
3 design factors for summary visualization

Visual analytics systems help users navigate large and complex datasets. These datasets

often have too much data or too many dimensions to display in one view, requiring design-

ers to engineer systems to first summarize available data and then visualize the results. The

resulting summary visualizations help orient analysts by describing high-level information

about the dataset, guiding analyses of particular features, and providing a means for navi-

gating to important subsets of data. Designers and researchers have numerous techniques

and design choices for constructing these summary visualizations, but little systematic

guidance for reasoning about the trade-offs of different design decisions and their impact

on the resulting analyses.

In this chapter1, we survey summarization in visual analytics, evaluating the relation-

ships between use, analytic affordances, and data summarization methods. We aim to

understand, recognize, and characterize limitations in current design choices for effectively

summarizing data for visual exploration, focusing on factors such as analysis tasks, data

types, and data characteristics. We provide an abstraction of existing summarization meth-

ods to support different analyses, and use this survey to propose an initial design space

for data summarization for visual analytics. Understanding common links between tasks,

data, and techniques used to summarize data for analysis will help guide new tools and

opportunities for innovation in visual analytics systems, and for summary visualizations

in general.

Summarization in visual analytics serves two primary purposes: to compress the dataset

to fit in the available screen-space and to reduce visual complexity to make visualizations

easier to interpret. Examples of summary visualizations include histograms that aggregate

data across a selected dimension, dimensionally-reduced scatterplots that project high-

dimensional data into a lower-dimensional space (see §??), and actor-network diagrams

that summarize relationships between entities captured in a text corpora. Summarization

is an essential component in most visual analytics tools—we found that more than half of
1This chapter is part of Alper Sarikaya’s PhD thesis, available at http://cs.wisc.edu/~sarikaya/

research/thesis/sarikaya-thesis.pdf.
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Figure 3.1: A schematic of a generalized process for visual analytics with data summariza-
tion. A dataset (left) is reduced using data summarization techniques (center), comprised
of four basic methods (aggregate, project, subsample, filter), and is presented visually
to support judgments of high-level data characteristics (right). Both the summarization
and visual presentation are factors that influence the efficacy of summary visualization to
enable viewers to make high-level judgments.

papers surveyed contained a summary visualization. The ubiquity of summarization and

its impact on data analytics tools means that designers need a better understanding of the

factors that lead to effective summarization to guide the design of effective visualization

tools. We construct a preliminary design space of summarization for visual analysis

(Figure 3.1) that allows designers to reason how factors are involved in affecting the resulting

utility of a summary visualization.

We systematically survey the visualization literature to observe relationships between

factors in this design space using quantitative content analysis (QCA) [see Riffe et al.,

1998] to analyze summarization in IEEE VIS and EuroVis papers from 2009 to 2015. Our

approach quantifies the relationship between analysis tasks, properties of the data, and

summarization choices to identify design themes in summary visualizations. Our goal

herein is to confirm that the list of summarization methods is sufficient to capture all

methods of summarization and also to understand how the method of summarization

affects the affordances of a resulting visualization. We use our design space analysis to

identify common themes observed in summary visualization design. These themes indicate

common patterns in how designers use summarization to guide analysis, a preference

for task specificity, the existence of common design patterns, and a bias towards certain
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design choices for specific types of data. These themes highlight key considerations for

data summarization, identifying challenges in current practices and opportunities for new

and innovative thinking around summarization in visual analytics.

Contributions: We conduct a systematic survey using QCA to characterize summarization

in visual analytics as a function of purpose, data summarization method, analysis task,

and data type. In doing so, we make the following contributions:

• A taxonomy of data summarization techniques used in summary visualization (§3.1–

3.2),

• A formal survey and analysis of summary design in exploratory tools (§3.3), and

• A description of challenges in summary design (Table 3.2) and potential opportunities

for innovation (§3.3–3.4) grounded in existing practice.

This chapter provides a foundation for systematically reasoning about summarization in

current and future tools and identifies gaps in our general understanding of summarization

in visualization design.

3.1 Background

Visual analytics systems often provide summaries that analysts use to navigate, sift, and

winnow through data to create a concise and focused representation of the underlying

dataset [Shneiderman, 1996]. A summary within a visual analytics tool communicates

properties of a dataset by explicitly using fewer marks than there are datapoints. For

example, a scatterplot with points aggregated using KDE could constitute a summary,

whereas ‘zoomed-out’ representations of a dataset, such as a standard scatterplot or parallel

coordinates plot with many thousands of elements but no data minimization would not

qualify as a summary. While individual points may be difficult to distinguish in such

zoomed-out representations due to factors such as overdraw (see Fekete and Plaisant [2002]

for technical issues, Cui et al. [2006] for understandability issues), such visualizations do not

procedurally summarize data. Instead, we focus on methods that explictly summarize data
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(a strategy most overdraw solutions employ) and analyze how the ways data is summarized

and presented affect high-level judgments of the visualized data.

In this work, we consider a summary visualization the result of an explicit set of

summarization decisions made by the designer, together with the reduced data and the

visual representation. Throughout this dissertation, the role of summaries is to convey

a “gist” about global and high-level properties of a dataset, as discussed in ??. Design

of these summaries should ideally support the needs of the analyst or audience, but the

data type, the method of reducing data, and the anticipated use can all affect the resulting

design. We draw on these prior characterizations of overview and our own observations

to organize the design space of how summaries are used in visualization to generated a

grounded codebook for QCA (§3.2.2). From this literature, we propose a design space

characterized by purpose, summarization method, and task that guides the design of effective

summarization, and discuss these organizations in detail. By basing codes on previous

work, we can use these organizations in our effort to observe relationships between these

factors for effective summary design.

3.1.1 Data

The type of data affects how data is summarized and what global, high-level features an

analyst can extract from a summary. Taking note of previous approaches, we can observe

how different techniques can affect a resulting visualization based on the hierarchical

organization for data, data with multiple dimensions, and dealing with large amounts of

data. Hierarchical data can be summarized by visualizing data at different levels within

that hierarchy. Elmqvist and Fekete [2010] survey how aggregation techniques, in par-

ticular, can reduce the amount and complexity of visualized data. They demonstrate

how hierarchical aggregation can be applied to conventional visualization types, even for

non-hierarchical data types, and also provide guidelines for effective navigation within

hierarchically aggregated visualizations. Elmqvist and Fekete provide a guideline of visual

summary (G2) that “visual aggregates should convey information about the underlying

data.” We consider the effect that aggregation can have on a resulting summary, and also

consider how a summary is affected by a broader set of transformation and organizations
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of non-hierarchical data.

