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For the sake of humankind to satisfy its never-ending thirst for insight.
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abstract

Data visualization provides a human-digestible interface to digital data. With increasing

data volumes and increased complexity and interrelationships, so have the demands

on supporting effective visualization to support this interface. With complex data at

scale, it becomes necessary to summarize the data in some manner to communicate high-

level information of a dataset, such as distributions, trends, or anomalies. By the nature

of summarization, fidelity in the visual representation of such summaries is reduced.

With summarized data, visualization designs must make trade-offs to support particular

types of tasks and analyses over others. In this dissertation, I present organizations and

applications for the effective design of summary visualizations. Organizations of summary

visualization identify the relevant factors that affect appropriate design, such as the method

of summarizing data, the analysis goals and tasks of the viewer, and the characteristics

of the data. Applications of summary visualizations demonstrate the holistic application

of appropriate design decisions to support the analysis of complex scientific data. These

factors are linked together to identify appropriate design strategies and highlight open

problems for the effective design of visualization. Through this research presented herein,

I provide new guidance for effective visualization of collections of data, allowing for the

wider dissemination and analysis of complex data.

ix



1 introduction

This dissertation provides a framework to guide the effective design of visualizations

that summarize data. A summary visualzation involves an explicit, conscious choice on

behalf of the designer to reduce the amount of data for the purposes of simplifying and

focusing the visual result. With increasing data volumes and complexity, visualizations

must also be similarly be scalable or risk providing inaccurate or incomplete information

(representations of the data, such as trends, distribution, or anomalies). The design of such

visualizations is often done in an on-demand, ad-hoc, iterative fashion, which builds upon

stakeholder feedback and technical considerations [Sedlmair et al., 2012a]. While many

typologies and taxonomies exist in the visualization research literature that can provide

guidance for making appropriate design decisions, they are often at the wrong level to

offer practical options to practitioners, or are specific to a particular type of analysis or data.

The work in this dissertation strives to close this gap by identifying trends used in existing

summary visualizations—codifying and verifying the methods for minimizing data for

summarization and correlating with the type of information conveyed by a resulting

visualization. A framework for designing effective summary visualizations can be built by

concretizing concepts such as the method of minimizing data, and linking these concepts

with what information a viewer1 wants to obtain from a given dataset.

Such a model for effective summarization does not currently exist. Much of the difficulty

of deriving such a model lies that it is difficult to accurately and concisely discuss effective

design in the abstract, especially when considering many different circumstances. These

different circumstances involve the purpose of the visualization, the types and sequences

of analyses performed using the visualization, and the characteristics of the data. Each

of the categorizations must be individually understood, organized, and verified. In this

dissertation, I describe how previous work can help develop guidelines for summary

design, driven by empirical study of the state-of-the-art summary visualizations, a case

study for task-appropriate design for scatterplots, and practical applications of these design

guidelines for specific, analysis problems dealing with scientific data.
1The term “viewer” is used to describe the generalized user or analyst of a visualization in this document.

1
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1.1 Definitions, Background, and Basis

Computer science uses abstraction to help discuss design decisions throughout the field.

The concept of abstraction helps to manage complexity—abstraction in the general sense

helps to derive general concepts from specific examples. Computer science uses abstraction

to extract processes and remove specific implementation (and other out-of-scope) details,

resulting in models and organizations that can be reused or motivate for new analysis

scenarios. To construct this framework for summary in data visualization, abstraction

is used to understand the inputs and the visual output of an instantiated visualization.

Abstraction in this sense is key to generalize guidelines for effective visualization design.

Abstraction is used to organize effective design decisions for design in the data visualization

literature. Due to the heterogeneity of the data visualization community, many different

abstractions have been made to organize the design and use of visualization for analysis.

The data visualization community involves members from perceptual psychology, human-

computer interaction, cartography, and computer graphics, and therefore the discourse

reflects the values from these communities. These varying levels and avenues of abstraction

help to organize the discussion around sub-problems. Regardless of this heterogeneity,

there is consensus about some abstractions that are common to all data visualizations:

tasks and data characteristics [Munzner, 2014].

The abstraction of task helps to facilitate and standardize how visualizations are used to

generate insight on behalf of the user by avoiding domain-specific terminology. Munzner

[2014] describes these abstract tasks as a compound statement, describing the tasks as an

action performed on one or more targets—a structure echoed by many task taxonomies in

the visualization literature. Tasks describe what aspects of the data need to be visualized,

such as trends of all data, particular anomalies or features, one or more data attributes,

correlations and trends, or data-specific structures. By understanding the needs of the

viewer, a visualization can be deemed as appropriate if it supports the completion of

a viewer’s task. Tasks are therefore a critical abstraction to help guide the design and

construction of visualizations that summarize a large amount of data.

Task abstraction can also illustrate how a visualization’s design governs how a viewer
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Figure 1.1: A dataset describing departure delay for a commercial airline is shown in
three different ways. All visualizations show the delay depending on the day of the week.
Depending on the reduction of the data, the visualization supports different tasks. Top,
a kernel density function utilizing an Epanechnikov kernel aggregates relative densities
of departure delay by day. Bottom-left, a beeswarm plot displays a subsampled set of the
71,486 flights total flights (50 per day). Bottom-right, a bar chart aggregates delay by taking
the average delay per day. (Data from the United States Bureau of Transportation Statistics:
shown is Delta Airlines for the month of December 2016.)

uses a visualization. As an example, Figure 1.1 demonstrates how different representations

of flight delay data can change the information that a viewer can gather from a visualization.

At top in Figure 1.1, flight delay data is aggregated using a kernel density estimator that

demonstrates the distribution of delays per day. Subsampling (bottom-left) provides a

discrete sense of distributions but may mis-represent outliers, while the bar chart (bottom-

right) directly communicates a summary statistic (average) to compare delay. The method

of summarizing data changes how a viewer can use a resulting visualization—for example,
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the bar chart limits viewers to comparing statistical representations of the data, while the

subsampled, beeswarm chart relies on viewers to generate their own representation of

delays by day. A viewer can compare the distribution of delays by day with the line graph

(top), while the bar chart (bottom-right) provides an average delay per day—the bar chart

only allows the viewer to compare aggregate statistics together, while the line chart is more

open-ended for the viewer to generate their own representation. These different types of

affordances must be considered by the designer in choosing how to summarize data and

design the resulting visualization.

The abstraction of data characteristics can also help to guide visualization appropriate-

ness by cataloging features of the data that can affect the visual representation. Abstraction

from domain-specific data characteristics, such as the number of positions in genomic pop-

ulation data (Chapter 6), generalizes the factors that affect effective design of a supporting

visualization. These data characteristics can help to determine what visual encodings are

appropriate for the attributes of the data [Bertin, 1983, Cleveland and McGill, 1984a], how

to best encode multiple attributes of the data for the task [Shneiderman, 1996], and the

design patterns utilized to display different types of data [Card et al., 1999, Craft and Cairns,

2005, Rind et al., 2016]. Most critically, this abstraction of data can allow visual solutions

presented for a specific problem to be applicable to novel solutions in other domains, given

a match in the abstractions. These abstractions can concern different characteristics of the

data, such as the number of data elements to display (scale), the nature of the connectiv-

ity between the data elements (relationships), and the organization of the data elements

(organization). By capturing these data characteristics, determinations about appropriate

designs can be motivated.

Summary visualizations make design trade-offs in order to support different avenues

of analysis. Figure 1.2 shows an example of summarizing the performance of a protein

structural classifier. With the colors communicating the performance of the classifier (white

and green are correct classifications, red and blue are incorrect), one can obtain an aggregate

picture of classifier performance over this set of proteins (individual boxes), along with

an idea of the error and variance in classification. The visualization also communicates

the performance of the classifier on each protein—boxes that appear more red and blue
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Figure 1.2: Sarikaya et al. [2014] presents a summary visualization of the results of a
protein structural classifier, demonstrating the classification performance per protein.
Color weaving [see Hagh-Shenas et al., 2007] is used to aggregate classifier performance
for each protein (squares labeled by PDB identifier [Berman et al., 2000])—green identifies
true positive decisions, blue for false positives, red for false negatives, and white for true
negatives. Proteins that appear more green and white are classified correctly, while those
that look red and blue are incorrectly classified.

generally have worse performance than those that appear green. Urness et al. [2003]

introduced color weaving (adapted herein as woven blocks [Hagh-Shenas et al., 2007,

Albers et al., 2014]) that emphasizes certain characteristics over others, and is appropriate

for showing aggregate proportions of low numbers of categories. However, each protein



6

represented in this dataset are of different sizes, so the classifier makes a wide range of

classifications per protein (from approx. 20–700). The use of woven blocks hides this

potentially critical insight, and other visual strategies such as heatmaps may convey this

through block size (see Chapter 5 for more detail). Understanding the trade-offs between

design choices can help visualization designers and researchers make appropriate and

effective design decisions for the task at hand.

Responsive to data scale and type, summary visualizations provide a high-level overview

of a dataset, where overview provides the viewer with a visual representation that conveys

the ‘gist’ of the data and can support targeted exploration of the dataset. Visualization, in

contrast to explicit statistics, allows for the viewer to perform undirected search [Casner,

1991], supporting in-context exploration of the data and potential serendipitous discov-

ery [Thudt et al., 2012a]. The design of these summary visualizations is guided by the

requirements of the viewer (what do they want to know from the visualizations) and the

necessary analysis tasks to satisfy those requirements, the characteristics of the dataset (e.g.,

how is the data organized), and how the data is minimized for display (summarization

method). Therefore, it is my thesis that principles for the design and implementation

of summary visualization for collections of complex data elements are driven by the

factors of the method of data summarization, complexity characteristics of the data el-

ements, and the viewer’s analysis tasks. This dissertation describes both theoretical and

practical underpinnings of these factors, and demonstrates how these principles can be

applied in examples that, in concert, lead to effective visualization of complex data.

1.2 Addressing the Need for Guidelines

The issue of effective summary visualization is addressed in theoretical frameworks and

practical implementation of visual analytic systems. At the highest level, a framework

to codify how the different methods of summarizing data can affect the judgments of a

visualized dataset can help to guide appropriate design decisions, also informed by the

characteristics of the data. Understanding the trade-offs of using different summarization

methods for collections of two-dimensional points (as commonly viewed with a scatterplot)
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provides a concrete realization of visual summarization techniques. To realize novel

visualization strategies, holistic design and evaluation of two instantiated systems are

also presented to emphasize the utility of the theoretical frameworks. This method of

generating generalized knowledge is part of the reductionist to holistic methodology of

research [Correll et al., 2014], which evaluates both the theoretical underpinnings of design

decisions and the cumulative effects of combining decisions in an instantiated visualization.

Such guidelines support the academic and practical considerations for visualization

design. Developing guidelines can help researchers identify designs and techniques that

can apply in cross-domain scenarios, and identify areas of the design space for which

an effective design does not yet exist. From a pragmatic standpoint, guidelines can help

visualization practitioners and designers to select appropriate designs, given a set of factors.

Given the data and what information should be summarized from that data, guidelines

help to inform designers about the possible space of designs while also highlighting the

trade-offs between designs (e.g., a design may excel at identifying outliers, but at the

expense of emphasizing distributions). These scenarios all indirectly help viewers of

visualization by targeting the design of summary visualizations toward the communication

goal—promoting accurate interpretations of a given dataset.

This dissertation makes the step of elevating visualization abstractions to be practical—

demonstrating how theoretical frameworks can be made actionable for effective visualiza-

tion design. The term ‘actionable’ refers to organizations that help to scaffold the iterative

design process in visualization, abstracted to provide value for a wide range of analysis sce-

narios and data, and can potentially be ported to visualization authoring tools for practical

use. Abstraction in visualization helps to both organize research so that knowledge can

be collected to guide effective visualization and provide practitioners with an actionable

methodology to make appropriate design decisions for their analysis goal [Craft and Cairns,

2005].

A critical component of effective abstraction can be motivated by the informed con-

struction of design patterns, which can help to support reusable data visualizations across

different data domains. Many “good” visualization systems are custom and bespoke, and

ideally should be able to be reused for similar but different datasets both from the same data
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source and from other data domains with similar data characteristics. By generating design

patterns from instantiated designs and codifying their use and utility, the visualization

community can build upon these patterns and select between options when designing and

implementing novel visualizations. To support these design patterns, appropriate pro-

grammer abstraction can support these goals in practice, elevating theoretical abstraction

to a practical level for immediate applicability.

1.3 Document Structure

This dissertation will describe these concepts in turn, starting with an overview of summary

visualization and its abstractions along with relevant recent work (Chapter 2). I then address

a theoretical framework for summary visualizations (Chapter 3), which is generated from

instantiated designs in the literature, using a quantitative content analysis methodology.

This theoretical framework organizes the methods of summarizing and reframing data

against the information that a summary visualization conveys about the dataset. The

factors of the method of summarization, the data type, the summary purpose, and the

high-level affordances of the visualization are correlated to highlight design patterns and

identify voids in the space of summary visualizations.

This study is followed up with a detailed design treatment of scatterplots (Chapter 4),

where both the tasks and data characteristics are treated as factors that determine ap-

propriate design strategies. In this work, the concept of a scatterplot is expanded to

capture scatterplot-like designs, which all display data items as marks by two continuous

dimensions, positioned in a two-dimensional space. With a survey of the literature and a

card-sorting methodology, analysis tasks specific to scatterplots are selected, a collection of

data characteristics that affect scatterplot design are identified, and a clustering of design

decisions are collected and identified. To demonstrate the utility of this scatterplot-specific

framework, we show two applications of our framework to organize the space of design

decisions based on task and data, identify trends of task support with design strategies,

and trends of task support as data characteristics (such as the number of items) change.

Two case studies of designing summary visualization are discussed from a summary
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perspective, showing the design application to complex biological data (Chapter 5–6). Using

the organization built up within this dissertation, I then discuss creating programming

abstractions for authoring visualizations (Chapter 7), taking into account user intentions

and different interaction paradigms for manipulating graphics. Lastly, the document

discusses future work that could extend the work presented herein, particularly in the goal

of summarizing data for the general public (Chapter 8).



2 background

This chapter brings together prior work relevant to this dissertation. The prose following

serves to build up the context surrounding the problem of effective summary visualization

proposed in the introduction, and motivate the need for the work presented within this

dissertation by highlighting the gaps in the existing literature. Related work specific to the

individual chapters will also be presented in their respective chapters.

2.1 Summarizing Data in Visualization

As datasets continue to grow in size and complexity, the design decisions made to sup-

port summary visualizations need to scale to these challenges. What exactly needs to be

summarized depends on the characteristics of the data the viewer wants to observe and

how a viewer expects to interact with the data. In order to evaluate the effectiveness of a

summary visualization, it is helpful to understand how the concept of overview is used in

the visualization literature. As defined by Spence [2007], overview is “a qualitative awareness

of one aspect of some data, preferably acquired rapidly and, even better, pre-attentively: that

is, without cognitive effort.” This definition is quite focused on obtaining a single factlet

over an ‘overall sense’ or ‘gist’ of a dataset. In colloquial visualization parlance, an effective

overview imparts an awareness of the data and its trends. Due to this ambiguous definition,

exactly what constitutes an effective overview or summary of a dataset is quite dependent

on the domain and specific characteristics of the visualization under test. Hornbæk and

Hertzum [2011] presents a part-synthesis, part-survey methodology to understand the

concepts surrounding overview, and how visualization research supports this summarizing

notion. The chief difficulty in this area is providing generalizable guidance that works for

a variety of analysis scenarios, as well as for a diversity of data domains. I use summary in

this document (as opposed to ‘overview’) to consider and organize design considerations

in a more concrete manner.

