transitivity problem by replacing active
replicas with inactive ones

• Use a new Repy feature (timeout sockets) to poll for
new data or to abort trying after a specified timeout

• Either the primary or any node can request a new node
for a downed node.
– All the primary needs to know is the index of the old node

Placing MapReduce on Seattle

• Since Seattle vessels are distributed across the
world, many issues arise:

– Method of selecting ideal node for primary

• Selection process by central location, proximity to
user’s location, lowest ping, lowest avg hop route?

– Variable latency issues

– Semi-transitivity between all nodes + primary

– Bandwidth issues

Demo?

• Three nodes on LAN

– One primary parses, distributes, scoreboards and
aggregates

– Two nodes map, partition, and reduce data

• Simple word-count example!

Future Work

• Clean up and refactor code

– This is an early use of Seattle for computational
means; it should be a model for new developers!

• Add additional fault-tolerance capabilities,
test extensively on Seattle

• Add user-interface – a Seattle node can easily
become a webserver (in 6 lines of Repy!)

Acknowledgements

• Ivan Beschastnikh (UW) - debugging prowess, protocol

planning help, and gentle prodding to work faster!

• Charlie Garrett (Google) - valuable discussions on

implementing fault tolerance and detailing strategies that
Google employs to partition, read, and shard data

• Aaron Kimball, Slava Chernyak, and Ed Lazowska
(UW) - introducing us all to the wonders of map-reduce and

exposing us to such wonderful and influential engineers and
managers working in the cloud

• Justin Cappos (UW) – The initial idea and vision for Seattle

alpers@cs.washington.edu