While other types of data have unique challenges for summarization, a common theme

in summarization is dealing with high-dimensional and spatial data. Both Keim and Kriegel

[1996] and Keim [2002] have explored visualization techniques for exploring databases,

where visual interfaces summarize datapoints and their attributes using overview first,

enabling the viewer to explore large amounts of data. Kehrer and Hauser [2013] have

surveyed the high-level design and intents of visual analytics overview approaches, exclu-

sively for multifaceted scientific data. They identify many techniques in their survey that

lead to summaries for particular types of data, but do not directly draw conclusions about

the affordances of different techniques and the cross-applicability of summary designs for

different data domains. Leung and Apperley [1993] provide a framework for evaluating

visualizations where there is too much data to display each datapoint clearly. This frame-

work helps designers evaluate visual and computational representations of summaries

based on their effectiveness, expressiveness, and efficiency; however, it provides no guidance

as to how representations might be designed with these qualities in mind.

3.1.2 Purpose

The purpose of a visualization describes its intended use. We anticipate that the intended

purpose of a summary directly informs effective design. Bertin [1983] presents purpose as

a dichotomy: the visualization either communicates previously understood information

(presentation-oriented visualization) or supports information processing to address new

questions (exploratory visualization). Schulz et al. [2013] refines this division to consider

the goals of an analysis: exploratory, confirmatory, and presentation.

We hypothesize that summaries for presentation emphasize specific data characteristics

more often than exploratory summaries, and that the intended purpose of a summary

(exploratory, confirmatory, and presentation) can inform effective data summarization.

This division aligns with recent design guidelines proposed for presentation-oriented

visualizations Kosara [2016], advising specificity and compactness over generalizability.
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3.1.3 Data Summarization Methods

Methods of data summarization can reduce the scale and complexity of a dataset for display

in a summary. We specifically consider methods that summarize data while simultaneously

provding a faithful representation of the underlying dataset. Prior work suggests methods

of re-organizing data for visualizations—for example, Card and Mackinlay [1997] argue

that a small set of functions can be used to process data for visualization: filtering, sorting,

multidimensional scaling, and selection by slider. Ellis and Dix [2007] taxonomize clutter

reduction techniques for visualizations. Three of these techniques (sampling, filtering,

and clustering) explicitly reduce data—however, their work considers summaries only

as a means of reducing visual clutter in data space rather than emphasizing particular

characteristics of the data.

We derive and propose four methods of data summarization from our observation

and reconciliation of the literature: aggregation, subsampling, filtering, and projection

(see §3.2.2 and §3.3.2 for details). These four categories capture the variety of methods

that reduce data for display, and we anticipate that the method used will influence the

types of judgments that viewers can make from the data visualized in the resulting visual

summary (e.g., exploration of subsampling by Bertini and Santucci [2006]). Understanding

the relevant tasks and judgments viewers will perform will help to connect these methods

to their support in summary visualizations.

3.1.4 Tasks

The summarization methods used to summarize a dataset directly influence the analysis

tasks supported by a derived summary. As an example of this relationship, using kernel

density estimation to spatially aggregate values in a scatterplot helps viewers find dense

clusters, but obscures local outliers. Our goal in this work is to collect a representative set

of overview-level tasks, which capture the high-level information of a dataset. To do so, we

look at the multitude of task taxonomies to generate a representative set of analysis tasks.

Task taxonomies have looked at how viewers obtain information from displays (see

Andrienko and Andrienko [2006] and Shneiderman [1996] for canonical examples). Amar
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et al. [2005] identify a series of low-level tasks used to answer specific queries about a

dataset. Ji Soo Yi et al. [2007] outline tasks that analysts perform to guide data interaction

and exploration. Zhou and Feiner [1998] explore high-level presentation intents and visual

discourse tasks, including “summarize” tasks such as associate, compare, distinguish, and

rank.

More recent work considers how tasks can drive visualization design (see Rind et al.

[2016] for a synthesis of this space). For example, Brehmer and Munzner [2013] looks at

how tasks can be abstracted and expressed to support design across different application

domains. Pike et al. [2009] look the mutual relationship between user tasks and interaction

design. Schulz et al. [2013] describe how designers can reason about tasks using “5 W’s”

(and one “H”): why is a task pursued (a task’s goal), how is a task carried out (a task’s means),

what does a task seek (the target and cardinality of objects), when is a task performed, and

who carries out the task? Schulz et al.’s hierarchical synthesis of high-level tasks provides

a representative analytic organization that we utilize in designing our codes for the survey.

We additionally consider how these questions manifest in existing summaries to identify

how tasks might guide effective summary design.

3.2 Methodology

We survey summary visualizations in the research literature to discover patterns in the

use, design, and analytic affordances of visualizations using summarization. We are

particularly interested in how the methods of data summarization are related to the use

and the information communicated by the summary visualizations. To discover these

patterns, we use four research questions to ground our exploration of this space. These

questions concern the validity of our organization, how different types of summarization

affect the resulting affordances communicated by the visualization, and how data and use

affects how summarization methods are utilized. In detail, our questions are as follows:

Q1 Do the four proposed summarization methods cover the range of summarization

performed for summary visualization design?
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Q2 Does the method of data minimization affect how a resulting visualization can be

used?

Q3 How does the use of summary visualization affect decisions of summary?

Q4 Does the type of data affect what types of minimization and affordances are appro-

priate?

To gather the necessary data to address these research questions, we use quantitative

content analysis (QCA) [Riffe et al., 1998] that helps to quantify attributes about visual

artifacts. This methodology has the advantages of quantiative evaluations (using statistical

methods), and can break summary visualizations down into digestible factors to later

identify trends between the factors. This in constract to grounded theory, which could

build up concepts from qualitative exploration, but would likely be heavily biased by the

sample of summary visualizations chosen. Instead, QCA depends on a static codebook to

quantify attributes, evaluated by the coder. To promote ecological validity, we derive the

codebook chiefly from existing visualization taxonomies (see §3.2.2), and use the results

of the QCA process to validate our organization of summarization methods (S1). This

methodology confirms the organizations proposed and the data generated through its use

highlights trends in summary visualization.