A summary visualization seeks to provide high-level information about a dataset, but

not necessarily a complete overview (e.g., communicating “all” high-level information).

10
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As summarization in visualization is considered to involve an explicit decision to reduce

data for display, it is critical to understand how the method of reducing data correlations

with the information communicated by a resulting visualization. However, when designed

effectively, such visualizations can elicit insights that even the designers did not anticipate.

Thudt et al. [2012a] demonstrate in their paper that when the overview is designed to place

similar but potentially discongruous items together, viewers modified their exploration

process, eliciting new hypotheses. Kosara [2016] show that the utility of visualizations

change based on when they are explicitly used for presentation—different designs work

better in different scenarios. While Kosara identifies this distinction, I seek within this thesis

to identify how the differences manifest themselves, and provide guidance for effective

design, with respect to the characteristics of the data, the type of data summary, and the

analysis tasks of the viewer. When considering these factors, it is critical to identify the

ramifications of poorly-targeted summaries, which allows for the critique and evaluation

of summary design. These ramifications include issues with object overdraw, the design

and methods of data summarization, as well as methods of reusability and evaluation.

The issue of occlusion or overdraw occurs when the visual mark representing individual

data items completely overlap one another. A common example of overdraw occurs in

scatterplots when the number of items overwhelms the available screen-space for the plot,

and the marks occlude one another. In this scenario, it is difficult to make judgments of

relative numerosity—how many points are in this region against that region? For multiple

series of points, what are the proportions in the plot when points are drawn over each

other? Overcoming the technical issues of overdraw, as explored by Fekete and Plaisant

[2002] in their seminal work, allows summary visualization to scale to very large datasets,

with the trade-off of sacrificing fidelity in some types of judgments to achieve these scales.

From the human-centered standpoint, Cui et al. [2006] tackles the understandability issues

that overdraw exacerbates, including ambiguity in the analysis task or goal, especially in

how designs can greatly limit how a summary can be used. Thus, for effective summary

design, overdraw must be minimized as it inhibits visualization utility.

Summarizing data before visualization can help to offset the problem of overdraw. In

this thesis, I explore how different methods of data summarization can affect the affordances
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of a derived visual summary. While a detailed discussion of these different methods occurs

later in this document (Chapter 3), a few classic methods are presented here. Cleveland

and McGill [1984b] describes several different design strategies to simplify the design of a

scatterplot, including regular lattice binning with glyphs, adding smoothings (continuous

average trendlines), and representing multiple series with icons, shapes, and color—see

also Cleveland, 1985, chap. 3. Card and Mackinlay [1997] has an early collection of data

reduction methods, but tends to mix high-level categorizations with low-level methods,

such as identifying filtering, sorting, slider selection, and mutli-dimensional scaling. Ellis

and Dix [2007] collects and derives a taxonomy of clutter-reduction techniques, including

methods such as clustering, sampling, and topological distortion. While such a taxonomy

may be too general for practical use, the authors raise important issues in data summariza-

tion for visualization, including how filtering, sampling, and clustering limits potential

insights of the data.

For more specific methods, Bertini and Santucci [2006] describe the use of subsampling

to understand patterns in the data by stochastically removing data to decrease the preva-

lence of overdraw. Elmqvist and Fekete [2010] describes how summaries can take advantage

of hierarchies in the data to group and otherwise target summary design. The authors

describe a two-pronged approach, where the data can be clustered based on hierarchical

ordering, and the visual design can also utilize a hierarchical design. These methods help to

concretize our four methods of data summarization—aggregation, filtering, subsampling,

and projection—which are discussed in Chapter 3.

Broad guidelines have been introduced and have worked their way into the lexicon of

data visualization. The oft-cited “Information Visualization Seeking Mantra” by Shnei-

derman [1996] states that visualizations should be designed to provide “overview first,

zoom and filter, then details-on-demand.” The idea behind the mantra is to design the

visualization such that a viewer obtains an overview, has the ability to drill into the phe-

nomenon they are interested in, and then can use the visualization to develop or confirm a

hypothesis about the data. With great attention from the visualization community, Craft

and Cairns [2005] provide a counter-point to this mantra, where the un-validated mantra

has been used to justify a very large number of design decisions. Despite the use of the
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mantra, Craft and Cairns discuss the need for actionable guidelines that are also high-level

and domain-independent, particularly in prompting predictive summary and interaction

design paradigms for the benefit of the viewer.

The need for guidelines for design in the research literature have become clear, and

many guidelines have been developed for particular analysis scenarios or data domains.

These guidelines underscore the need for guidelines for summary visualizations, much as

these works have influenced design of their respective domains. Leung and Apperley [1993]

introduced a framework for evaluating visualizations that summarize datasets, proposing

a cost function that evaluates the accuracy of insights generated by the overview provided

by the visualization. van Wijk [2005] extends the framework to practical problems, and the

cost guideline has been extended by subsequent work [cf. Kindlmann and Scheidegger,

2014] to compare the information conveyed from different design decisions. More specific

design-centric guidelines for summary visualizations have also been proposed, including

designing for pre-attentive pop-out [Haroz and Whitney, 2012] (to support highlighting

discrepancies and proportions) and designing for rapid re-ordering of the display [Slingsby

et al., 2009], where re-organization can help answer a wide range of viewer queries on the

data.

2.2 Taxonomies and Organization of the Visualization

Design Space

In the history of data visualization research, there have been many organizations of the

conceptual design space of visualization. Perhaps the original organization of the space

rests with Bertin, introducing the concept of visual variables and their use in a built

visualization [1983]. Bertin also introduced the dichotomy present in visualizations—the

purpose of a visualization can be for presentation (demonstrating previously understood or

curated insights) or exploratory (addressing new or generative questions of the data). The

question of how to best support novel exploration of the data was explored in the early ’90s,

with Springmeyer et al. [1992] describing the scientific data analysis process: investigation
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(involving interaction, application, and maneuvering within a visualization), generation

of insight (targeted exploration and confirmation through details), and interaction with

the overview (including the operations of examine, orient, query, compare, and classify).

Mullins and Treu [1993] extend the scientific sensemaking process to capture the interplay

between the analysis, synthesis, and assessment of insights from visual data analysis. This

framework highlights the pivoting of the field to support exploratory and confirmatory

visualizations for data analysis.

To better capture how viewers use visualizations, task-driven methodologies strive to

capture how a visualization is use and should be designed to support the intentions of the

viewer. Roth and Mattis [1990] is an early example of capturing the tasks of the viewer and

discusses the presentation functions (nominally, overview tasks) such as lookup, compari-

son within and among relations, the distribution of relations, as well as the ordering and

correlation of attributes, many of which are difficult to obtain through statistical or numeri-

cal means. Casner [1991] extends this to perceptual operators such as (non)targeted search,

verification, and lookup—separating viewer-known from unknown patterns in the data.

Zhou and Feiner [1998] extends the presentation versus exploration dichotomy, adding

iterative elaboration and verification as a core task, and proposing that summarization and

searching comprise different intents on behalf of the viewer.

Klein et al. [2006] and Amar et al. [2005] propose a viewer intent-driven taxonomy, where

the analysis intent of the viewer helps to categorize what is done with a visualization. Klein

et al. proposes a data frame theory of sensemaking, where the viewer goes through stages

of recognizing, elaboration, questioning, and reframing the visualization to support a new

data frame. Amar et al., in contrast, collect and abstract a collection of viewer tasks such as

“retrieve value”, “determine range”, and “find anomalies”—while this list does not claim

to be comprehensible, the work sets off a barrage of follow-up work that seek to evaluate

how visualizations are or are not appropriate, given the tasks that need to be supported

for the design to be effective. Andrienko and Andrienko [2006] introduce a very detailed

collection of methods for obtaining information from complex data displays, concentrating

on directed and undirected search of data items and their relations.

These task taxonomies provide a representative list of actions and intents that a viewer
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may want to perform with a visualization. Depending on how the visualization is used by

the viewer, the performance of accomplishing these tasks can help to rank design decisions

in their effectiveness for the given task. It is well-established that no one set of design

decisions supports the full gamut of analysis tasks—design decisions have trade-offs—a set

of design decisions may support some tasks at the expense of others. Therefore, the designs

of many visualizations are targeted—supporting a limited set of tasks for a particular set

of analyses. Munzner [2009] describes a nested model for visualization design with this

in mind, emphasizing that the goal of the visualization must match what the viewers

expect, from the workflow down to the visual variables used in the visualization. The core

of the evaluation centers on capturing the tasks of the visualization at a high-level (e.g.,

“identify the genomic positions that have mutation correlation”) and at a low-level (e.g.,

“identify the frequently mutating genomic positions”). While the distinction between high-

and low-level tasks can be ambiguous in practice and use, high-level tasks tend to be a

composition of many low-level tasks—the “ends” to the “means.”

High-level task organization

Recent task methodologies have approached the abstraction of analysis tasks from a holistic

perspective. With this perspective, these organizations can help to standardize the dis-

cussion of how tasks affect visualization design. Heer and Shneiderman [2012] explore

how analysis tasks can be supported through interaction with the visualization, mostly

by shifting the frame of reference (much like Klein et al. [2006]) or by re-organizing the

data to arrange the data to be suit a given task. To bring organization to the taxonomies

of tasks themselves, both Brehmer and Munzner [2013] and Schulz et al. [2013] present a

hierarchical ordering to capture a wide range of high- and low-level tasks, though they

utilize slightly different strategies. Brehmer and Munzner collect a wide range of viewer

tasks from the literature and organize the tasks by why, how, and what—which themselves

are further broken down. The why category abstracts the intent of the viewer: how the

visualization is consumed (present, discover, enjoy; an extension of Bertin [1983]), the

method of search (similar to Casner [1991]), and query pattern (similar to Andrienko

and Andrienko [2006]). The how derives directly from many low-level tasks taxonomies
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discussed earlier, and provide the means to support the viewer in their analysis intent.

To connect multiple tasks together, the what can capture the information generated from

previous tasks to inform future tasks.

Concurrently published, Schulz et al. [2013] use a different yet related methodology,

expanding the “ends” of Brehmer and Munzner [2013] to capture the goal, “means” as

high-level means (is data elaborated, re-organized, or put in context for comparison?),

characteristics (e.g., data values or trends), target (attribute and structural relations), and

cardinality (the scope of the data instances: single, multiple, or all; also discussed by

Andrienko et al. [2003]). With Schulz et al.’s framework, tasks are identified as “points”

in the five-dimensional design space—bounding the space of all tasks, and providing a

common abstraction for viewer tasks performed with all visualization. This organization

is attractive in its multi-layered description of all tasks, and the organization allows for

the abstraction and relation of any analysis-specific task into this space. This common

organization helps to identify similarities between seemingly disparate analysis tasks,

helping to realize common abstract tasks. Throughout the next two chapters (Chapters

3–4), I will use Schulz et al.’s approach to guide our capture of viewer analysis tasks.

Most relevant to the arguments in this dissertation is how these organizations of anal-

ysis tasks (and the tasks themselves) drive the design of visualization. This dissertation

continues this important work, and builds upon this burgeoning area. While Munzner

[2014] collects a task-driven methodology for making effective visualizations in her text-

book, specific research is described here. Ji Soo Yi et al. [2007] discuss tasks that viewers

perform when interacting with a visualization to elaborate or summarize data, and suggest

design elements that support those viewer intents. Pike et al. [2009] take these intents a

step further by connecting the viewer’s goals and tasks with the interaction affordances

designed for a visualization. The authors emphasize that, while visualization techniques

are ever-changing, dynamically capturing the intents of the viewer can allow for semi-

automatic re-organization of the data and design decisions to support the changing goals

of the viewer. This future work represents one of many potential benefits from connecting

analysis tasks with design decisions. In the spirit of the dissertation, Rind et al. [2016]

explore how support for viewer tasks drive visualization design. Rind et al. discriminate
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the dual-role of tasks to drive design decisions, and to evaluate the effectiveness of a visu-

alization. In this dissertation, tasks are used as the means to evaluate the appropriateness

of design decisions in a given visualization, whether for the generalized case of summary

visualization, a specific visualization such as a scatterplot, or particular instantiations such

as verification of a predictive protein classifier.

2.3 Abstractions for the Visualization Designer

Concept abstraction is widely used in the data visualization literature. Abstraction helps to

take specialized model tasks and generate a generalized representation that can be applied

to other analysis domains and for different structures of data. This section references

those abstractions and concept organizations that are helpful for framing the visualization

design process. Here, concepts that are used throughout the dissertation are discussed:

the sensemaking loop, explicit versus implicit statistics, and how these organizations can

be designed to be actionable.

The sensemaking loop describes how viewers use visualizations, and how the viewer

should be brought into consideration when evaluating the effectiveness of a visualization.

This is of particular importance to the iterative design process of designing summary

visualizations for the two use cases presented in this dissertation (Chapters 5–6). The

comparison of explicit against implicit statistics highlights issues of depending on statistics

to convey high-level information about a dataset, particularly in exploratory contexts (as

discussed throughout the dissertation). In closing, I highlight actionable organizations

that have been created in the visualization literature that inform both researchers and

practitioners to create and design effective summary visualizations, such organizations

that I seek to contribute with this document.

2.3.1 The Sensemaking Loop

Sensemaking is the process by which a viewer interacts with a visual representation (or

more generally, the environment), and builds and revises their internal model of the

represented data (and generally, the world). The hope of designers and researchers is that
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Evaluations of
interpretations
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Figure 2.1: A diagram of Norman’s Action Model [1988], describing how an individual
interprets and builds their knowledge about the world about them. In terms of a viewer
interacting with a visualization, the left side captures how the viewer’s mental model
prepares them to interact with the visualization (from experience with the data and/or
visualization mechanics). The right side describes the process by which the viewer inter-
prets the information, updates their mental model, and potentially generates new goals to
begin the action loop anew.

by understanding the sensemaking loop, better representations of data can be made to

support viewers in their analysis and to quickly confirm hypotheses or disprove questions

of the visualized data. Much of the work in sensemaking derives their core model from

Norman’s action model [1988], which demonstrates how a human (in our case, a viewer)

approaches the world (in our case, data externalization or visualization), interacts with it,

reconciles their anticipation of (external) results with their internal model, then updates

their internal model by rationalizing the unanticipated phenomenon. Figure 2.1 shows a

diagram of this action model.

This action model has been adapted by many authors to explain how viewers interact

with data visualization, perhaps most notably by Pirolli and Card in their 2005 paper

that augments Norman’s action model for use in “analyst technology” (which is used

to externalize data; essentially, the role of visualization). They detail an explicit process

of iteratively seeking information by collecting data from sources1 and extracting the
1While obtaining relevant datasets for a given analysis scenario is a critical component of effective analysis,

it is out of scope for this dissertation (it is assumed that all relevant data has already been gathered).
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relevant data (foraging loop), then iteratively developing a mental model by schematizing

and reconciliation with existing experiences, and finally evaluating the data based on

generated hypotheses (sensemaking loop). Within in the sensemaking loop, Pirolli and

Card generalize the process as Information → Scheme → Insight → Product. Though

the language is obtuse, the key theme is the insight that leads to a productive outcome

(product). The concept of insight has been co-opted in the information visualization literature

to identify “observations” or “breakthroughs” that leads to “discovery”—explained as

“seeing something that previously passed unnoticed or seeing something familiar in a

new light” [Saraiya et al., 2005, p. 443]. It may follow that the purpose of visualization

is to support and maximize the potential to generate insights on behalf of the viewer [cf.

introductions of Card et al., 1999, Spence, 2007].