Two data visualization researchers served as the coders for this survey. After a pre-

liminary coding of ten papers, the two coders iterated on codebook definitions to clarify

lingering ambiguities and to address emerging concerns regarding measure validity. Of the

180 evaluated manuscripts, 54 randomly-selected papers (30%) were redundantly coded for

validation—the Cohen’s kappa measurement for intercoder reliability found substantial

agreement between coders (κ = 0.71, 86% overall agreement). Section 3.3 presents the

result of this process, and identifies themes arising from our analysis.

3.2.1 Corpus Construction

To construct a corpus of summary visualizations, we use the data visualization research

literature as a collection of peer-reviewed and valdated collection of visual analytic systems.

This corpus is especially attractive due to the discussion of analysis scenarios in prose in
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close relation to the visual presentation of the summary visualization. To compose the

corpus, we collected papers from the EuroVis, InfoVis, SciVis/Vis, and VAST conferences

from 2009 to 2015 (1,158 papers). As coding each paper through a comprehensive census

is untractable, we constructed a representative corpus of papers through simple random

sampling from this set, as commonly used in traditional content analysis of large corpora

(cf. Brubaker et al. [2012]). This resulted in a set of 180 coded papers (48 EuroVis, 53

InfoVis, 48 SciVis, and 31 VAST papers). Each paper was first coded for whether or not they

included an implementation or technique that included a summary. Papers containing

summaries were considered the artifact (figures and prose), and coded according to the

presented protocol. We excluded theory, taxonomy, survey, toolkit, and evaluation papers

as the focus of these papers was not on a single, specific visualization design, making

application of the codes too subjective as we had no explicit evidence of the designers’

intents.

Using examples from the visualization research community allows us to focus on de-

signs whose quality, effectiveness, and utility have been reviewed by external experts in

the field and that are tailored for a wide variety of applications. Although visualization

designs are also found in conferences outside of the immediate visualization community

(e.g., NIPS, VLDB, KDD), specific visualization contributions in these fields are relatively

rare and unlikely to appear in a random sample. Further, visualization research papers

emphasize novel contributions and techniques that represent the state-of-the-art in visual-

ization specifically, and these papers represent a vetted corpus of summary visualizations

that contain explicit rationales for their design discussed within the article, increasing the

validity of our coding practices. However, the choice of this corpus biases the results of this

study toward exploratory visualizations that are used by researchers or domain experts

(not the general public), which we discuss in Section 3.4.

3.2.2 Coding Protocol

Each example in our 180 paper sample was labeled using a predetermined coding protocol

designed to characterize four factors of summary visualization design: the visualization

purpose, the data being used, the data summarization methods employed, and the tasks sup-
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ported by the resulting summary visualization. We constructed our codebook by collecting

and abstracting categories across 15 existing typologies describing data, purpose, task,

and summarization in visualization. Table 3.1 summarizes the coding scheme used in

the survey. As mentioned above, a set of 10 papers were used in iteration to revise our

codebook for clarity. The final codes are as follows:

Purpose: We capture the purpose, or goal, of each visualization by considering whether it

supports exploratory (undirected search), confirmatory (directed search) or presentation-

oriented (exhibiting analysis results) analyses [Bertin, 1983, Schulz et al., 2013]. These

codes describe the high-level intent of the summarization and are treated as three binary

(present/absent) codes.

Data: We coded for data type using Shneiderman’s data type taxonomy [1996], with

one-dimensional and temporal data collectively coded as sequence data, encompassing one-

dimensional data on a common axis (e.g., temporal, genomic, or ranked data). While

we considered data size as a potential code due to the utility of summarization for large,

multidimensional datasets, most systems did not provide specific information about the

number of datapoints and dimensions tested and designed their methods for use with more

than one dataset. For these reasons, coding for data size would have required significant

assumption and extrapolation on the part of the coders, resulting in limited validity. We

therefore did not consider data size in our analysis, but it is an important consideration for

future work.

Data Summarization: We used our own observations coupled with categories from Schulz

et al.’s reorganization task [2013], the visualization design space [Card and Mackinlay, 1997],

methods for clutter reduction [Ellis and Dix, 2007], and methods of hierarchical abstraction

[Elmqvist and Fekete, 2010] to propose a set of four data summarization methods used to

reduce data for display:

Aggregation Computationally combining multiple elements (e.g., hierarchical aggrega-

tion [Elmqvist and Fekete, 2010]),

Subsampling Subsetting elements based on a stochastic selection of the data (e.g., random

subsampling [Bertini and Santucci, 2006]),
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Category Subcategory Code

Purpose
Exploratory
Confirmatory
Presentation

Data
Summarization

Aggregation
Subsampling
Filtering
Projection

Task

Means: Navigation

Browsing
Searching
Elaborating
Summarizing

Means: Relation
Comparison
Variations
Relation-seeking

Characteristics:
High-level

Trends
Outliers
Clusters
Frequency
Distribution
Correlation

Data
Data type
Specific data

Other
Additional ←↩
observations

Table 3.1: Two coders labeled 180 examples from the visualization literature. The coders
first identified whether a visual summary was present and then coded each summary
according to 22 attributes describing the summary’s purpose, data summarization, and
supported tasks (§3.2.2).
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Filtering Subsetting elements based on properties of the data (e.g., selecting a repre-

sentative set [Ellis and Dix, 2007]), and

Projection Mapping data elements to a set of reduced or derived dimensions (e.g.,

principal component analysis [Jolliffe, 2002]).

We hypothesize that the data summarization methods used to construct a summary visual-

ization heavily affect the affordances that the summary supports (S2). The method of data

summarization was coded using a combination of four binary codes (present or absent for

each of the above categories).

Task: Our task codes were drawn from the means and characteristics of Schulz et al.’s

taxonomy [2013]. We chose this taxonomy as a general guide over other taxonomies (e.g.,

Amar et al. [2005], Brehmer and Munzner [2013], Casner [1991], Klein et al. [2006], Roth

and Mattis [1990], Springmeyer et al. [1992], Ji Soo Yi et al. [2007], Zhou and Feiner [1998])

as it comprehensively reflected most categories presented in other taxonomies.

Means of navigation describe how summary visualizations support further analysis.

These tasks coincide with Springmeyer et al.’s concepts of maneuvering [1992] and Casner’s

perceptual search operators [1991], and later used in Amar et al. [2005] and Ji Soo Yi et al.

[2007] as intent in interaction, Zhou and Feiner [1998] in their modes of “enabling”, and

Heer and Shneiderman’s “interactive dynamics” [2012].

Means of object-object relations describe information foraging tasks, including comparison

(seeking similarities; see Gleicher et al. [2011], Ji Soo Yi et al. [2007]), variation (seeking

dissimilarities; see Roth and Mattis [1990], Zhou and Feiner [1998]), discrepancies (seeking

outliers Roth and Mattis [1990], Zhou and Feiner [1998]), and relation-seeking (seeking

one of the aforementioned relations for individual objects; see Casner [1991], Heer and

Shneiderman [2012]). While we additionally coded for discrepancy, this code was removed

from our analysis due to poor agreement between coders.

High-level characteristics from Schulz et al. [2013] are used to code specific judgments

of high-level data characteristics afforded by summary visualizations. While the source

taxonomy does not explicitly define these characteristics, we used the following definitions

that were agreed upon by the coders after iteration:
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Trends Estimate high-level changes across a dependent dimension,

Outliers Identify items that do not match the modal distribution,

Clusters Identify groups of similar items,

Frequency Determine how often items appear,

Distribution Characterize the extent and frequency of items, and

Correlation Identify patterns between dimensions.

These analysis tasks provide a representative proxy for understanding the informational

utility of a summary visualization. Each of these three categories (summarized in Table 3.1)

is measured as a combination of binary codes (task supported/unsupported).

Other: We recognize that a codebook constructed a priori may not capture all elements

of designs and tasks of summarization. To capture traits of summary visualizations not

captured by this initial set of codes, we allowed coders to note additional observations

about each summary for further exploration.

3.3 Survey Results

Of the 180 papers coded, 104 (58%) contained summary visualizations. Of these, 64

(36% of those 180 total) provided enough detail within the paper to support valid coding

across all four categories (described as fully-coded summaries). The remaining 40 consist of

primarily scientific visualization systems focused on rendering, which provided little to no

description of the target purpose or analytic tasks supported by the approach. To avoid

over-extrapolation, we only coded those systems for data summarization.

By situating the 104 coded summaries within our design space, we identify factors

leading to different design decisions, explore common design themes, and also understand

aspects of this space that currently unexplored in visualization. In this section, we use

our research questions to highlight significant findings from our analysis, and generate

key themes (Table 3.2) that describe observations from the survey process. Taken together,
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these themes highlight core challenges for and opportunities for innovation in designing

summary visualizations. These challenges concern how designers might exploit task

specificity (addressing Q2), how systems leverage common design patterns (Q3), and how

data affects design considerations (Q4). The full analysis results are available online at

http://graphics.cs.wisc.edu/Vis/vis_summaries/.

http://graphics.cs.wisc.edu/Vis/vis_summaries/
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Challenge Axis — contributing factors Theme — observations about the survey data

Use Purpose T1 Summaries serve as a starting point for analysis.
(C1) Purpose T3 Confirmatory summaries support exploration.

Purpose × Data Summarization T5 Designs for communicating specific, known information use aggregation.
Purpose × Task T6 Summaries using subsampling emphasize exploration.
Task T15 Summaries act as roadmaps to guide detailed exploration by interaction.

Specificity Purpose × Task T2 Exploratory summaries encode a broad set of data characteristics.
(C2) Purpose × Task T4 Presentation summaries emphasize a small set of specific characteristics.

Purpose × Data Summarization T5 Designs for communicating specific, known information use aggregation.
Data Summarization T7 Most summaries use more than one data summarization method.
Data Summarization × Task T9 Summaries using aggregation support tasks characterizing the entire dataset.
Data Summarization × Task T12 Projection and filtering emphasize similar data characteristics.
Data Summarization × Task T14 Subsampling supports tasks that are statistically robust to random sampling.
Task T16 Summaries emphasize patterns that characterize all data and dimensions.

Design Patterns Purpose T1 Summaries serve as a starting point for analysis.
(C3) Purpose × Data Summarization T5 Designs for communicating specific, known information use aggregation.

Data Summarization T7 Most summaries use more than one data summarization method.
Data Summarization T8 Most summaries use aggregation to summarize data.

Data Data Summarization T10 Aggregation is common across all data types.
(C4) Data Summarization T11 Filtering can be used across all data types.

Data Summarization T13 Summaries using subsampling are most common for scientific visualization.

Table 3.2: Our analysis revealed sixteen common design themes in examples of summary visualization. Taken collectively as
observations, these themes highlight the challenges in the design of summaries. We use these challenges to reason about the
trade-offs in existing designs and to identify underexplored areas of the design space to inform new summary designs.
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Figure 3.2: The distribution of summaries designed for each purpose over 64 fully-coded
summaries (information visualization & visual analytics).

3.3.1 Purpose

Q3 addresses the question of how use of a summary visualization affects the design

decisions of summary. To understand how use affects these decisions, we look at the

data for statistical trends in the coded purpose of the visualizations. Purpose codified the

intended use of summary visualizations for exploration, confirmation, or presentation

(Figure 3.2). Most fully-coded summaries supported exploration (92%, 59 of 64), allowing

viewers to analyze large collections of data without any a priori goals. 66% (42) of summaries

were designed for directed analysis (confirmation), while only 22% (14) were explicitly

designed to communicate known results (presentation). The dominance of exploration

characterizes our first design theme: summaries most frequently serve as a starting point

for detailed analysis (T1). 95% (56 of 59) of these exploratory summary designs supported

some sort of navigation task and 58% (34) allowed viewers to directly manipulate the

granularity of the data encoded in the summary.

Additionally, exploratory summaries support a broader set of data characteristic

tasks (T2), such as identifying trends, outliers, clusters, frequency, distribution, and cor-

relation. 70% (41) of exploratory summaries enabled viewers to explore more than three

of the six high-level task characteristics (compared to 43% [6 of 14] for presentation) and

12% of summaries (7) supported all six. For example, Chen et al. [2016] uses a set of sum-
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Figure 3.3: A visual summary in the system built by Chen et al. [2016] uses both aggregation
and filtering in order to support a wide range of high-level analysis tasks.

marization methods to visualize different patterns across geo-tagged social media data.

The resulting system (Figure 3.3) allows analysts to explore aggregate movement trends

from social media data, and leverages interaction to enable analysis of the data distribution,

frequency, and geospatial-based clusters.

Confirmatory summaries were often also exploratory: 61% of summaries (39 of 64)

supported both exploration and confirmation while none were designed for confirmation

or presentation alone. Like exploratory designs, confirmatory designs support a broader

array of data characteristics than presentation-oriented summarization (68% supported

more than three characteristics). This correlation suggests that summaries designed for

confirmation also support exploration (T3): confirmatory tools generally allow analysts

to not only confirm specific hypotheses about data, but also to further refine and develop

additional hypotheses about the data.