If maximizing the potential for insights is the goal, it is imperative that the initial state of

the viewer’s mental model must be understood to design an effective visualization. Saraiya

et al. [2006] note that insights from exploratory visualizations are constructed based on

both previous experiences with visualization and the data domain. For this reason, many

specialized visualizations are evaluated by domain experts who have expertise in the

domain [Pirolli and Card, 2005]. Liu and Stasko [2010] take a great step to bring together

mental models (in general), visual reasoning, and interaction in visualization together to

make these concepts actionable for the designer. With regards to mental models, Liu and

Stasko notes that they are a “functional analogue representation to an external interactive

visualization system” (p. 1001) that captures the structural and behavioral properties of the

visualization, can preserve schematic and semantic information about the data, and that

the mental model can be used to reason about the data. This speaks towards the design

of effective visualization—it must be understandable to the viewer (they must have some

familiarity with the data or visualization), and it should allow the viewer to manipulate

the view to obtain an anchoring point [Liu and Stasko, 2010, see Sec. 5.2.1].

Using this theory of the mental model, visualizations should support viewers’ mental

models, whether they come from domain expertise or individual differences [Ziemkiewicz

et al., 2012]. One method for doing this is supporting switching from familiar representa-

tions (which may not effectively support a given task) to an alternate representation (that
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has greater effectiveness) [see the Data/Frame theory, Klein et al., 2006]. This supports

designing for existing models of interacting with data, using accessible and familiar vi-

sualizations such as scatterplots. Associated interaction mechanisms help to change the

reference frame, focusing the viewer’s analysis and generating different representations of

the data. From these new representations (whether using a different visual representation

or summarizing the data by some method), viewers can approach their data from a new

angle and continue their foraging [Liu and Stasko, 2010]. Yi et al. [2008] discuss how to

organize interaction in a visualization to support the creation of insights. While not mutu-

ally exclusive to one another, Yi et al. identify themes that interaction supports: providing

overview, adjust, detect pattern, and matching to mental model. This dissertation directly

focuses on supporting these viewer interactions (whether supported solely by visual design

or supplanted visualization interaction)—by understanding how data summarization can

affect what types of features viewers can see in the data, and how tasks, data, and designs

are related to one another.

Of relevance to the evolution of the work presented herein, Shneiderman and Plaisant

[2015] discuss the need to sharpen analytical focus, particularly when dealing with “big

data.” They discuss the issues in providing relevant summary visualization when dealing

with large amounts of repetitive data—there must be a way for the viewer to identify and

focus their attention on a subset of the full dataset. This focus could be on an exemplar

set of data or performing cohort analysis between multiple organizations within the data.

Understanding how best to support an analyst’s exploration through a dataset would help

to choose the necessary interaction and design strategies for effective visualization.

2.3.2 Explicit Versus Implicit Statistics

Summarizing data necessarily entails throwing away data. Explicit statistical marks can

capture high-level summary information about a dataset. On the extreme end, Potter

et al. [2010] demonstrates visualizing many different explicit statistics of many sets of

one-dimensional distributions, including mean, skew, one and two standard deviations,

and kurtosis. Capturing these explicit statistical metrics can help viewers accomplish

their analysis goals, but also have the potential to leave exclude necessary information.
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Figure 2.2: Multiple sets of data have noticeably different distributions, but have identical
summary statistics (for this group: mean: [54.26, 47.83], standard deviation: [16.76, 26.93],
correlation: −0.06). Only by visualizing the data can differences between datasets be seen.
Data and graphs from Matejka and Fitzmaurice [2017].

By nature of summarization, individual item fidelity must be sacrificed—as fidelity is

removed through data summarization, it may be impossible to recover particular details. If

the viewer’s goals are known a priori, explicit statistical summarization is a concise method

of communicating distributional characteristics.

However, Anscombe’s quartet [1973] (and its derivatives, such as Matejka and Fitzmau-

rice [2017]) illustrate pitfalls of reliance on these explicit statistical measures. The set of

graphs in Figure 2.2 have very similar statistics, but represent very different distributions

of data. A benefit of visualizing such data in a relevant subspace is the ability to see and

compare distributions, especially when the relevant characteristics are not known to the

viewer a priori. To build a mental model of the data, visualizing implicit statistics (in contrast

to explicitly-marked statistics) may be desirable. The implicit nature is derived from Gestalt

grouping [Wertheimer, 1923] from appropriate design choices for a given analysis task.

Implicit statistics can take advantage of the viewer’s preattentive process, whereby

the human visual system identifies and prioritizes particular elements in a display [Ware,

2012]. By taking advantage of these preattentive mechanisms, trends and anomalies in

the data can be emphasized in the visual display of large datasets. To understand how

these mechanisms work, there has been a multitude of empirical and holistic work in

both perceptual psychology and visualization. Ariely [2001] demonstrates some of these

preattentive mechanisms and potential confounds. In particular, Ariely highlights with

three experiments how a viewer creates a representation of a complex visual set of data—

with short stimulus times, viewers tend not to recall properties of individual items but
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instead create a representation of the set. Gleicher et al. [2013] further explored how viewers

create these representations of sets with many items, and found that these mechanisms

are not limited by the number of objects. In fact, they found that more objects within a set

tended to strengthen judgments about distributional comparisons between multiple sets,

which emphasizes the scalable power of the visual system.

In this same vein, Halberda et al. [2006] also show that the number of items in a display

has less relevance to internal representation than the number of “selectable” groups,

finding that the visual system can hold around three set representations in short-term

memory. For the types of encodings that create groupings, Healey and Enns [2012] provide

a comprehensive overview of visualization-targeted mechanisms. They survey many types

of features that preattentive processes quickly identify, and highlight strategies for taking

advantage of these properties. Of potential relevance to visualization, Healey and Enns

show that ensemble (en)coding strategies and feature hierarchy can be engineered by

designing combinations of preattentive features together. By doing so, designers can

design to emphasize particular visual features of data at scale.

From a holistic perspective, Javed et al. [2010] identifies preattentive features between

different representations of line graphs that yield different viewer interpretations of the data.

They empirically evaluate different ensemble strategies (established visualization types

such as line graphs, small multiples, braided graphs, and horizon graphs) based on different

analysis tasks, and establish a set of affordance trade-offs between the designs. Similarly,

Haroz and Whitney [2012] highlights the importance of ordering items to emphasize trends

in group membership and highlight anomalies in the data. They note that even though the

analysis task may not be known a priori, grouping can greatly help identifying an unknown

target by emphasizing discontinuity.

Of relevance to creating summary visualizations, both Correll et al. [2012] and Albers

et al. [2014] explore the idea of visual aggregation to communicate high-level information

about time-series data. Visual aggregation comprise a set of techniques that coax viewer’s

visual system into creating representations of data distributions and trends. Correll et al.

[2012] show that communicating time-series data using color weaving [Urness et al., 2003]

can impart a more nuanced internal representation of the data, including identifying high-
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variance time periods from others. This work is extended by Albers et al. [2014] to capture

a range of tasks done with line charts, which include identifying the extremes of the data,

aggregating values over ranges, and identifying high- and low-variance regions of values.

The authors empirically evaluate different encodings (weaving, color blending, event

striping) and find that different encodings support different types of tasks with varying

accuracy. In general, position encoding that use linear structure (line charts, box plots)

tended to support higher-accuracy viewer judgments, while aggregate color encodings

supported viewers in making accurate representations of average value over a range. With

this evidence of visual aggregation, Correll and Gleicher [2015] argue that implicit statistics

can equally support viewer judgments and representations of data, particularly in situations

where the viewer’s overview goals are not known a priori. In a summative article, Szafir

et al. [2016] describe different ensemble encoding strategies to support viewer judgments

of implicit summary statistics.

The power of implicit statistics is used throughout this dissertation to communicate

high-level information about a given dataset. Chapter 3 discusses how different methods of

reducing data can affect the types of high-level information communicated by a resulting

visualization, while Chapter 4 describes how both implicit and explicit statistics can be

shown in scatterplot-like designs.

2.3.3 Actionable Organizations

This dissertation focuses on creating actionable organizations that can be utilized by both

researchers and practitioners of visualization. These organizations can help practitioners

understand the factors that affect trade-offs between different design strategies, and help

researchers organize and position their novel techniques in relation to previous work.

Examples of organizations that have influenced the use of abstractions in data visual-

ization that appear within this document visualization include Munzner’s nested model

paper [2009], which separates targeting design and visual techniques and proposes a

methodology to evaluate the efficacy of different levels of a visualization independently.

Though considered a “theory” paper, these ideas are utilized in the design process for many

application papers (e.g., Chapter 5). Elmqvist and Fekete [2010] looks at how aggregation
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can be exploited in the data and the visualization design to simplify viewer interaction

with large, complex data. They provide guidelines for designing overviews of the data to

preserve particular characteristics of the underlying dataset—and one of their guidelines is

to design for “visual summary”, though no guidance is given for what makes an effective

summary. One of the goals of this dissertation is to extend these organizations to make

them actionable for summary visualization design.

The task taxonomies of Brehmer and Munzner [2013] and Schulz et al. [2013] help to

collect and abstract the analysis tasks that viewers perform with visualization. These two

collections (along with other collections such as Andrienko and Andrienko [2006] and Roth

[2013b]) aggregate information from a whole host of earlier, specialized task taxonomies,

covering a wide swath of tasks (see §3.2 for more detail). If a sufficient set of representative

tasks are evaluated against design decisions and other relevant factors, tasks can become

a driving force for supporting effective visualization design. This core idea is used to

motivate each of the following chapters in this dissertation.



3 design factors for summary visualization

Visual analytics systems help users navigate large and complex datasets. These datasets

often have too much data or too many dimensions to display in one view, requiring design-

ers to engineer systems to first summarize available data and then visualize the results. The

resulting summary visualizations help orient analysts by describing high-level information

about the dataset, guiding analyses of particular features, and providing a means for navi-

gating to important subsets of data. Designers and researchers have numerous techniques

and design choices for constructing these summary visualizations, but little systematic

guidance for reasoning about the trade-offs of different design decisions and their impact

on the resulting analyses.

In this chapter, we survey summarization in visual analytics, evaluating the relationships

between use, analytic affordances, and data summarization methods. We aim to understand,

recognize, and characterize limitations in current design choices for effectively summarizing

data for visual exploration, focusing on factors such as analysis tasks, data types, and

data characteristics. We provide an abstraction of existing summarization methods to

support different analyses, and use this survey to propose an initial design space for data

summarization for visual analytics. Understanding common links between tasks, data, and

techniques used to summarize data for analysis will help guide new tools and opportunities

for innovation in visual analytics systems, and for summary visualizations in general.

Summarization in visual analytics serves two primary purposes: to compress the dataset

to fit in the available screen-space and to reduce visual complexity to make visualizations

easier to interpret. Examples of summary visualizations include histograms that aggregate

data across a selected dimension, dimensionally-reduced scatterplots that project high-

dimensional data into a lower-dimensional space (see §4), and actor-network diagrams

that summarize relationships between entities captured in a text corpora. Summarization

is an essential component in most visual analytics tools—we found that more than half of

papers surveyed contained a summary visualization. The ubiquity of summarization and

its impact on data analytics tools means that designers need a better understanding of the

factors that lead to effective summarization to guide the design of effective visualization

25
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Figure 3.1: A schematic of a generalized process for visual analytics with data summariza-
tion. A dataset (left) is reduced using data summarization techniques (center), comprised
of four basic methods (aggregate, project, subsample, filter), and is presented visually
to support judgments of high-level data characteristics (right). Both the summarization
and visual presentation are factors that influence the efficacy of summary visualization to
enable viewers to make high-level judgments.

tools. We construct a preliminary design space of summarization for visual analysis

(Figure 5.1) that allows designers to reason how factors are involved in affecting the resulting

utility of a summary visualization.

We systematically survey the visualization literature to observe relationships between

factors in this design space using quantitative content analysis (QCA) [see Riffe et al.,

1998] to analyze summarization in IEEE VIS and EuroVis papers from 2009 to 2015. Our

approach quantifies the relationship between analysis tasks, properties of the data, and

summarization choices to identify design themes in summary visualizations. Our goal

herein is to confirm that the list of summarization methods is sufficient to capture all

methods of summarization and also to understand how the method of summarization

affects the affordances of a resulting visualization. We use our design space analysis to

identify common themes observed in summary visualization design. These themes indicate

common patterns in how designers use summarization to guide analysis, a preference

for task specificity, the existence of common design patterns, and a bias towards certain

design choices for specific types of data. These themes highlight key considerations for

data summarization, identifying challenges in current practices and opportunities for new

and innovative thinking around summarization in visual analytics.
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Contributions: We conduct a systematic survey using QCA to characterize summarization

in visual analytics as a function of purpose, data summarization method, analysis task,

and data type. In doing so, we make the following contributions:

• A taxonomy of data summarization techniques used in summary visualization (§3.1–

3.2),

• A formal survey and analysis of summary design in exploratory tools (§3.3), and

• A description of challenges in summary design (Table 3.2) and potential opportunities

for innovation (§3.3–3.4) grounded in existing practice.

This chapter provides a foundation for systematically reasoning about summarization in

current and future tools and identifies gaps in our general understanding of summarization

in visualization design.

3.1 Background

Visual analytics systems often provide summaries that analysts use to navigate, sift, and

winnow through data to create a concise and focused representation of the underlying

dataset [Shneiderman, 1996]. A summary within a visual analytics tool communicates

properties of a dataset by explicitly using fewer marks than there are datapoints. For

example, a scatterplot with points aggregated using KDE could constitute a summary,

whereas ‘zoomed-out’ representations of a dataset, such as a standard scatterplot or parallel

coordinates plot with many thousands of elements but no data minimization would not

qualify as a summary. While individual points may be difficult to distinguish in such

zoomed-out representations due to factors such as overdraw (see Fekete and Plaisant [2002]

for technical issues, Cui et al. [2006] for understandability issues), such visualizations do not

procedurally summarize data. Instead, we focus on methods that explictly summarize data

(a strategy most overdraw solutions employ) and analyze how the ways data is summarized

and presented affect high-level judgments of the visualized data.

In this work, we consider a summary visualization the result of an explicit set of

summarization decisions made by the designer, together with the reduced data and the
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visual representation. Throughout this dissertation, the role of summaries is to convey a

“gist” about global and high-level properties of a dataset, as discussed in Section 2.1. Design

of these summaries should ideally support the needs of the analyst or audience, but the

data type, the method of reducing data, and the anticipated use can all affect the resulting

design. We draw on these prior characterizations of overview and our own observations

to organize the design space of how summaries are used in visualization to generated a

grounded codebook for QCA (§3.2.2). From this literature, we propose a design space

characterized by purpose, summarization method, and task that guides the design of effective

summarization, and discuss these organizations in detail. By basing codes on previous

work, we can use these organizations in our effort to observe relationships between these

factors for effective summary design.

3.1.1 Data

The type of data affects how data is summarized and what global, high-level features an

analyst can extract from a summary. Taking note of previous approaches, we can observe

how different techniques can affect a resulting visualization based on the hierarchical

organization for data, data with multiple dimensions, and dealing with large amounts of

data. Hierarchical data can be summarized by visualizing data at different levels within

that hierarchy. Elmqvist and Fekete [2010] survey how aggregation techniques, in par-

ticular, can reduce the amount and complexity of visualized data. They demonstrate

how hierarchical aggregation can be applied to conventional visualization types, even for

non-hierarchical data types, and also provide guidelines for effective navigation within

hierarchically aggregated visualizations. Elmqvist and Fekete provide a guideline of visual

summary (G2) that “visual aggregates should convey information about the underlying

data.” We consider the effect that aggregation can have on a resulting summary, and also

consider how a summary is affected by a broader set of transformation and organizations

of non-hierarchical data.

While other types of data have unique challenges for summarization, a common theme

in summarization is dealing with high-dimensional and spatial data. Both Keim and Kriegel

[1996] and Keim [2002] have explored visualization techniques for exploring databases,
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where visual interfaces summarize datapoints and their attributes using overview first,

enabling the viewer to explore large amounts of data. Kehrer and Hauser [2013] have

surveyed the high-level design and intents of visual analytics overview approaches, exclu-

sively for multifaceted scientific data. They identify many techniques in their survey that

lead to summaries for particular types of data, but do not directly draw conclusions about

the affordances of different techniques and the cross-applicability of summary designs for

different data domains. Leung and Apperley [1993] provide a framework for evaluating

visualizations where there is too much data to display each datapoint clearly. This frame-

work helps designers evaluate visual and computational representations of summaries

based on their effectiveness, expressiveness, and efficiency; however, it provides no guidance

as to how representations might be designed with these qualities in mind.

3.1.2 Purpose

The purpose of a visualization describes its intended use. We anticipate that the intended

purpose of a summary directly informs effective design. Bertin [1983] presents purpose as

a dichotomy: the visualization either communicates previously understood information

(presentation-oriented visualization) or supports information processing to address new

questions (exploratory visualization). Schulz et al. [2013] refines this division to consider

the goals of an analysis: exploratory, confirmatory, and presentation.

We hypothesize that summaries for presentation emphasize specific data characteristics

more often than exploratory summaries, and that the intended purpose of a summary

(exploratory, confirmatory, and presentation) can inform effective data summarization.

This division aligns with recent design guidelines proposed for presentation-oriented

visualizations Kosara [2016], advising specificity and compactness over generalizability.

3.1.3 Data Summarization Methods

Methods of data summarization can reduce the scale and complexity of a dataset for display

in a summary. We specifically consider methods that summarize data while simultaneously

provding a faithful representation of the underlying dataset. Prior work suggests methods
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of re-organizing data for visualizations—for example, Card and Mackinlay [1997] argue

that a small set of functions can be used to process data for visualization: filtering, sorting,

multidimensional scaling, and selection by slider. Ellis and Dix [2007] taxonomize clutter

reduction techniques for visualizations. Three of these techniques (sampling, filtering,

and clustering) explicitly reduce data—however, their work considers summaries only

as a means of reducing visual clutter in data space rather than emphasizing particular

characteristics of the data.

We derive and propose four methods of data summarization from our observation

and reconciliation of the literature: aggregation, subsampling, filtering, and projection

(see §3.2.2 and §3.3.2 for details). These four categories capture the variety of methods

that reduce data for display, and we anticipate that the method used will influence the

types of judgments that viewers can make from the data visualized in the resulting visual

summary (e.g., exploration of subsampling by Bertini and Santucci [2006]). Understanding

the relevant tasks and judgments viewers will perform will help to connect these methods

to their support in summary visualizations.

3.1.4 Tasks

The summarization methods used to summarize a dataset directly influence the analysis

tasks supported by a derived summary. As an example of this relationship, using kernel

density estimation to spatially aggregate values in a scatterplot helps viewers find dense

clusters, but obscures local outliers. Our goal in this work is to collect a representative set

of overview-level tasks, which capture the high-level information of a dataset. To do so, we

look at the multitude of task taxonomies to generate a representative set of analysis tasks.

Task taxonomies have looked at how viewers obtain information from displays (see

Andrienko and Andrienko [2006] and Shneiderman [1996] for canonical examples). Amar

et al. [2005] identify a series of low-level tasks used to answer specific queries about a

dataset. Ji Soo Yi et al. [2007] outline tasks that analysts perform to guide data interaction

and exploration. Zhou and Feiner [1998] explore high-level presentation intents and visual

discourse tasks, including “summarize” tasks such as associate, compare, distinguish, and

rank.
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More recent work considers how tasks can drive visualization design (see Rind et al.

[2016] for a synthesis of this space). For example, Brehmer and Munzner [2013] looks at

how tasks can be abstracted and expressed to support design across different application

domains. Pike et al. [2009] look the mutual relationship between user tasks and interaction

design. Schulz et al. [2013] describe how designers can reason about tasks using “5 W’s”

(and one “H”): why is a task pursued (a task’s goal), how is a task carried out (a task’s means),

what does a task seek (the target and cardinality of objects), when is a task performed, and

who carries out the task? Schulz et al.’s hierarchical synthesis of high-level tasks provides

a representative analytic organization that we utilize in designing our codes for the survey.

We additionally consider how these questions manifest in existing summaries to identify

how tasks might guide effective summary design.

3.2 Methodology

We survey summary visualizations in the research literature to discover patterns in the

use, design, and analytic affordances of visualizations using summarization. We are

particularly interested in how the methods of data summarization are related to the use

and the information communicated by the summary visualizations. To discover these

patterns, we use four research questions to ground our exploration of this space. These

questions concern the validity of our organization, how different types of summarization

affect the resulting affordances communicated by the visualization, and how data and use

affects how summarization methods are utilized. In detail, our questions are as follows:

Q1 Do the four proposed summarization methods cover the range of summarization

performed for summary visualization design?

Q2 Does the method of data minimization affect how a resulting visualization can be

used?

Q3 How does the use of summary visualization affect decisions of summary?

Q4 Does the type of data affect what types of minimization and affordances are appro-

priate?
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To gather the necessary data to address these research questions, we use quantitative

content analysis (QCA) [Riffe et al., 1998] that helps to quantify attributes about visual

artifacts. This methodology has the advantages of quantiative evaluations (using statistical

methods), and can break summary visualizations down into digestible factors to later

identify trends between the factors. This in constract to grounded theory, which could

build up concepts from qualitative exploration, but would likely be heavily biased by the

sample of summary visualizations chosen. Instead, QCA depends on a static codebook to

quantify attributes, evaluated by the coder. To promote ecological validity, we derive the

codebook chiefly from existing visualization taxonomies (see §3.2.2), and use the results

of the QCA process to validate our organization of summarization methods (S1). This

methodology confirms the organizations proposed and the data generated through its use

highlights trends in summary visualization.

Two data visualization researchers served as the coders for this survey. After a pre-

liminary coding of ten papers, the two coders iterated on codebook definitions to clarify

lingering ambiguities and to address emerging concerns regarding measure validity. Of the

180 evaluated manuscripts, 54 randomly-selected papers (30%) were redundantly coded for

validation—the Cohen’s kappa measurement for intercoder reliability found substantial

agreement between coders (κ = 0.71, 86% overall agreement). Section 3.3 presents the

result of this process, and identifies themes arising from our analysis.

3.2.1 Corpus Construction

To construct a corpus of summary visualizations, we use the data visualization research

literature as a collection of peer-reviewed and valdated collection of visual analytic systems.

This corpus is especially attractive due to the discussion of analysis scenarios in prose in

close relation to the visual presentation of the summary visualization. To compose the

corpus, we collected papers from the EuroVis, InfoVis, SciVis/Vis, and VAST conferences

from 2009 to 2015 (1,158 papers). As coding each paper through a comprehensive census

is untractable, we constructed a representative corpus of papers through simple random

sampling from this set, as commonly used in traditional content analysis of large corpora

(cf. Brubaker et al. [2012]). This resulted in a set of 180 coded papers (48 EuroVis, 53
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InfoVis, 48 SciVis, and 31 VAST papers). Each paper was first coded for whether or not they

included an implementation or technique that included a summary. Papers containing

summaries were considered the artifact (figures and prose), and coded according to the

presented protocol. We excluded theory, taxonomy, survey, toolkit, and evaluation papers

as the focus of these papers was not on a single, specific visualization design, making

application of the codes too subjective as we had no explicit evidence of the designers’

intents.

Using examples from the visualization research community allows us to focus on de-

signs whose quality, effectiveness, and utility have been reviewed by external experts in

the field and that are tailored for a wide variety of applications. Although visualization

designs are also found in conferences outside of the immediate visualization community

(e.g., NIPS, VLDB, KDD), specific visualization contributions in these fields are relatively

rare and unlikely to appear in a random sample. Further, visualization research papers

emphasize novel contributions and techniques that represent the state-of-the-art in visual-

ization specifically, and these papers represent a vetted corpus of summary visualizations

that contain explicit rationales for their design discussed within the article, increasing the

validity of our coding practices. However, the choice of this corpus biases the results of this

study toward exploratory visualizations that are used by researchers or domain experts

(not the general public), which we discuss in Section 3.4.

3.2.2 Coding Protocol

Each example in our 180 paper sample was labeled using a predetermined coding protocol

designed to characterize four factors of summary visualization design: the visualization

purpose, the data being used, the data summarization methods employed, and the tasks sup-

ported by the resulting summary visualization. We constructed our codebook by collecting

and abstracting categories across 15 existing typologies describing data, purpose, task,

and summarization in visualization. Table 3.1 summarizes the coding scheme used in

the survey. As mentioned above, a set of 10 papers were used in iteration to revise our

codebook for clarity. The final codes are as follows:
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Category Subcategory Code

Purpose
Exploratory
Confirmatory
Presentation

Data
Summarization

Aggregation
Subsampling
Filtering
Projection

Task

Means: Navigation

Browsing
Searching
Elaborating
Summarizing

Means: Relation
Comparison
Variations
Relation-seeking

Characteristics:
High-level

Trends
Outliers
Clusters
Frequency
Distribution
Correlation

Data
Data type
Specific data

Other
Additional ←↩
observations

Table 3.1: Two coders labeled 180 examples from the visualization literature. The coders
first identified whether a visual summary was present and then coded each summary
according to 22 attributes describing the summary’s purpose, data summarization, and
supported tasks (§3.2.2).
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Purpose: We capture the purpose, or goal, of each visualization by considering whether it

supports exploratory (undirected search), confirmatory (directed search) or presentation-

oriented (exhibiting analysis results) analyses [Bertin, 1983, Schulz et al., 2013]. These

codes describe the high-level intent of the summarization and are treated as three binary

(present/absent) codes.

Data: We coded for data type using Shneiderman’s data type taxonomy [1996], with

one-dimensional and temporal data collectively coded as sequence data, encompassing one-

dimensional data on a common axis (e.g., temporal, genomic, or ranked data). While

we considered data size as a potential code due to the utility of summarization for large,

multidimensional datasets, most systems did not provide specific information about the

number of datapoints and dimensions tested and designed their methods for use with more

than one dataset. For these reasons, coding for data size would have required significant

assumption and extrapolation on the part of the coders, resulting in limited validity. We

therefore did not consider data size in our analysis, but it is an important consideration for

future work.

Data Summarization: We used our own observations coupled with categories from Schulz

et al.’s reorganization task [2013], the visualization design space [Card and Mackinlay, 1997],

methods for clutter reduction [Ellis and Dix, 2007], and methods of hierarchical abstraction

[Elmqvist and Fekete, 2010] to propose a set of four data summarization methods used to

reduce data for display:

Aggregation Computationally combining multiple elements (e.g., hierarchical aggrega-

tion [Elmqvist and Fekete, 2010]),

Subsampling Subsetting elements based on a stochastic selection of the data (e.g., random

subsampling [Bertini and Santucci, 2006]),

Filtering Subsetting elements based on properties of the data (e.g., selecting a repre-

sentative set [Ellis and Dix, 2007]), and

Projection Mapping data elements to a set of reduced or derived dimensions (e.g.,

principal component analysis [Jolliffe, 2002]).
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We hypothesize that the data summarization methods used to construct a summary visual-

ization heavily affect the affordances that the summary supports (S2). The method of data

summarization was coded using a combination of four binary codes (present or absent for

each of the above categories).

Task: Our task codes were drawn from the means and characteristics of Schulz et al.’s

taxonomy [2013]. We chose this taxonomy as a general guide over other taxonomies (e.g.,

Amar et al. [2005], Brehmer and Munzner [2013], Casner [1991], Klein et al. [2006], Roth

and Mattis [1990], Springmeyer et al. [1992], Ji Soo Yi et al. [2007], Zhou and Feiner [1998])

as it comprehensively reflected most categories presented in other taxonomies.

Means of navigation describe how summary visualizations support further analysis.

These tasks coincide with Springmeyer et al.’s concepts of maneuvering [1992] and Casner’s

perceptual search operators [1991], and later used in Amar et al. [2005] and Ji Soo Yi et al.

[2007] as intent in interaction, Zhou and Feiner [1998] in their modes of “enabling”, and

Heer and Shneiderman’s “interactive dynamics” [2012].

Means of object-object relations describe information foraging tasks, including comparison

(seeking similarities; see Gleicher et al. [2011], Ji Soo Yi et al. [2007]), variation (seeking

dissimilarities; see Roth and Mattis [1990], Zhou and Feiner [1998]), discrepancies (seeking

outliers Roth and Mattis [1990], Zhou and Feiner [1998]), and relation-seeking (seeking

one of the aforementioned relations for individual objects; see Casner [1991], Heer and

Shneiderman [2012]). While we additionally coded for discrepancy, this code was removed

from our analysis due to poor agreement between coders.

High-level characteristics from Schulz et al. [2013] are used to code specific judgments

of high-level data characteristics afforded by summary visualizations. While the source

taxonomy does not explicitly define these characteristics, we used the following definitions

that were agreed upon by the coders after iteration:

Trends Estimate high-level changes across a dependent dimension,

Outliers Identify items that do not match the modal distribution,

Clusters Identify groups of similar items,
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Frequency Determine how often items appear,

Distribution Characterize the extent and frequency of items, and

Correlation Identify patterns between dimensions.

These analysis tasks provide a representative proxy for understanding the informational

utility of a summary visualization. Each of these three categories (summarized in Table 3.1)

is measured as a combination of binary codes (task supported/unsupported).

Other: We recognize that a codebook constructed a priori may not capture all elements

of designs and tasks of summarization. To capture traits of summary visualizations not

captured by this initial set of codes, we allowed coders to note additional observations

about each summary for further exploration.

3.3 Survey Results

Of the 180 papers coded, 104 (58%) contained summary visualizations. Of these, 64

(36% of those 180 total) provided enough detail within the paper to support valid coding

across all four categories (described as fully-coded summaries). The remaining 40 consist of

primarily scientific visualization systems focused on rendering, which provided little to no

description of the target purpose or analytic tasks supported by the approach. To avoid

over-extrapolation, we only coded those systems for data summarization.

By situating the 104 coded summaries within our design space, we identify factors

leading to different design decisions, explore common design themes, and also understand

aspects of this space that currently unexplored in visualization. In this section, we use

our research questions to highlight significant findings from our analysis, and generate

key themes (Table 3.2) that describe observations from the survey process. Taken together,

these themes highlight core challenges for and opportunities for innovation in designing

summary visualizations. These challenges concern how designers might exploit task

specificity (addressing Q2), how systems leverage common design patterns (Q3), and how

data affects design considerations (Q4). The full analysis results are available online at

http://graphics.cs.wisc.edu/Vis/vis_summaries/.

http://graphics.cs.wisc.edu/Vis/vis_summaries/
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Challenge Axis — contributing factors Theme — observations about the survey data

Use Purpose T1 Summaries serve as a starting point for analysis.
(C1) Purpose T3 Confirmatory summaries support exploration.

Purpose × Data Summarization T5 Designs for communicating specific, known information use aggregation.
Purpose × Task T6 Summaries using subsampling emphasize exploration.
Task T15 Summaries act as roadmaps to guide detailed exploration by interaction.

Specificity Purpose × Task T2 Exploratory summaries encode a broad set of data characteristics.
(C2) Purpose × Task T4 Presentation summaries emphasize a small set of specific characteristics.