In contrast, presentation summaries often emphasize a small set of data characteris-

tics (T4). 57% (8 of 14) of presentation summaries communicated three or fewer coded data

characteristics, and only one design communicated all six (Domino [Gratzl et al., 2014],

which also supports exploration). All coded presentation summaries used aggregation to

summarize data. Of these, 50% (7) used aggregation alone and 35% (5) used aggregation

plus filtering. This suggests that designs communicating specific, known information

heavily rely on aggregation (T5). Aggregation can summarize data into a small number of

precise features to emphasize known findings, encouraging effective presentation [Kosara,

2016]. This theme combined with T2 highlights potential challenges in use and specificity
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Figure 3.4: World Lines [Waser et al., 2010] aggregates spatial data across different simula-
tion runs to allow viewers to directly search for the simulation with the best outcome.

(§3.4): focusing on specific properties of the data limits viewers’ abilities to engage with data

to better understand and evaluate presented findings whereas supporting many properties

can overwhelm analysts or unnecessarily clutter a summary visualization.

Only five summaries were not explicitly designed for exploration. All five were confir-

matory visualizations using aggregation, and none used subsampling. This bias indicates

a trade-off between purpose and subsampling. Subsampling methods favor exploration

(T6) as directed search may be inhibited by stochastically reducing data. Alternatively,

aggregation helps guide analysts by presenting precise summarized values for well-defined

tasks. For example, World Lines [Waser et al., 2010] uses aggregation to summarize parallel

simulations of temporal events enabling comparison across known metrics for disaster

planning (Figure 3.4).

3.3.2 Data Summarization Methods

All of the coded summaries employed at least one summary method (Figure 3.5), validat-

ing Q1 that the organization is sufficient to cover the range of summarization operations.

Unlike purpose and tasks, data summarization methods were coded for all 104 coded

summary visualizations. We found that most summaries used more than one data sum-
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Figure 3.5: The distribution of summary designs using each data summarization method
across 104 coded visual summaries.

marization method (T7) (63 summaries of 104, 61%), with 53 (84%) using exactly two. Each

summarization method tended to favor a particular set of tasks. Combining summariza-

tion methods allows summary designs to leverage the strengths of individual techniques.

However, there appear to be limits in how many summarization methods could effectively

be composed: none of the coded summaries in our survey used all four summarization

methods together. Rather, by understanding how each method is used in conjunction

with other factors, we can analyze common design, use, and specificity patterns driven

by these techniques. These observations are driven by Q2: how does the method of data

minimization affect the resulting summary visualization?

Aggregation

Aggregation summarizes data by collecting and collating like-objects together through

spatial, organizational, or attribute similarity. Most surveyed visualizations (74%) use

aggregation to reduce data (T8), with 27% exclusively using aggregation. Visualizations

frequently used aggregation to support tasks characterizing the entire dataset (T9). Of

the 64 fully-coded examples, aggregation frequently supported both distribution (42 of 54,

78%) and clusters (43 of 54, 80%).

Visualizations often used these methods of data reduction to take advantage of trade-offs

between aggregation and filtering: while aggregation emphasizes characteristics describing
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Figure 3.6: Most network summaries, such as Networks of Names [Kochtchi et al., 2014],
combine aggregation and filtering to summarize data. The system aggregates different
relations across pairs of entities and filters these patterns according to their frequencies to
encode the relationships that best characterize the dataset.

multiple datapoints, filtering can help tailor these characteristics towards interesting or

relevant collections. For example, the Network of Names [Kochtchi et al., 2014] first ag-

gregates recurring relations in social networks and then filters out uncommon relations to

emphasize dominant patterns in large actor networks (Figure 3.6). Filtering can also be used

to reintroduce important data values obscured through aggregation, such as outliers in a

scatterplot aggregated by density [Mayorga and Gleicher, 2013] (Figure 3.7). We found that

summarization without aggregation targeted these kinds of individual value judgments,

such as identifying outliers which was supported by 70% of non-aggregate visualizations.

In terms of Q4 (effect of data type on summarization), aggregation was commonly

used across all data types (T10), occurring in more than half of the surveyed papers across

all data types. The dominance of aggregation across all data types indicates that it is a

“default” used in visualization systems. Although aggregation is a powerful technique, it

communicates specific properties of a dataset at the cost of the underlying data values. To

use aggregation effectively, designers must know what properties of the data are important

to the user and how to compute and encode these properties to faithfully represent the

underlying data. Summaries using aggregation exchange flexibility for specificity, and crit-
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Figure 3.7: Splatterplots [Mayorga and Gleicher, 2013] represent two-dimensional points
by combining a kernel density estimation with filtering and subsampling of representative
outlier points. Combining aggregation and filtering takes advantage of the trade-offs
between these methods to support a broader variety of tasks.

ically examining this trade-off may offer new opportunities for visualizations—discussed

in detail in §3.4.

Filtering

Filtering is commonly used to allow analysts to specify meaningful properties of the data

or compute representative subsets. 47 visualizations (44%) used filtering; however, filtering

was seldom used in isolation (17% of all filtering summaries, supporting T7). Filtering

in visualizations allowed analysts to identify clusters (23 of 47 filtering visualizations,

82%), characterize distributions (22 of 47, 79%), and evaluate correlation (17 of 47, 61%).

Filtering tended to reduce extraneous data to support and highlight these types of high-

level judgmets, reflecting the visual information seeking mantra [Shneiderman, 1996]:

“overview first, zoom and filter, then details on-demand.” Filtering in these cases helps

analysts find interesting subsets of the data to explore.

Like aggregation, filtering supported summary designs for all data types (T11). How-

ever, visualizations leveraging filtering provided analysts with little information about how
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filtering for these properties might bias potential interpretations, again raising challenges

for designers around summarization specificity.

Projection

As a method of summarization, projection is used to re-organize data as part of several

summarization operations. 30 examples (28%) used projection to summarize data, with

most projections summarizing large collections of documents (7 of 30, 23%), 3D fields

(9 of 30, 30%) and multi-dimensional datasets (10 of 30, 33%)—highlighting the utility

of projection for high-dimensional data (Q4). Similar to filtering, projection was seldom

used in isolation (T7), and was commonly paired with either aggregation or filtering (24

summaries, 80%). For example, text documents can use topic modeling to project document

vectors into a lower dimensional space and aggregate documents according to these topics

(e.g., Cui et al. [2014]).