Purpose × Data Summarization T5 Designs for communicating specific, known information use aggregation.
Data Summarization T7 Most summaries use more than one data summarization method.
Data Summarization × Task T9 Summaries using aggregation support tasks characterizing the entire dataset.
Data Summarization × Task T12 Projection and filtering emphasize similar data characteristics.
Data Summarization × Task T14 Subsampling supports tasks that are statistically robust to random sampling.
Task T16 Summaries emphasize patterns that characterize all data and dimensions.

Design Patterns Purpose T1 Summaries serve as a starting point for analysis.
(C3) Purpose × Data Summarization T5 Designs for communicating specific, known information use aggregation.

Data Summarization T7 Most summaries use more than one data summarization method.
Data Summarization T8 Most summaries use aggregation to summarize data.

Data Data Summarization T10 Aggregation is common across all data types.
(C4) Data Summarization T11 Filtering can be used across all data types.

Data Summarization T13 Summaries using subsampling are most common for scientific visualization.

Table 3.2: Our analysis revealed sixteen common design themes in examples of summary visualization. Taken collectively as
observations, these themes highlight the challenges in the design of summaries. We use these challenges to reason about the
trade-offs in existing designs and to identify underexplored areas of the design space to inform new summary designs.
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Figure 3.2: The distribution of summaries designed for each purpose over 64 fully-coded
summaries (information visualization & visual analytics).

3.3.1 Purpose

Q3 addresses the question of how use of a summary visualization affects the design

decisions of summary. To understand how use affects these decisions, we look at the

data for statistical trends in the coded purpose of the visualizations. Purpose codified the

intended use of summary visualizations for exploration, confirmation, or presentation

(Figure 3.2). Most fully-coded summaries supported exploration (92%, 59 of 64), allowing

viewers to analyze large collections of data without any a priori goals. 66% (42) of summaries

were designed for directed analysis (confirmation), while only 22% (14) were explicitly

designed to communicate known results (presentation). The dominance of exploration

characterizes our first design theme: summaries most frequently serve as a starting point

for detailed analysis (T1). 95% (56 of 59) of these exploratory summary designs supported

some sort of navigation task and 58% (34) allowed viewers to directly manipulate the

granularity of the data encoded in the summary.

Additionally, exploratory summaries support a broader set of data characteristic

tasks (T2), such as identifying trends, outliers, clusters, frequency, distribution, and cor-

relation. 70% (41) of exploratory summaries enabled viewers to explore more than three

of the six high-level task characteristics (compared to 43% [6 of 14] for presentation) and

12% of summaries (7) supported all six. For example, Chen et al. [2016] uses a set of sum-
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Figure 3.3: A visual summary in the system built by Chen et al. [2016] uses both aggregation
and filtering in order to support a wide range of high-level analysis tasks.

marization methods to visualize different patterns across geo-tagged social media data.

The resulting system (Figure 3.3) allows analysts to explore aggregate movement trends

from social media data, and leverages interaction to enable analysis of the data distribution,

frequency, and geospatial-based clusters.

Confirmatory summaries were often also exploratory: 61% of summaries (39 of 64)

supported both exploration and confirmation while none were designed for confirmation

or presentation alone. Like exploratory designs, confirmatory designs support a broader

array of data characteristics than presentation-oriented summarization (68% supported

more than three characteristics). This correlation suggests that summaries designed for

confirmation also support exploration (T3): confirmatory tools generally allow analysts

to not only confirm specific hypotheses about data, but also to further refine and develop

additional hypotheses about the data.

In contrast, presentation summaries often emphasize a small set of data characteris-

tics (T4). 57% (8 of 14) of presentation summaries communicated three or fewer coded data

characteristics, and only one design communicated all six (Domino [Gratzl et al., 2014],

which also supports exploration). All coded presentation summaries used aggregation to

summarize data. Of these, 50% (7) used aggregation alone and 35% (5) used aggregation

plus filtering. This suggests that designs communicating specific, known information

heavily rely on aggregation (T5). Aggregation can summarize data into a small number of

precise features to emphasize known findings, encouraging effective presentation [Kosara,

2016]. This theme combined with T2 highlights potential challenges in use and specificity
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Figure 3.4: World Lines [Waser et al., 2010] aggregates spatial data across different simula-
tion runs to allow viewers to directly search for the simulation with the best outcome.

(§3.4): focusing on specific properties of the data limits viewers’ abilities to engage with data

to better understand and evaluate presented findings whereas supporting many properties

can overwhelm analysts or unnecessarily clutter a summary visualization.

Only five summaries were not explicitly designed for exploration. All five were confir-

matory visualizations using aggregation, and none used subsampling. This bias indicates

a trade-off between purpose and subsampling. Subsampling methods favor exploration

(T6) as directed search may be inhibited by stochastically reducing data. Alternatively,

aggregation helps guide analysts by presenting precise summarized values for well-defined

tasks. For example, World Lines [Waser et al., 2010] uses aggregation to summarize parallel

simulations of temporal events enabling comparison across known metrics for disaster

planning (Figure 3.4).

3.3.2 Data Summarization Methods

All of the coded summaries employed at least one summary method (Figure 3.5), validat-

ing Q1 that the organization is sufficient to cover the range of summarization operations.

Unlike purpose and tasks, data summarization methods were coded for all 104 coded

summary visualizations. We found that most summaries used more than one data sum-
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Figure 3.5: The distribution of summary designs using each data summarization method
across 104 coded visual summaries.

marization method (T7) (63 summaries of 104, 61%), with 53 (84%) using exactly two. Each

summarization method tended to favor a particular set of tasks. Combining summariza-

tion methods allows summary designs to leverage the strengths of individual techniques.

However, there appear to be limits in how many summarization methods could effectively

be composed: none of the coded summaries in our survey used all four summarization

methods together. Rather, by understanding how each method is used in conjunction

with other factors, we can analyze common design, use, and specificity patterns driven

by these techniques. These observations are driven by Q2: how does the method of data

minimization affect the resulting summary visualization?

Aggregation

Aggregation summarizes data by collecting and collating like-objects together through

spatial, organizational, or attribute similarity. Most surveyed visualizations (74%) use

aggregation to reduce data (T8), with 27% exclusively using aggregation. Visualizations

frequently used aggregation to support tasks characterizing the entire dataset (T9). Of

the 64 fully-coded examples, aggregation frequently supported both distribution (42 of 54,

78%) and clusters (43 of 54, 80%).

Visualizations often used these methods of data reduction to take advantage of trade-offs

between aggregation and filtering: while aggregation emphasizes characteristics describing



43

Figure 3.6: Most network summaries, such as Networks of Names [Kochtchi et al., 2014],
combine aggregation and filtering to summarize data. The system aggregates different
relations across pairs of entities and filters these patterns according to their frequencies to
encode the relationships that best characterize the dataset.

multiple datapoints, filtering can help tailor these characteristics towards interesting or

relevant collections. For example, the Network of Names [Kochtchi et al., 2014] first ag-

gregates recurring relations in social networks and then filters out uncommon relations to

emphasize dominant patterns in large actor networks (Figure 3.6). Filtering can also be used

to reintroduce important data values obscured through aggregation, such as outliers in a

scatterplot aggregated by density [Mayorga and Gleicher, 2013] (Figure 3.7). We found that

summarization without aggregation targeted these kinds of individual value judgments,

such as identifying outliers which was supported by 70% of non-aggregate visualizations.

In terms of Q4 (effect of data type on summarization), aggregation was commonly

used across all data types (T10), occurring in more than half of the surveyed papers across

all data types. The dominance of aggregation across all data types indicates that it is a

“default” used in visualization systems. Although aggregation is a powerful technique, it

communicates specific properties of a dataset at the cost of the underlying data values. To

use aggregation effectively, designers must know what properties of the data are important

to the user and how to compute and encode these properties to faithfully represent the

underlying data. Summaries using aggregation exchange flexibility for specificity, and crit-
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Figure 3.7: Splatterplots [Mayorga and Gleicher, 2013] represent two-dimensional points
by combining a kernel density estimation with filtering and subsampling of representative
outlier points. Combining aggregation and filtering takes advantage of the trade-offs
between these methods to support a broader variety of tasks.

ically examining this trade-off may offer new opportunities for visualizations—discussed

in detail in §3.4.

Filtering

Filtering is commonly used to allow analysts to specify meaningful properties of the data

or compute representative subsets. 47 visualizations (44%) used filtering; however, filtering

was seldom used in isolation (17% of all filtering summaries, supporting T7). Filtering

in visualizations allowed analysts to identify clusters (23 of 47 filtering visualizations,

82%), characterize distributions (22 of 47, 79%), and evaluate correlation (17 of 47, 61%).

Filtering tended to reduce extraneous data to support and highlight these types of high-

level judgmets, reflecting the visual information seeking mantra [Shneiderman, 1996]:

“overview first, zoom and filter, then details on-demand.” Filtering in these cases helps

analysts find interesting subsets of the data to explore.

Like aggregation, filtering supported summary designs for all data types (T11). How-

ever, visualizations leveraging filtering provided analysts with little information about how
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filtering for these properties might bias potential interpretations, again raising challenges

for designers around summarization specificity.

Projection

As a method of summarization, projection is used to re-organize data as part of several

summarization operations. 30 examples (28%) used projection to summarize data, with

most projections summarizing large collections of documents (7 of 30, 23%), 3D fields

(9 of 30, 30%) and multi-dimensional datasets (10 of 30, 33%)—highlighting the utility

of projection for high-dimensional data (Q4). Similar to filtering, projection was seldom

used in isolation (T7), and was commonly paired with either aggregation or filtering (24

summaries, 80%). For example, text documents can use topic modeling to project document

vectors into a lower dimensional space and aggregate documents according to these topics

(e.g., Cui et al. [2014]).

Projection-based summarization emphasizes similar data characteristics as filtering

(T12): locating clusters (17 of 19 summaries, 89%), characterizing distributions (16, 84%),

and evaluating correlation (14, 74%). However, projection frequently also enabled outlier

analysis (15, 79%). Visualizations can combine filtering and projection to help highlight

critical patterns in complex data. For example, Progressive Insights [Stolper et al., 2014]

projects patterns onto statistical axes and filters the strongest patterns along each axis to

highlight the strongest patterns over each new dimension.

Regarding Q3 in the use of summarization methods, we found that projection was

seldom used for presentation (2 of 20, 10%), but instead supported in-depth explorations,

as in Progressive Insights. We hypothesize that this is because the mathematical complexity

of many methods make it difficult to clearly communicate meaningful narratives about the

data, leaving designers to reason closely about use and specificity when using projection

techniques (§3.4). However, we acknowledge that this may be biased by our choice of

corpus, as we discuss in Section 3.4.
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Subsampling

The act of subsampling reduces data for display by stochastically and indiscriminately

removing objects from the dataset. While relatively few visualizations used subsampling to

reduce data (16% of the 104 sampled), subsampling is also commonly paired with another

summarization method (aggregation: 8 visualizations, 47% of subsampled examples;

filtering: 3, 18%; and projection: 4, 24%). Similar to projection, subsampling is commonly

used as a conjunctive operation to reduce data to manage the complexity of the resulting

visualization.

Subsampling was predominantly used for spatial visualization (T13) (11 of 17 ex-

amples, 65% of subsampling use), where it reduced the visual complexity of aggregated

structural data. Only six fully-coded visualizations used subsampling. These visualizations

primarily support trend analysis (5 summaries, 83%) and characterizing distributions (5,

83%). These high-level characteristics indicate that subsampling can support summariza-

tion where the analysis tasks are statistically robust to random sampling (T14). While

few summaries use subsampling in practice, it is the only data summarization method that

does not bias the resulting summary towards any specific attribute of the data. This implies

subsampling may be a powerful tool for summaries for novel exploratory visualizations,

especially when the target tasks or properties of interest are unknown a priori.

3.3.3 Tasks

While several of our prior design themes address relationships between methods of data

minimization (Q1, Q2), and data types (Q4), we also explore how the utility of summary

visualizations affect design decisions (Q3). The trends here help to inform how summa-

rization affects analytic trade-offs in visualizations (Figure 3.8). From the 64 fully-coded

visualizations, we found themes around how designs allow viewers to navigate the dataset,

how summarizing different data types prioritize different analyses, and characteristics of

the data that summarization universally preserves.



47

Browse Elaborate

Pe
rc

en
ta

g
e 

of
 C

od
ed

 S
u
m

m
ar

ie
s

Navigation

0%

100%

75%

50%

25%

Search Summarize Comparison Relation-Seeking

Pe
rc

en
ta

g
e 

of
 C

od
ed

 S
u
m

m
ar

ie
s

Relations

0%

100%

75%

50%

25%

Variations Trends Clusters Distribution

Pe
rc

en
ta

g
e 

of
 C

od
ed

 S
u
m

m
ar

ie
s

Data Characteristics

0%

100%

75%

50%

25%

Outliers Frequency Correlation

Figure 3.8: The distribution of summary designs supporting different kinds of analysis
tasks across 64 fully-coded summaries.

Means of Navigation

Most visualizations presented summarized data to allow browsing for unknown patterns in

data (58 of 64, 91%) while a smaller number supported directed search for known patterns

(48 of 64, 75%). Among those, 13 visualizations (20%) supported browsing but not searching.

These summary methods tended to emphasize relationships across collections of datapoints:

all but one emphasized both clusters and outliers, and all but two communicated value

distributions. For example, in Brehmer et al.’s juxtaposed matrix and faceted box plots

[2016], the aggregate matrix obscures local patterns to prioritize aggregate temporal clusters

while box plots encode distribution and outliers (Figure 6.2). This aggregation prevents

directed search for individual motifs; however, the interaction between box plots and matrix

cells allows viewers to browse for interesting local patterns. This exemplifies how effective

summaries can act as roadmaps to guide user interactions with the data (T15). This

raises an important challenge for visualization designers to consider when summarizing

data: what properties of the data might make for an effective starting point?

Our survey revealed that most designs start with the most abstract available data

representation, then allow analysts to drill down into the data to uncover specific details.

Many summaries did not allow viewers to change the level of detail without changing the

visual representation (28 visualizations, 44%). All of these visualizations used additional

supplemental designs to support detailed exploration, supporting T15. For example, glyph

SPLOMs [Yates et al., 2014] summarize distributions within SPLOMs so viewers can identify

scatterplots to explore in detail (Figure 3.10).
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Figure 3.9: Summaries supporting browsing, but not directed search, tended to emphasize
properties of collections of datapoints, such as distributions and clustering. For example,
Brehmer et al. [2016] use aggregation allow viewers to identify high-level temporal clus-
ters, outliers, and distributions and use interaction to browse for interesting underlying
distributions; however, this aggregation obscures smaller scale motifs, preventing viewers
from localizing specific patterns.

Figure 3.10: Summaries act as roadmaps for exploration, starting with a high-level of
abstraction and often requiring viewers to use alternative representations to explore details.
For example, glyph SPLOMs [Yates et al., 2014] summarize the quadrants where datapoints
are clustered in each scatterplot of a SPLOM. Viewers can then look at specific scatterplots
to explore interesting data in more detail.

Means of Relation

Most visualizations used summarization methods that enables viewers to identify similari-

ties (89%) and differences (88%) between collections of datapoints. However, significantly

fewer support relation-seeking between individual items (45%), with most of these being

network visualizations. Network visualization for relation-seeking use some combination



49

of aggregation or filtering (2 aggregation, 2 filtering, and 4 aggregation+filtering). The

correlation between network data and relation-seeking implies that summarizing network

data often requires emphasizing relationships between key portions of the network. Aggre-

gation (by collapsing important collections of nodes or edges) and filtering (by preserving

meaningful or common relations) allow designers to meaningfully summarize networks.

For example, Networks of Names [Kochtchi et al., 2014] highlights relationships between

large collections of entities by first aggregating all entity relations and then filtering on

these aggregate frequencies to visualize the most common relations in the dataset (Fig-

ure 3.6). The only coded network visualization that did not rely exclusively on aggregation

and filtering, SAVE [Shi et al., 2011], did not emphasize relation-seeking and instead fo-

cused on multidimensional measures associated with each node. Despite the structural

similarities between network and hierarchical data, the latter tended not to support relation-

seeking though more visualizations of hierarchical data should be explored before drawing

conclusive insights.

Data Characteristics

Summarization most frequently preserved characteristics that describe the entire collection

of data and dimensions: clusters (80%) and distributions (75%). Trends (59%), outliers

(59%), frequency (56%), and correlation (58%) were roughly equally supported across all

visualizations. The bias towards clusters and distributions suggests that summarization

often emphasizes descriptive aggregate patterns across all of the data and dimensions

(T16), rather than patterns in individual values or relationships between specific dimen-

sions. 11% of coded summary visualizations support all tasks (7 of 64).

We found a bias towards particular task affordances and summarization methods across

data type (addressing Q4). For one-dimensional data, many visualizations support discov-

ering clusters (9 of 10, 90%) through aggregation (9, 90%). For 2D data, many visualizations

support discovering trends (7 of 8, 88%) and frequency (6, 75%). In comparison, 3D data

summarization tends not to support trends or frequency judgments (3 and 1 of 7, 43% and

14%, respectively), but instead preserves distributions (5, 71%). Neither multidimensional

nor network data used subsampling (5 summaries of 24, 21%; 0 of 10, 0%; respectively). We
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anticipate this bias arises from stochastically removing information that could potentially

remove critical structures in the data, such as relations between different levels of hierarchy

or across different data dimensions.

3.4 Discussion

Our four research questions lead to observations identified through the QCA process,

resulting in 16 design themes (Table 3.2) of summary visualizations in visual analytics.

Through the survey process, we confirm that the four methods of summarization are

sufficient to encapsulate data re-organization for display in a visual summary (Q1). Here

we describe these challenges and opportunities in how viewers use summaries, and in how

designers consider specificity in data summarization, leverage common design patterns, and

tailor summaries to specific data.

3.4.1 Use (C1)

We address the questions of how the use of summary visualizations affects design choices

(Q2 and Q3) through the following observations. Summary visualizations frequently serve

as a starting point for analysis (T1), providing a roadmap for detailed exploration using

alternative views or interactions (T15). To help guide analysis, designers often choose

an summarization method and target characteristics based on a visualization’s intended

use: how does the summary guide subsequent interaction and interpretation? To tell

an immediate and focused story (e.g., presentation), summarization emphasizes specific

patterns (T4) while open-ended analyses are better supported by summarizations encoding

a broad set of characteristics (T2).

Challenges: Addressing the use of exploratory summary visualizations (Q3), these vi-

sualizations generally present many data characteristics at once, which offers analysis

flexibility but might also overwhelm viewers: they may not know which questions to ask

first. Exploratory summaries might instead choose to depict subsets of important charac-

teristics to guide viewers through a more targeted analysis sequence. This targeting could
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be especially beneficial for domains with established analysis workflows or for guiding

novice analysts who could become overwhelmed when faced with too much information.

Opportunities: Summary visualizations that violate assumptions around use may offer

interesting trade-offs. For example in response to our research question on the use of

summary visualizations, we found that summarization for presentation generally targets

a smaller set of data characteristics, whereas exploration supports a larger set. On the

surface, this pattern makes sense: presentation tells a story, while exploration searches for

unknown patterns in data. However, inverting this pattern may be advantageous. While

aggregation can communicate specific information, explicitly visualizing statistics about

the data may cause viewers to misinterpret secondary characteristics [Correll and Gleicher,

2015]—for example, trend lines can cause viewers to too liberally label outliers. In response,

designs using filtering or subsampling may alleviate potential biases and better familiarize

viewers with the data. Further, allowing access to more data properties can allow viewers

to construct their own interpretation of the dataset in the context of the arguments made

through the visualization.

3.4.2 Specificity (C2)

One of our core questions is how the method of data summarization affects the types of in-

formation communicated by a resulting summary visualization (Q2). Existing summaries

heavily emphasize data characteristics that describe datasets in aggregate rather than spe-

cific data points or dimensions (T16), using aggregation methods to compute and visualize

specific patterns in data (T5). However, aggregation explicitly tailors summarized data to

specific statistical tasks, visualizing a computed representation rather than the actual raw

data. In contrast, subsampling might remove datapoints that are important to a particular

story, but also reduces clutter and potentially denoises data while providing immediate

access to the underlying data (T6). This trade-off characterizes summarization specificity:

aggregation can target specific high-level data characteristics but obscures specific values,

whereas subsampling and filtering encode individual data values but rely on viewers to

estimate characteristics.
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Challenges: We found that existing systems favor specificity over data fidelity. Even

if important data characteristics are not known a priori, aggregation was often used to

express generic properties of the entire dataset (T9), such as distributions and clusters (T7).

Filtering, subsampling, and projection are seldom used without aggregation; however,

designs using these methods frequently preserve the underlying characteristics of the data

(T12 and T14).

Our results identify a need to more carefully consider how the broad use of aggregation

may bias analysts. Aggregation generally focuses on precisely encoding a specific set of

characteristics at the expense of allowing viewers to synthesize their own perspectives

from available information. When favoring specificity, designers must carefully consider

how their summarizations influence the interpretation of the data, especially as summary

visualizations are frequently the first thing that analysts encounter when exploring their

data (T1).

Opportunities: Favoring breadth over specificity supports serendipitous exploration of

summarized data. Designing for serendipty can foster new discoveries or generate unex-

plored hypotheses [Thudt et al., 2012b] by broadly supporting a plethora of tasks. Subsam-

pling, the least common summarization method in our survey, may be especially helpful in

designing for serendipity: subsampling summarized data are statistically unbiased against

properties of the dataset. It provides designs with low specificity, but generally preserves

aggregate characteristics of the data. Further, stochastic sampling can create summaries

that are not subject to the same confirmation biases as targeted filtering or aggregation.

Summary designs should also consider how designs let viewers combine information

through visual aggregation. This understanding and explicit use of visual aggregation is

just emerging in the visualization literature (see Szafir et al. [2016] for a survey), and our

random sample did not identify any summaries explicitly designed for visual aggregation

(e.g., Sequence Surveyor [Albers et al., 2011]). However, visual aggregation may allow

designers to tailor summaries to specific tasks while using summarization methods. A

better understanding of how visual aggregation factors into the specificity of designs is

important future work.
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3.4.3 Design Patterns (C3)

Several design decisions were reflected in the majority of the coded summary visualizations

(Fig. 3.8), helping to address the research question of how summary use affects design

decisions (Q3). Understanding these seemingly “default” decisions can guide novel design

thinking for summary visualizations, as well as proposing good, starting design founda-

tions. For example, almost all surveyed systems used more than one data summarization

method (T7). Compositing summarization methods can emphasize particular data char-

acteristics and increase the number of tasks supported, but has the potential to increase

the distance between the representation and the semantics (structure) of the original data.

Aggregation, for example, is most commonly paired with other methods (T8), but aggrega-

tion techniques are often data-dependent and require viewers to interpret computationally

transformed data. In these designs, using multiple summarization techniques to increase

task support comes at the expense of usability: the viewer must perform more mental

processing to translate visual patterns back to the underlying dataset.

Challenges: The use of design patterns in summarization encourages reproducibility

and reduces the analyst’s overhead in learning new systems. However, designers must

consider whether a particular design pattern is appropriate given the data type and analysis

goals. To date, no concrete guidance exists for understanding design pattern effectiveness.

Our results indicate a need to collect and standardize design patterns and evaluate their

potential utility. Our design space provides a preliminary scaffold to build this knowledge.

Opportunities: A common design pattern was the use of summary visualizations as a

starting point for exploration (T1). While this pattern aligns with conventional visualization

guidelines [Shneiderman, 1996], designers might also consider how an analysis might

craft a summarization to serve as ending point for an analysis. Insights from exploratory

visualizations are often constructed longitudinally, building up as viewers learn more about

their data [Saraiya et al., 2006]. Summarizations might arise as descriptors of the insights

constructed during an analysis. While no surveyed summaries enabled this inductive

summarization, a few visualization systems incorporated annotation within a summary

component in order to iteratively refine overviews from insights (e.g., TenniVis [Polk et al.,
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2014] and Overview [Brehmer et al., 2014b]). For example, Overview lets analysts label and

manipulate datapoints to construct understanding across documents. Considering how

designs might support summaries as generative artifacts of an analysis, capturing features

like provenance, model refinement, and insight development requires moving away from

default design patterns to inspire new summarization capabilities and applications.

3.4.4 Data (C4)

Q4 addresses the question of how the data type affects the affordances of a summary

visualization. Several themes highlight patterns between specific data types and summa-

rization choices. In some cases, these patterns help guide particular designs. For example,

summary visualizations use aggregation and filtering for any data type (T10 and T11),

whereas subsampling is generally used for spatial datasets (T13). Designers may be able to

use common patterns across data types to better reason about how summarization methods

might support heterogeneous data, as well as how to adapt summarization techniques

across domains.

Challenges: The semantic and statistical properties of the underlying dataset and analysis

goals can limit candidate summarization methods. For example, continuous 2D data can be

meaningfully summarized using kernel-density estimation (KDE), whereas a kernel does

not easily map to hierarchical data. We identified some voids in the factors for particular

data types, including lack of frequency support for summaries of three-dimensional data,

and a lack of subsampling examples for network and multi-dimensional data. These voids

identify places where innovative methods are needed for intuitive summarization.

Opportunities: Specific data types tended to favor specific summarization methods. For

example, summaries of document collections and scientific data rely heavily on projection

(T13). Designers can use this correlation to derive design inspiration in other domains: how

might projection effectively summarize datasets that are structurally similar to documents,

such as collections of event sequences? An important aspect of understanding and applying

our design space in practice will be understanding how different summary approaches

might generalize across data types and domain scenarios.
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3.4.5 Limitations & Open Questions

This work begins to answer our research questions, taking preliminary steps towards a

broader discussion of data summarization in visual analytics. However, our data-driven

approach is inherently limited by sampling. Although we anticipate that the collected

systems and themes characterize summarization more broadly, we cannot make absolute

claims about the generalizability of our results. Instead, this work allows us to identify

challenges and opportunities for visualization design that will help extend and enhance

a more principled use of data summarization. For example, our observations identified

several patterns in summaries designed for particular data types, but our sampling across

different data types is limited. Future work could provide deeper coverage across different

data types through stratified random sampling to identify biases across different designs.

This could inspire both generative guidance for summarizing data across domains and

novel design techniques for guiding innovative summarization techniques.

Our dataset is also biased towards exploratory visualizations, which is likely a function

of an underlying bias in the visualization research literature [Kosara, 2016]. While we

elected to use this literature to ground our coding in the design intents of the authors (§3.2),

summaries from other sources, such as data journalism, could help create guidelines that

inform summaries for a larger variety of practitioners and uses.

Our observations from this survey begin to answer the four proposed research questions.

The four methods of re-organizing and summarizing data (Q1) are confirmed as being

sufficient—every example of a summary visualization was matched into one or more

methods. We identified how methods of minimization affects the resulting affordances

and use of visualization (Q2), including observations such as how subsampling tends to

support tasks dealing with data characteristics that themselves are resistant to missing

data (T14). We observed that the use of summary visualizations affected design decisions

(Q3)—as an example, aggregation is used to focus the viewer for presentation tasks (T5).

Lastly, we identified overrepresentation of summary methods for particular data types

(Q4), such as how subsampling was most used for spatial datasets (T13). The observations

from the survey helps to create a clearer picture for the design of summary visualizations.
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3.4.6 Conclusion

As datasets grow in size and complexity, effectively leveraging summarization becomes

increasingly critical for visual analytics systems. We crafted a design space for summariza-

tion and used this design space to evaluate 180 papers from the visualization literature

using QCA. Our analysis identified the importance of summarization for visualization

(employed in 59% of surveyed manuscripts) and 16 design themes relating visualization

purpose, data summarization methods, data types, and analysis tasks. We found trade-offs

in the use of different summarization methods and biases in their applications in existing

designs. These themes highlight patterns in the design for summarization that can guide

viewers using visualization systems.

This work is a critical step in characterizing a design space of summarization and creat-

ing a set of design patterns for summary visualization. Our four research questions help

to validate the proposed organization of summarization methods (Q1), and identify over-

and under-represented trends between the factors of purpose, summarization, affordances,

and data type (Q2–4). As a result of this process, these observations comprise a foundation

based in realized, visualization design. This foundation provides a base set of guidelines

in designing bespoke summary visualizations, and also suggests some potential design

defaults for interactive, viewer-centric visualization systems.

As a result of this work, we identify four methods of reducing and re-organizing data

for summarization. We have shown that these four methods tend to select the types of

high-level information that can be obtained from the resulting visualization. Through a

systematic random sample of the visualization literature, we can obtain trends in summary

visualization design and use, and highlight correlations that appear. In the following

chapter, we explore how different design methods for summarization manifest themselves

in a scatterplot design paradigm, and create a framework for understanding what factors

(data characteristics and tasks) make some summarization designs more appropriate than

others.



4 design factors for scatterplots at scale

In this chapter, we focus on a single type of common visualization: the scatterplot. By

constraining our design focus to this visualization type, we can generate an actionable

organization to analyze how different factors affect the appropriate design of a scatterplot.

Such a framework serves not only to help practitioners and designers select appropriate

designs for the desired use case for data at scale, but also helps to organize contemporary

techniques to identify alternative designs and areas of underexplored design solutions. The

abstractions developed here can be adapted for a visualization practitioners’ benefit—by

using the factors of task and data characteristics, a host of predetermined appropriate

designs and techniques can be proposed (more detail in Chapter 7 and 8). Following the

design factors proposed in Munzner [2014], we create the first such design framework for

scatterplots. A publication representing the work in this chapter was published as part of

the 2017 InfoVis proceedings [Sarikaya and Gleicher, 2018].

4.1 Overview

Scatterplots are a very common type of visualization. Their flexibility has led to their use in a

variety of exploratory and presentation contexts. The traditional scatterplot represents each

object in a dataset with a point (or other mark), positioned on two continuous, orthogonal

dimensions. As data grows in scale and complexity, the traditional scatterplot design

rapidly becomes ineffective. As a result, many other scatterplot designs have been proposed.

While these designs may address scale, they are often specific to data characteristics and

tasks. Designers have little guidance in how to select among design choices. Our goal

is to help designers select scatterplot designs that are appropriate to their scenarios by

identifying the factors that affect the appropriateness of scatterplot designs.

In this work, we describe how to consider analysis scenarios in terms of their task and

data characteristics in order to determine which scatterplot designs are appropriate (see

Figure 4.1). We generate a framework by collecting and abstracting use cases of scatterplots

in the literature. For tasks, we collect model tasks that are performed with scatterplots,

57
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creating an abstraction that helps us to understand the task space of scatterplots. We also

identify a number of design-relevant data characteristics, such as the number of objects. To

identify the space of potential designs, we survey scatterplot designs to organize and cluster

similar design decisions together. We use tasks and data characteristics to reason about the

applicability of these designs. Our framework, therefore, provides a process for designers

to select scatterplot designs appropriate to their scenario by first identifying relevant task

and data characteristics. Additionally, the framework highlights areas in the design space

for further exploration, and where multiple solutions exist for similar, abstract problems.