Projection-based summarization emphasizes similar data characteristics as filtering

(T12): locating clusters (17 of 19 summaries, 89%), characterizing distributions (16, 84%),

and evaluating correlation (14, 74%). However, projection frequently also enabled outlier

analysis (15, 79%). Visualizations can combine filtering and projection to help highlight

critical patterns in complex data. For example, Progressive Insights [Stolper et al., 2014]

projects patterns onto statistical axes and filters the strongest patterns along each axis to

highlight the strongest patterns over each new dimension.

Regarding Q3 in the use of summarization methods, we found that projection was

seldom used for presentation (2 of 20, 10%), but instead supported in-depth explorations,

as in Progressive Insights. We hypothesize that this is because the mathematical complexity

of many methods make it difficult to clearly communicate meaningful narratives about the

data, leaving designers to reason closely about use and specificity when using projection

techniques (§3.4). However, we acknowledge that this may be biased by our choice of

corpus, as we discuss in Section 3.4.
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Subsampling

The act of subsampling reduces data for display by stochastically and indiscriminately

removing objects from the dataset. While relatively few visualizations used subsampling to

reduce data (16% of the 104 sampled), subsampling is also commonly paired with another

summarization method (aggregation: 8 visualizations, 47% of subsampled examples;

filtering: 3, 18%; and projection: 4, 24%). Similar to projection, subsampling is commonly

used as a conjunctive operation to reduce data to manage the complexity of the resulting

visualization.

Subsampling was predominantly used for spatial visualization (T13) (11 of 17 ex-

amples, 65% of subsampling use), where it reduced the visual complexity of aggregated

structural data. Only six fully-coded visualizations used subsampling. These visualizations

primarily support trend analysis (5 summaries, 83%) and characterizing distributions (5,

83%). These high-level characteristics indicate that subsampling can support summariza-

tion where the analysis tasks are statistically robust to random sampling (T14). While

few summaries use subsampling in practice, it is the only data summarization method that

does not bias the resulting summary towards any specific attribute of the data. This implies

subsampling may be a powerful tool for summaries for novel exploratory visualizations,

especially when the target tasks or properties of interest are unknown a priori.

3.3.3 Tasks

While several of our prior design themes address relationships between methods of data

minimization (Q1, Q2), and data types (Q4), we also explore how the utility of summary

visualizations affect design decisions (Q3). The trends here help to inform how summa-

rization affects analytic trade-offs in visualizations (Figure 3.8). From the 64 fully-coded

visualizations, we found themes around how designs allow viewers to navigate the dataset,

how summarizing different data types prioritize different analyses, and characteristics of

the data that summarization universally preserves.
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Figure 3.8: The distribution of summary designs supporting different kinds of analysis
tasks across 64 fully-coded summaries.

Means of Navigation

Most visualizations presented summarized data to allow browsing for unknown patterns in

data (58 of 64, 91%) while a smaller number supported directed search for known patterns

(48 of 64, 75%). Among those, 13 visualizations (20%) supported browsing but not searching.

These summary methods tended to emphasize relationships across collections of datapoints:

all but one emphasized both clusters and outliers, and all but two communicated value

distributions. For example, in Brehmer et al.’s juxtaposed matrix and faceted box plots

[2016], the aggregate matrix obscures local patterns to prioritize aggregate temporal clusters

while box plots encode distribution and outliers (Figure 3.9). This aggregation prevents

directed search for individual motifs; however, the interaction between box plots and matrix

cells allows viewers to browse for interesting local patterns. This exemplifies how effective

summaries can act as roadmaps to guide user interactions with the data (T15). This

raises an important challenge for visualization designers to consider when summarizing

data: what properties of the data might make for an effective starting point?

Our survey revealed that most designs start with the most abstract available data

representation, then allow analysts to drill down into the data to uncover specific details.

Many summaries did not allow viewers to change the level of detail without changing the

visual representation (28 visualizations, 44%). All of these visualizations used additional

supplemental designs to support detailed exploration, supporting T15. For example, glyph

SPLOMs [Yates et al., 2014] summarize distributions within SPLOMs so viewers can identify

scatterplots to explore in detail (Figure 3.10).
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Figure 3.9: Summaries supporting browsing, but not directed search, tended to emphasize
properties of collections of datapoints, such as distributions and clustering. For example,
Brehmer et al. [2016] use aggregation allow viewers to identify high-level temporal clus-
ters, outliers, and distributions and use interaction to browse for interesting underlying
distributions; however, this aggregation obscures smaller scale motifs, preventing viewers
from localizing specific patterns.

Figure 3.10: Summaries act as roadmaps for exploration, starting with a high-level of
abstraction and often requiring viewers to use alternative representations to explore details.
For example, glyph SPLOMs [Yates et al., 2014] summarize the quadrants where datapoints
are clustered in each scatterplot of a SPLOM. Viewers can then look at specific scatterplots
to explore interesting data in more detail.

Means of Relation

Most visualizations used summarization methods that enables viewers to identify similari-

ties (89%) and differences (88%) between collections of datapoints. However, significantly

fewer support relation-seeking between individual items (45%), with most of these being

network visualizations. Network visualization for relation-seeking use some combination
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of aggregation or filtering (2 aggregation, 2 filtering, and 4 aggregation+filtering). The

correlation between network data and relation-seeking implies that summarizing network

data often requires emphasizing relationships between key portions of the network. Aggre-

gation (by collapsing important collections of nodes or edges) and filtering (by preserving

meaningful or common relations) allow designers to meaningfully summarize networks.

For example, Networks of Names [Kochtchi et al., 2014] highlights relationships between

large collections of entities by first aggregating all entity relations and then filtering on

these aggregate frequencies to visualize the most common relations in the dataset (Fig-

ure 3.6). The only coded network visualization that did not rely exclusively on aggregation

and filtering, SAVE [Shi et al., 2011], did not emphasize relation-seeking and instead fo-

cused on multidimensional measures associated with each node. Despite the structural

similarities between network and hierarchical data, the latter tended not to support relation-

seeking though more visualizations of hierarchical data should be explored before drawing

conclusive insights.

Data Characteristics

Summarization most frequently preserved characteristics that describe the entire collection

of data and dimensions: clusters (80%) and distributions (75%). Trends (59%), outliers

(59%), frequency (56%), and correlation (58%) were roughly equally supported across all

visualizations. The bias towards clusters and distributions suggests that summarization

often emphasizes descriptive aggregate patterns across all of the data and dimensions

(T16), rather than patterns in individual values or relationships between specific dimen-

sions. 11% of coded summary visualizations support all tasks (7 of 64).

We found a bias towards particular task affordances and summarization methods across

data type (addressing Q4). For one-dimensional data, many visualizations support discov-

ering clusters (9 of 10, 90%) through aggregation (9, 90%). For 2D data, many visualizations

support discovering trends (7 of 8, 88%) and frequency (6, 75%). In comparison, 3D data

summarization tends not to support trends or frequency judgments (3 and 1 of 7, 43% and

14%, respectively), but instead preserves distributions (5, 71%). Neither multidimensional

nor network data used subsampling (5 summaries of 24, 21%; 0 of 10, 0%; respectively). We
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anticipate this bias arises from stochastically removing information that could potentially

remove critical structures in the data, such as relations between different levels of hierarchy

or across different data dimensions.

3.4 Discussion

Our four research questions lead to observations identified through the QCA process,

resulting in 16 design themes (Table 3.2) of summary visualizations in visual analytics.

Through the survey process, we confirm that the four methods of summarization are

sufficient to encapsulate data re-organization for display in a visual summary (Q1). Here

we describe these challenges and opportunities in how viewers use summaries, and in how

designers consider specificity in data summarization, leverage common design patterns, and

tailor summaries to specific data.

3.4.1 Use (C1)

We address the questions of how the use of summary visualizations affects design choices

(Q2 and Q3) through the following observations. Summary visualizations frequently serve

as a starting point for analysis (T1), providing a roadmap for detailed exploration using

alternative views or interactions (T15). To help guide analysis, designers often choose

an summarization method and target characteristics based on a visualization’s intended

use: how does the summary guide subsequent interaction and interpretation? To tell

an immediate and focused story (e.g., presentation), summarization emphasizes specific

patterns (T4) while open-ended analyses are better supported by summarizations encoding

a broad set of characteristics (T2).

Challenges: Addressing the use of exploratory summary visualizations (Q3), these vi-

sualizations generally present many data characteristics at once, which offers analysis

flexibility but might also overwhelm viewers: they may not know which questions to ask

first. Exploratory summaries might instead choose to depict subsets of important charac-

teristics to guide viewers through a more targeted analysis sequence. This targeting could
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be especially beneficial for domains with established analysis workflows or for guiding

novice analysts who could become overwhelmed when faced with too much information.

Opportunities: Summary visualizations that violate assumptions around use may offer

interesting trade-offs. For example in response to our research question on the use of

summary visualizations, we found that summarization for presentation generally targets

a smaller set of data characteristics, whereas exploration supports a larger set. On the

surface, this pattern makes sense: presentation tells a story, while exploration searches for

unknown patterns in data. However, inverting this pattern may be advantageous. While

aggregation can communicate specific information, explicitly visualizing statistics about

the data may cause viewers to misinterpret secondary characteristics [Correll and Gleicher,

2015]—for example, trend lines can cause viewers to too liberally label outliers. In response,

designs using filtering or subsampling may alleviate potential biases and better familiarize

viewers with the data. Further, allowing access to more data properties can allow viewers

to construct their own interpretation of the dataset in the context of the arguments made

through the visualization.

3.4.2 Specificity (C2)

One of our core questions is how the method of data summarization affects the types of in-

formation communicated by a resulting summary visualization (Q2). Existing summaries

heavily emphasize data characteristics that describe datasets in aggregate rather than spe-

cific data points or dimensions (T16), using aggregation methods to compute and visualize

specific patterns in data (T5). However, aggregation explicitly tailors summarized data to

specific statistical tasks, visualizing a computed representation rather than the actual raw

data. In contrast, subsampling might remove datapoints that are important to a particular

story, but also reduces clutter and potentially denoises data while providing immediate

access to the underlying data (T6). This trade-off characterizes summarization specificity:

aggregation can target specific high-level data characteristics but obscures specific values,

whereas subsampling and filtering encode individual data values but rely on viewers to

estimate characteristics.
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Challenges: We found that existing systems favor specificity over data fidelity. Even

if important data characteristics are not known a priori, aggregation was often used to

express generic properties of the entire dataset (T9), such as distributions and clusters (T7).

Filtering, subsampling, and projection are seldom used without aggregation; however,

designs using these methods frequently preserve the underlying characteristics of the data

(T12 and T14).

Our results identify a need to more carefully consider how the broad use of aggregation

may bias analysts. Aggregation generally focuses on precisely encoding a specific set of

characteristics at the expense of allowing viewers to synthesize their own perspectives

from available information. When favoring specificity, designers must carefully consider

how their summarizations influence the interpretation of the data, especially as summary

visualizations are frequently the first thing that analysts encounter when exploring their

data (T1).

Opportunities: Favoring breadth over specificity supports serendipitous exploration of

summarized data. Designing for serendipty can foster new discoveries or generate unex-

plored hypotheses [Thudt et al., 2012] by broadly supporting a plethora of tasks. Subsam-

pling, the least common summarization method in our survey, may be especially helpful in

designing for serendipity: subsampling summarized data are statistically unbiased against

properties of the dataset. It provides designs with low specificity, but generally preserves

aggregate characteristics of the data. Further, stochastic sampling can create summaries

that are not subject to the same confirmation biases as targeted filtering or aggregation.

Summary designs should also consider how designs let viewers combine information

through visual aggregation. This understanding and explicit use of visual aggregation is

just emerging in the visualization literature (see Szafir et al. [2016] for a survey), and our

random sample did not identify any summaries explicitly designed for visual aggregation

(e.g., Sequence Surveyor [Albers et al., 2011]). However, visual aggregation may allow

designers to tailor summaries to specific tasks while using summarization methods. A

better understanding of how visual aggregation factors into the specificity of designs is

important future work.
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3.4.3 Design Patterns (C3)

Several design decisions were reflected in the majority of the coded summary visualizations

(Fig. 3.8), helping to address the research question of how summary use affects design

decisions (Q3). Understanding these seemingly “default” decisions can guide novel design

thinking for summary visualizations, as well as proposing good, starting design founda-

tions. For example, almost all surveyed systems used more than one data summarization

method (T7). Compositing summarization methods can emphasize particular data char-

acteristics and increase the number of tasks supported, but has the potential to increase

the distance between the representation and the semantics (structure) of the original data.