The framework that we construct in this chapter uses analysis task and data characteris-

tics to identify the scenarios in which a design is appropriate, much like the methodology

championed in Munzner [2014]. Through this chapter, we will summarize a short history

of the scatterplot and related designs (§4.2.1), orient our framework relative to existing visu-

alization taxonomies (§4.2.2), frame and identify the relevant factors that affect scatterplot

design (tasks [§4.3] and data characteristics [§4.4]), survey the space of designs (§4.5), and

explore how the framework and its factors can be used to determine the appropriateness

of scatterplot designs (§4.6–4.7).

4.2 Background

4.2.1 Scatterplots

The scatterplot was designed to emphasize the spatial distribution of data plotted in two-

dimensions. While the scatterplot itself has had a long history (see Friendly and Denis

[2005]), its relative simplicity and flexibility enables the scatterplot as an ideal sandbox

for early information visualization and perceptual psychology research. In particular,

Cleveland [1985] notes three factors that may affect the design decisions that are made by

the designer of a scatterplot: (1) marks or points are designed with preattentive features

in mind, (2) scatterplots are designed with the detection of individual objects in mind,

and also (3) are designed such that the distances between objects represent a notion of

similarity.
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Figure 4.1: Scatterplot designs (shown in columns) have varying levels of support for
viewer tasks based on the data characteristics (rows). Here, we compare a traditional
scatterplot (left column) to a hexagonal binning implementation [Carr et al., 1987] (middle)
to a Splatterplot [Mayorga and Gleicher, 2013] (right) for three representative datasets. The
appropriateness of a scatterplot design is based on the characteristics of the data and the
design’s support of the viewer’s task (such as identifying outliers or comparing distribu-
tions). For random distributions with few points (top row), the traditional scatterplot (left)
describes the data plainly. With increasing numbers of points (middle row), aggregation
representations such as binning (center) communicate spatial density. With overlapping
distributions (bottom row), density-based representations communicate overlap and can
also show outliers (right), which disappear in the binned representation (middle).

With different sets of guiding factors, many different variations around the core scatter-

plot design have been developed—many trying to squeeze more fidelity from the traditional

mark-per-object, two-dimensional scatterplot design. These designs are typically at odds

with factor (2) above, prioritizing aggregate judgments over object-centric affordances. In

this section, we highlight the background of challenges in adapting scatterplots to different
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analysis scenarios. While some of these strategies utilize multiple scatterplots, linked

components, or glyphs as marks, we only consider the use of a single, two-dimensional,

scatterplot with mono-variate marks outside of this section for the purposes of concision.

Dealing with too much data

Scatterplots work very well for a variety of analyses—until the amount of data overwhelms

the traditional design of assigning a mark to every datum in a dataset. Overdraw is a

common concern for scatterplots, defining the scenario where marks overlap one another

and mask marks drawn under them. Cui et al. [2006] notes that the drawing order can have

serious ramifications of emphasizing inaccurate judgments of distribution. Fekete and

Plaisant [2002] highlight technical issues in displaying millions of items, where overdraw

is a prime concern.

Reducing the data is one approach to address the challenge of too much data. Strategies

include reducing the data before mapping to a visual representation, simplifying the visual

representation itself, or modifying the space of the plot. In the first case, stochastic or

stratified subsampling of the data [Bertini and Santucci, 2006, Chen et al., 2014] is an

example of reducing the number of data for display. Binning data [Carr et al., 1987] by

collecting counts within small localized regions and visualizing area-aggregated, relative

counts is another strategy in this same vein. Strategies to simplify the visual representation,

such as continuous density estimation used by contour plots [Collins et al., 2009], landscape

maps [Tory et al., 2007], and Splatterplots [Mayorga and Gleicher, 2013], aggregate marks

by their position, highlighting clusters and distributions of marks.

Modifying the space of the plot can also emphasize hidden structures. Generalized

scatterplots [Keim et al., 2010] and related work (e.g., continuous scatterplots [Bachthaler

and Weiskopf, 2008]) take advantage of open space in a plot by performing a subspace warp

to take advantage of unused regions of the graph, while combining the strengths of density

estimation. In addition to these techniques, organizations of the strategies have been

proposed, most notably Ellis and Dix [2007] on clutter reduction where many strategies

are directly applicable to scatterplot data. In this chapter, we provide organization of the

factors specific to scatterplots that can assist in selecting these types of design elements
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and techniques from the possible space of all designs.

Dealing with high-dimensional data

Scatterplots have enjoyed continued use in the visualization of high-dimensional data.

Brehmer et al. [2014a] outline some of the analysis scenarios covered by scatterplots and

related visualizations. Using scatterplots, the three common strategies are to select a subset

of two dimensions, reduce the dimensionality to two dimensions using a dimensionality

reduction technique, or showing all dimensions in a pairwise fashion. In the first case,

simply showing a subset of two dimensions reduces to the typical scatterplot use case,

though the distance between marks only communicates similarity in a reduced subspace.

Commonly, dimensionality reduction methods use scatterplots to visualize their results.

Techniques may project points using such a method to cluster similar objects together,

such as the work by Lehmann and Theisel [2013] and Yuan et al. [2013]. Some other

scatterplot-related designs bridge the gap back to feed input back to dimensionality re-

duction techniques, such as Dis-Function [Brown et al., 2012] and InterAxis [Kim et al.,

2016] by using direct manipulation to drive and update object clustering and projection

functions.

SPLOMs [Carr et al., 1987] are a popular choice for visualizing pairwise dimensional in-

formation, highlighting correlations between pairs of dimensions. However, the paradigm

does not scale well to high numbers of dimensions. In response, scagnostics [Wilkinson

et al., 2005] provide metrics for identifying interesting correlations and patterns in two-

dimensional data, including features described as shape, trend, and coherence. These

measures can be used to find interesting combinations of dimensions to visualize, as shown

in both Bertini et al. [2011] and Tatu et al. [2010], and can be used to help guide inter-

action, as shown by Dang and Wilkinson [2014]. To support increasing complexity in

high-dimensional data, there have been variations on the SPLOM and scagnostic themes,

including the use of radial graphs [Kandogan, 2001] to show all dimensions in a two-

dimensional plane. Yates et al. [2014] takes an additional step of abstracting the “shape”

of pairwise correlation in individual scatterplots within a SPLOM, highlighting trends of

correlation. Clearly, the support of dimensionally-reduced data is an important analysis
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case for scatterplots, but how to select between these possible strategies for scatterplot

design is unclear, especially with the increased scale and complexity of datasets.

Designing for cognition and perception

There are yet other challenges faced by work that tackle how to design for data complexity

in scatterplots. Central to many of these techniques is preserving the meaning of distance

between objects as an indicator of similarity. In geography, the “first law of cartography”

that states that objects closer in distance tend to be more similar [MacEachren, 1995], which

has been adapted and codified to point spatializations (a.k.a, scatterplots) by Montello et al.

[2003]. In particular, work has concentrated on the aspect ratio of the plot area, which can

affect judgments of distance between objects Cleveland et al. [1988], Heer and Agrawala

[2006], Talbot et al. [2011], as well as global judgments of correlation [Li et al., 2008, Rensink

and Baldridge, 2010]. Scatterplots have also been a canonical player in testing perceptual

issues of different visual encodings, including probing just-noticeable differences in point

lightness [Li et al., 2010b], point size [Li et al., 2010a], comprehension of group statistics

between point classes [Gleicher et al., 2013], and the judgment of linear correlation [Li

et al., 2008]. Though the scope of these works concentrate on specific design decisions,

combining these strategies can help to derive effective scatterplot design.

4.2.2 Typologies and Taxonomies

Typologies and taxonomies use abstraction to extract similarities and differences between

concepts without unnecessary dependence on the particulars of individual implementa-

tions, as discussed earlier in this dissertation. A primary consideration common in many

information visualization taxonomies is task, abstracting how a viewer interacts with and

obtains information from a visualization (see Munzner [2014] for a high-level overview).

Task is typically viewed on a continuum from high- to low-level [Rind et al., 2016]: a

high-level task comprises an analysis goal [Brehmer and Munzner, 2013, Schulz et al., 2013],

while a low-level task captures the exact information that viewers pull out of a visual rep-

resentation [Casner, 1991, Healey et al., 1996] or describes bite-sized analyses [Amar et al.,



63

2005]. Another consideration may be understanding how factors and characteristics of the

data can have ramifications on the visualization, as discussed by both Mackinlay [1986]

and Ellis and Dix [2007]. These taxonomies, along with many others, help to standardize

the lexicon and assist in the incremental progress toward tailoring effective design for a

given analysis goal.

These taxonomies discuss visualizations in a general case, making it difficult to apply

these organizations to influence the designs of specific visualizations in practice—though

exceptions exist: Sedlmair et al.’s taxonomy for dimensionality reduction [2013], Sedlmair

et al.’s taxonomy of cluster separation factors [2012b], and Lee et al.’s taxonomy for graph

data [2006]. By focusing on the single scatterplot case, the goal in this paper is to create a

framework with an impact statement similar to the design space goal set out in Schulz et al.

[2013]. A framework should consolidate many similar but disparately presented research

under a single lens to drive the framework forward, by explicitly examining the trade-offs

between different strategies. By organizing research in this way, such a framework would

concretize (or, in the words of Schulz et al., externalize) implicit design decisions to explicitly

organize how designs work—helping to teach practitioners and researchers, clarifying

design requirements, and making good abstractions that have practical value. This also

has the advantage of identifying open areas for future research by identifying voids in the

design space—as an example, it may become clear through the organization that a strategy

does not exist for a particular set of factors. Therefore, our goal throughout this work is to

create a framework specific for scatterplot-like designs, helping both practitioners and tool-

builders to choose the correct design, given both the analysis goal and the characteristics

of their data.

4.3 Scatterplot Tasks

While many task taxonomies have been constructed for general information visualization

or even for specific data types (e.g., graphs [Lee et al., 2006]), we are not aware of such a

task analysis specific for scatterplots. With a coverage of the space of the analysis tasks that

concern scatterplots, a task list can allow for discrimination between designs—helping to
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identify why one design may work better in a particular analysis scenario over another. We

seek to identify tasks that form the building blocks for all analysis done with scatterplots,

covering both low-level and high-level tasks. Such a list should be data domain-agnostic,

which would allow for creating actionable abstractions of specialized scatterplot-like de-

signs for specific data domains in similar analysis scenarios.

To formulate the seeds for this task list, we collected model tasks from a variety of sources

in the data visualization literature, including papers performing empirical evaluation

[Rensink and Baldridge, 2010, Tory et al., 2007], picking “good” views of correlation and

clustering [Li et al., 2008, 2010b, Sips et al., 2009, Tatu et al., 2010], design studies of analyst

scenarios [Brehmer et al., 2014a, Sedlmair et al., 2013], technique papers [Bertini and

Santucci, 2006, Cottam et al., 2013, Tuan Nhon Dang et al., 2010], and even position papers

[Correll and Gleicher, 2012]. The list of 23 collected model tasks, their source, and common

categories are detailed in the supplemental material.

To abstract these model tasks, we asked four data visualization researchers (two faculty,

two senior doctoral students; 5–10 years of experience) to perform a card-sort and group

tasks together based on their similarity (see Spencer [2009] for an introduction). This

card-sort strategy has precedent in the visualization community—such as Roth’s applica-

tion for deriving a set of cartographical interaction intents [2013a]. We asked them to use

an open card-sort (no predefined categories titles, nor prescribed number of categories),

and arrived with several categorizations of tasks. With minor disagreement, exploratory

and cluster analysis generated consensus groups consisted of tasks that we then labeled

open-ended browsing and exploring, cluster rationalization, density judgments, dimension ratio-

nalization, multi-scatterplot tasks, and trend analysis. Due to our concentration on single plot

designs, we discarded the multi-scatterplot tasks category.

With these seed categories, we refined these categories post-hoc to generate a complete

picture of the space (Table 4.1). We refocused the trend analysis category from the card-sort

to explore neighborhood (#5), which captures obtaining aggregate statistics about a group

[Cleveland, 1985, Gleicher et al., 2013, Healey et al., 1996], or identifying the similarities

and differences among objects in a spatial region [Tory et al., 2007]. To expand the browsing

and exploring category into representative tasks, we use the taxonomy from Casner [1991]



65

# Task Description

1 Identify object Identify the referent from the
representation

2 Locate object Find a particular object in its new
spatialization

3 Verify object Reconcile attribute of an object with
its spatialization (or other
encoding)ob

je
ct

-c
en

tr
ic

4 Object comparison Do objects have similar attributes?
Are these objects similar in some
way?

5 Explore neighborhood Explore the properties of objects in
a neighborhood

6 Search for known motif Find a particular known pattern
(cluster, correlation)br

ow
si

ng

7 Explore data Look for things that look unusual,
global trends

8 Characterize distribution Do objects cluster? Part of a
manifold? Range of values?

9 Identify anomalies Find objects that do not match the
‘modal’ distribution

10 Identify correlation Determine level of correlation

11 Numerosity comparison Compare the numerosity/density
in different regions of the graphag

gr
eg

at
e-

le
ve

l

12 Understand distances Understanding a given
spatialization (e.g., relative
distances)

Table 4.1: Our list of abstracted analysis tasks that are performed with scatterplots: model
tasks gathered from the literature, categorized with a card sort, and refined through
reconcilation with visualization taxonomies.
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to separate directed and undirected search, yielding the two tasks search for known motif

(#6) and explore data (#7).

Judgments of distribution are another common task—while many papers concentrate

on finding clusters [Brehmer et al., 2014a, Sips et al., 2009, Tatu et al., 2010], identifying

other distributions such as manifolds are also important in many analysis scenarios [Li

et al., 2010b, Sedlmair et al., 2013]—giving rise to the characterize distribution task (#8).

From the browsing category, we also explicitly partitioned the task of identifying anomalies

(distributional-specific outliers, #9) due to the common trade-off of scatterplot designs

utilizing aggregation [Elmqvist and Fekete, 2010]. Identifying correlation (#10) between

the two dimensions in a scatterplot is a canonical task with scatterplots [Cleveland, 1985,

Friendly and Denis, 2005], which has prompted empirical studies of how correlation is

identified in scatterplots [Li et al., 2008, Rensink and Baldridge, 2010]. We adapt the derived

density judgment category to numerosity comparison (#11), which captures tasks that coarsely

compare the numbers of objects embedded in spatial regions within the scatterplot. The

last task in our list is understand distances (#12), capturing elements of the derived dimension

rationalization category, to capture tasks of using and judging distances as a metric space

against an object-embedded subspace [Montello et al., 2003, Sedlmair et al., 2013].

Many high-level tasks have been captured through this refinement process—dealing

with sets of objects and understanding trends, distributions, and numerosity. We augment

the derived tasks from the card-sort also to capture single-cardinality, object-centric tasks,

such as look-up and identifying an object’s spatialization (#1), searching for and locating

an object in a scatterplot (#2), and verifying an object’s spatialization within the plot (#3).

As a pair to exploring the neighborhood (#5), object comparison (#4) involves comparing

the visually-mapped (and non-mapped) attributes of a pair of objects to determine the

relationship or similarity between the two data items [Cleveland, 1985]. These operations

represent low-level operations in the visualization literature, stemming from Casner’s

analysis taxonomy [Casner, 1991] and repeated in others [Brehmer and Munzner, 2013,

Munzner, 2014, Schulz et al., 2013].

This process results in twelve abstracted tasks (Table 4.1) that we use to help frame our

discussion throughout this chapter. This collection of tasks is the first derived collection
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of tasks that are specific to scatterplots, and abstracts the range of tasks from a variety of

scatterplot designs. We note that these tasks may vary in terms of levels of abstraction or

cognitive complexity, but represent distinct parts of an viewer analysis scenario. These

tasks represent individual, separate intents and operations on behalf of a viewer to derive

information from a scatterplot.