Aggregation, for example, is most commonly paired with other methods (T8), but aggrega-

tion techniques are often data-dependent and require viewers to interpret computationally

transformed data. In these designs, using multiple summarization techniques to increase

task support comes at the expense of usability: the viewer must perform more mental

processing to translate visual patterns back to the underlying dataset.

Challenges: The use of design patterns in summarization encourages reproducibility

and reduces the analyst’s overhead in learning new systems. However, designers must

consider whether a particular design pattern is appropriate given the data type and analysis

goals. To date, no concrete guidance exists for understanding design pattern effectiveness.

Our results indicate a need to collect and standardize design patterns and evaluate their

potential utility. Our design space provides a preliminary scaffold to build this knowledge.

Opportunities: A common design pattern was the use of summary visualizations as a

starting point for exploration (T1). While this pattern aligns with conventional visualization

guidelines [Shneiderman, 1996], designers might also consider how an analysis might

craft a summarization to serve as ending point for an analysis. Insights from exploratory

visualizations are often constructed longitudinally, building up as viewers learn more about

their data [Saraiya et al., 2006]. Summarizations might arise as descriptors of the insights

constructed during an analysis. While no surveyed summaries enabled this inductive

summarization, a few visualization systems incorporated annotation within a summary

component in order to iteratively refine overviews from insights (e.g., TenniVis [Polk et al.,
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2014] and Overview [Brehmer et al., 2014]). For example, Overview lets analysts label and

manipulate datapoints to construct understanding across documents. Considering how

designs might support summaries as generative artifacts of an analysis, capturing features

like provenance, model refinement, and insight development requires moving away from

default design patterns to inspire new summarization capabilities and applications.

3.4.4 Data (C4)

Q4 addresses the question of how the data type affects the affordances of a summary

visualization. Several themes highlight patterns between specific data types and summa-

rization choices. In some cases, these patterns help guide particular designs. For example,

summary visualizations use aggregation and filtering for any data type (T10 and T11),

whereas subsampling is generally used for spatial datasets (T13). Designers may be able to

use common patterns across data types to better reason about how summarization methods

might support heterogeneous data, as well as how to adapt summarization techniques

across domains.

Challenges: The semantic and statistical properties of the underlying dataset and analysis

goals can limit candidate summarization methods. For example, continuous 2D data can be

meaningfully summarized using kernel-density estimation (KDE), whereas a kernel does

not easily map to hierarchical data. We identified some voids in the factors for particular

data types, including lack of frequency support for summaries of three-dimensional data,

and a lack of subsampling examples for network and multi-dimensional data. These voids

identify places where innovative methods are needed for intuitive summarization.

Opportunities: Specific data types tended to favor specific summarization methods. For

example, summaries of document collections and scientific data rely heavily on projection

(T13). Designers can use this correlation to derive design inspiration in other domains: how

might projection effectively summarize datasets that are structurally similar to documents,

such as collections of event sequences? An important aspect of understanding and applying

our design space in practice will be understanding how different summary approaches

might generalize across data types and domain scenarios.
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3.4.5 Limitations & Open Questions

This work begins to answer our research questions, taking preliminary steps towards a

broader discussion of data summarization in visual analytics. However, our data-driven

approach is inherently limited by sampling. Although we anticipate that the collected

systems and themes characterize summarization more broadly, we cannot make absolute

claims about the generalizability of our results. Instead, this work allows us to identify

challenges and opportunities for visualization design that will help extend and enhance

a more principled use of data summarization. For example, our observations identified

several patterns in summaries designed for particular data types, but our sampling across

different data types is limited. Future work could provide deeper coverage across different

data types through stratified random sampling to identify biases across different designs.

This could inspire both generative guidance for summarizing data across domains and

novel design techniques for guiding innovative summarization techniques.

Our dataset is also biased towards exploratory visualizations, which is likely a function

of an underlying bias in the visualization research literature [Kosara, 2016]. While we

elected to use this literature to ground our coding in the design intents of the authors (§3.2),

summaries from other sources, such as data journalism, could help create guidelines that

inform summaries for a larger variety of practitioners and uses.

Our observations from this survey begin to answer the four proposed research questions.

The four methods of re-organizing and summarizing data (Q1) are confirmed as being

sufficient—every example of a summary visualization was matched into one or more

methods. We identified how methods of minimization affects the resulting affordances

and use of visualization (Q2), including observations such as how subsampling tends to

support tasks dealing with data characteristics that themselves are resistant to missing

data (T14). We observed that the use of summary visualizations affected design decisions

(Q3)—as an example, aggregation is used to focus the viewer for presentation tasks (T5).

Lastly, we identified overrepresentation of summary methods for particular data types

(Q4), such as how subsampling was most used for spatial datasets (T13). The observations

from the survey helps to create a clearer picture for the design of summary visualizations.
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3.4.6 Conclusion

As datasets grow in size and complexity, effectively leveraging summarization becomes

increasingly critical for visual analytics systems. We crafted a design space for summariza-

tion and used this design space to evaluate 180 papers from the visualization literature

using QCA. Our analysis identified the importance of summarization for visualization

(employed in 59% of surveyed manuscripts) and 16 design themes relating visualization

purpose, data summarization methods, data types, and analysis tasks. We found trade-offs

in the use of different summarization methods and biases in their applications in existing

designs. These themes highlight patterns in the design for summarization that can guide

viewers using visualization systems.

This work is a critical step in characterizing a design space of summarization and creat-

ing a set of design patterns for summary visualization. Our four research questions help

to validate the proposed organization of summarization methods (Q1), and identify over-

and under-represented trends between the factors of purpose, summarization, affordances,

and data type (Q2–4). As a result of this process, these observations comprise a foundation

based in realized, visualization design. This foundation provides a base set of guidelines

in designing bespoke summary visualizations, and also suggests some potential design

defaults for interactive, viewer-centric visualization systems.

As a result of this work, we identify four methods of reducing and re-organizing data

for summarization. We have shown that these four methods tend to select the types of

high-level information that can be obtained from the resulting visualization. Through a

systematic random sample of the visualization literature, we can obtain trends in summary

visualization design and use, and highlight correlations that appear. In the following

chapter, we explore how different design methods for summarization manifest themselves

in a scatterplot design paradigm, and create a framework for understanding what factors

(data characteristics and tasks) make some summarization designs more appropriate than

others.
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