A complex analysis task performed within an analysis scenario, such as correlation

discovery in high-dimensional data, may involve several of these tasks, used as building

blocks, to achieve an analysis goal, similar to the task construction presented in other task

taxonomies [Brehmer and Munzner, 2013, Schulz et al., 2013]. As an example, consider one

of the model tasks collected: “match clusters and classes” (from Brehmer et al. [2014a]).

This analysis goal can be composed of tasks #6, #5, and #4: search for known motif (find

clusters), explore neighborhood (inspect objects within the cluster), and object comparison

(inspect class membership of objects).

The curation of this list allows us to focus on supporting these tasks downstream in

gauging and evaluating the task performance on scatterplots, based on data characteristics

and design strategies. The task list helps to cover the range of tasks done with scatterplots

over a wide range of analysis scenarios, but it is not able to capture how data characteristics

may make some designs intractable. Nonetheless, we can use these tasks as a factor to

distinguish the strengths and weaknesses of scatterplot-like designs, and we can provide

better coverage of analysis scenarios when paired with data characteristics.

4.4 Data Characteristics

Many characteristics of the data (such as data size and distribution) may influence the

design of an appropriate scatterplot. Similar to capturing the tasks of scatterplots, collect-

ing, abstracting, and connecting relevant data characteristics will allow a more complete

characterization of task effectiveness in the space of scatterplot designs. Here, we survey

the challenges in particular sets of data characteristics, and discuss designs to support these

characteristics in the design decisions (§4.5) and linking (§4.6) sections. The data attributes

that we consider in this work are summarized in Table 4.2, along with reference articles.
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Data Attribute Possible Values Relevant Work

Class label No class label, 2-4
classes, 5+ classes

Elliott and Rensink [2015], Gramazio et al.
[2014], Sips et al. [2009]

Num. of points Small (<10), medium
(10–100), large
(100–1000), very large
(>1000)

Cottam et al. [2013], Gleicher et al. [2013],
Keim et al. [2010], Mayorga and Gleicher
[2013], Tory et al. [2007]

Num. of dimensions Two continuous, two
derived, or >2
dimensions

Best et al. [2006], Chan et al. [2010],
Sedlmair et al. [2013]

Spatial nature Dimensions do/do
not map to spatial
position

MacEachren [1995], Montello et al. [2003]

Data distribution Random, linear
correlation, overlap,
manifolds, clusters

Bertini et al. [2011], Li et al. [2008],
Rensink and Baldridge [2010], Sedlmair
et al. [2013], Sips et al. [2009], Tatu et al.
[2010], Dang and Wilkinson [2014],
Wilkinson et al. [2005]

Table 4.2: The data attributes considered in our work, with work inspiring these distinctions.
The number of points are quantized into bins based on their overdraw effect on design
decisions—numbers given are relevant for the 400×400 plot and 6×6 mark sizes shown in
this chapter [Urribarri and Castro, 2017].

There has been precedence of capturing relevant data characteristics in scatterplots,

both explicitly and implicitly. Implicit representations (that is, designs that do not en-

code summary or representative statistics) develop responsive designs to varying data

characteristics, such as encodings that scale to support increased numbers of points (see

Sedlmair et al. [2012b] for relevant factors in cluster separation). Explicit representations

use quantitative metrics to capture different features of data characteristics. For example,

the re-introduction of scagnostics by Wilkinson et al. [2005] to the information visualization

community allows for metric calculation of very particular distribution characteristics.

Capturing these relevant characteristics can help to quickly whittle down the space of

applicable techniques when considering a large combination of dimensions or a large space

of scatterplot-like designs.
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A common data characteristic that prompts design consideration is an increased number

of objects to represent. A critical threshold in understandability is reached when the

number of objects to visualize approaches the limit of available screen-space to show

individual points. Very clearly, the number of points to consider in a scatterplot will affect

the appropriateness of a design, dependent on the screen-space available for the plot (see

Urribarri and Castro [2017] for a discussion)—though the number of points may not affect

some analysis tasks [Gleicher et al., 2013]. We quantize this factor into bins, where the

bins prompt different design strategies to handle issues of data scale, such as the issue of

overdraw. The data scale for the bins are dependent on the mark size and the plot size

[Urribarri and Castro, 2017]—for example, larger plots with have higher thresholds for

“large” numbers of points. Viewers can pick out individual marks and their referents at

small numbers, while it is more difficult to pick out individual points at a medium scale. A

large number of marks starts to exhibit problems of overdraw, while a very large number of

points can only be displayed in aggregate. At larger data scales, designs tend to make use

of aggregation to handle the data scale (§4.5).

Related to the number of objects, multiple data series are often shown in the same plot to

compare distributions between and among groups [Sips et al., 2009]. A class label identifies

different data series by discriminating points by shape or color. These labels can allow tasks

to be performed on series in aggregate, which may or may not cause issues of distraction

when performing tasks on individual series [Elliott and Rensink, 2015, Gleicher et al., 2013,

Gramazio et al., 2014]. We discuss some relevant designs in the discussion (§4.7), though

we do not consider multi-variate encodings (such as glyphs) in this chapter. In addition,

although some designs map dimensions of data to encodings of the marks themselves

(such as mapping a continuous dimension to the mark size, known as a bubble chart ?), we

do not consider supporting additional data beyond the two positional dimensions in this

chapter.

While we concentrate on two-dimensional scatterplots in this chapter, the number of

dimensions of the data under consideration is also an important consideration to make. We

make a distinction between visualizing objects with two continuous dimensions [Best et al.,

2006], two derived dimensions (from a process such as principle-components analysis
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Sedlmair et al. [2013]), and visualizing a subset of dimensions from objects with more

than two continuous dimensions (such as considering a high-dimensional system Chan

et al. [2010]), as these scenarios effect design choices. Depending on the dimensionality

considered, some tasks such as understanding correlation and distribution of the data may

need additional design scaffolding, requiring viewer interaction to understand correlation

throughout the dataset. As another example, clustering takes on different meanings

depending on whether the data is projected from some high-dimensional space or being

positioned based on two attributes (e.g., absolute object similarity vs. subspace).

We can also consider dimensions that do and do not map to spatial position [Montello et al.,

2003]; this distinction can affect how viewers interpret distance as object similarity in the

plot. This is particularly important in cartography, where fidelity of individual points can

be a critical factor to maintain. Additionally, depending on the analysis task, aggregation to

irregular boundaries of semantic value (such as borders of counties) are likely with spatial

data. Non-spatial data does not necessarily place paramount importance on distances

implying similarity between objects.

Lastly, the expected distribution of the data can affect the performance of various tasks—

points can cluster, form distinct correlations, or can even stack. Scagnostics [Wilkinson

et al., 2005] provides a list of nine types of relationships between two continuous variables.

We seek a more focused list of relationship categories that designs may target. These five

categories are not necessarily exclusive to one another, but serve to separate how task

appropriateness may be affected by the distribution of the data. Data that groups into

clusters (clumpy in scagnostics) is an area of interest in the literature [Sips et al., 2009], as

identifying why clusters occur can be an analysis task. The distribution of the data can also

group into semantically-meaningful shapes such as manifolds (coherence in scagnostics),

which can be relevant for other analyst tasks [Brehmer et al., 2014a, Sedlmair et al., 2013].

The potential for overdraw increases if the distribution of the data involves points

that have very similar dimensional values, and scagnostics captures this sentiment with

clumpiness. Data that contains a linear correlation (trend in scagnostics) are critical to com-

municate effectively, and much research in both the statistics and information visualization

communities has focused on good design decisions to emphasize potential correlation,
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Figure 4.2: Sample distributions captured with the five types of data distributions consid-
ered: randomly distributed, linear correlation, clustering, manifold (matching a discernable
function), and overlapping points.

including picking the ideal aspect ratio for the plot [Fink et al., 2013, Rensink, 2017] and

adding visual embellishments such as a trendline. Lastly, data that appears randomly dis-

tributed (where a discernable trend is hard to determine) is an important case to consider,

and has the potential to confound several potential analyst tasks.

There are also a variety of visual design choices that can be made to enhance viewer’s

understanding of the data and provide scaffolding for particular analysis tasks. These data

attributes specify potential challenges in representing the data, which prompts particular

sets of design decisions.

4.5 Design Decisions

To understand the breadth of the space of scatterplot designs, we collected designs and

organized a taxonomy of design decisions for scatterplots (see Table 4.3). We posit that

any scatterplot-like visualization will use some combination of these design variables in

its construction. We identify these design variables through a separate literature survey

(disconnected from §4.3). By enumerating these design decisions, we can use the previously-

listed factors of analysis task and data characteristics to help determine the applicability of

design decisions.
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We collect design decisions from their use in visualization research papers. These

decisions range in complexity from simple design decisions of the points (their color, size,

and texture) to more advanced grouping techniques (convex hull shapes, KDE blending).

By identifying these design decisions, we can start to identify strengths of different design

strategies while also providing a framework in which to organize future techniques ac-

cording to their task support. Combined with the list of scatterplot analysis tasks, the full

framework (§4.3–4.5) can be used to link design variables with their task support, condi-

tioned on the given characteristics of the data (see application in §4.6). We provide the full

details about these sources, their design decisions, and which tasks and data characteristics

are supported by each strategy in the published manuscript [Sarikaya and Gleicher, 2018].

Relevant manuscripts were gathered through a keyword search methodology. We

searched the titles and abstracts of articles published in the Information Visualization

journal proceedings, EuroVis proceedings, Pacific Vis proceedings, and all VIS proceedings

(SciVis/Vis, InfoVis, VAST) from 2009 to 2017 (3040 papers) for any instances of the string

“scatter.” Our query returned 117 results, of which 62 were relevant to scatterplots (a

common matching element was “scattering,” a component of rendering). We then perused

these articles, pulling out information such as the anticipated support of scatterplot-specific

tasks, the design strategy utilized, and the types of encodings evaluated or explicitly

supported in the presented technique or experiment. This information is available in the

material associated with Sarikaya and Gleicher [2018].

A benefit of building this space is that it articulates the range of scatterplots that

different decisions make. This space thereby suggests potential programmer and designer

abstractions that should support this range. To assist in realizing scaterplot designs in

practice, we have developed a D3-based [Bostock et al., 2011] library for scatterplot-like

designs, called d3-twodim and discussed in Chapter 7. The library allows programmers to

experiment with designs utilizing both SVG and WebGL, adding automatic interaction

support for linked components such as dropdown menus and tooltips.
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4.5.1 Clustering of Design Choices

After collecting design choices (right-most column of Table 4.3), we group these choices

together into clusters. Grouping these choices together helps to clarify the purpose and

application for appropriate design. In the clustering, these decisions modify the design of

the marks themselves (point encoding), group points by a visual technique (point grouping),

modify the marks’ position (point position), or add annotations, call-outs, or other amenities

to the scatterplot (graph amenities). These clusters are discussed below, with some discussion

of strategies that utilize these design decisions to support a particular analysis goal.

Point Encodings cover the design variables that can be applied to marks to represent

objects in the graph, and can serve to differentiate encoded objects from one another. These

types of common encodings can be considered as the decisions to be made on “marks,”

as many visualization grammars describe them (such as graphics grammar of Wilkinson

[2005]). Examples of these encodings are color, size, shape, and orientation. Careful use

of these encodings can take advantage of pre-attentive processing of the human visual

system [Cleveland, 1985, Ware, 2012], directing the viewer’s attention to particular subsets

or patterns. Combinations of encodings can help viewers select subsets of points relevant

to their exploration. Deliberate use of these encodings to group points together can be

considered as an implicit grouping, which we discuss next.

Point Grouping decisions serve either to simplify the visual product by aggregating similar

items together or to differentiate items from one another. Their role tends to further

constrain and focus the overall message of the visualization. The term “grouping” is

analogous to the usage of the term abstraction in visualization (see the use in Elmqvist

and Fekete [2010]). As we use it here, however, we consider grouping to be a superset of

aggregation design decisions, and the choice of design strategy will emphasize a particular

message. Design decisions under the point grouping designation drive task performance

by narrowing the scope of potential insights—for example, collecting points into bins

sacrifices the fidelity of item detail but exposes and highlights distributions of data.

Our framework organizes point grouping into implicit and explicit groupings. Implicit
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Cluster Design Choice Example

Point Encoding Color /
Size

Symbols

Outline

Opacity

Texture

Depth of Field

Blurriness

Point Grouping Representation Type /
implicit explicit

Positional Binning / / /
symbol size color pixel

Polygon Enclosure / /
convex

hull
statistical density

Shape Abstraction

Point Position Subsampling

Displacement

Animation

Projection

Zooming

Graph Amenities Grid Lines

Axis Ticks

Legend Series 1
Series 2

Trend Lines /
linear nonlinear

Annotations This item is an outlier!

Table 4.3: A categorization of design decisions available to the scatterplot designer, which
are clustered into four categories. Each of these categories can be used to gauge appropriate
design strategies.
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grouping uses point encodings to identify points as belonging to similar groups by catego-

rization, distance in attribute value, or other similarity metric. Implicit strategies show data

as points and rely on the viewer’s perception to group points together, generally by way of

gestalt grouping [Ware, 2012, Ziemkiewicz and Kosara, 2010]. In contrast, explicit grouping

reduces object-specific fidelity to abstract marks and communicate aggregate, high-level

judgments of the data. A canonical example in this space is binning [Carr et al., 1987],

where group statistics of marks are collected for small, regular spatial regions—while this

trades off the fidelity of individual marks for more aggregate judgments, it may be better

able to communicate the numerosity differences in different regions in the plot.

Polygon enclosure, by continuous, majority, or full convex hull means, can simplify

areas of high visual noise to indicate highly dense regions. For example, VisIRR [Choo et al.,

2015] uses a simplified ellipse to collect groups of points together while also redundantly

encoding category with color. In particular, these strategies can be composited with point

position strategies to explicitly support a small set of analysis tasks, similar to the strategy of

Splatterplots [Mayorga and Gleicher, 2013]—group marks together, then explicitly restore

and style individual marks that fall outside the grouped region. These enclosures need

not be enclosed shapes; Cleveland and McGill [1984b] use smoothings (upper/lower

residuals) to emphasize the correlation of the two axes. Shape abstraction can also be used

to emphasize the trend of a distribution, such as used by Yates et al. [2014] to emphasize

different logical implications between the two axes of a scatterplot.

Point Position — Scatterplots tend to display data items by creating a spatialization by

two continuous attributes. However, some designs modify point position to pack more

information into the visualization (e.g., reducing dimensionality) or emphasize particular

areas of the graph (zooming and displacement). These decisions are made to emphasize

support for particular tasks over absolute accuracy and faith to the original data. By

modifying point position, these strategies combat issues of overdraw stemming from either

a poor distribution of data or simply coping with the inevitable overdraw with too many

objects for the screen-space. Utilizing these strategies can help to emphasize distributional

judgments, assist in identifying and tracking objects of interest, reduce more than two
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dimensions to a familiar scatterplot design, and visually organize data for subsequent

decisions (both point encoding and grouping strategies). As an example, Chen et al. [2014]

use “smart” subsampling to convey distributions of multiple series while minimizing

overdraw of individual marks. Keim et al. [2010] use a subspace warp to effectively use

unneeded screen-space to emphasize distribution judgments.

Graph Amenities — Annotations and other scaffolding can help the viewer navigate a

scatterplot. Examples of these strategies include grid lines, axis ticks, object labeling,

encoding legends, and trendlines. These amenities help by orienting the viewer (e.g., axis

ticks) and providing additional information (e.g., legends, sensitivity lines) relevant to

analysis. Much like point position strategies, scaffolds of this type can serve to emphasize

the particular message of the visualization, specifically helping viewers to complete object-

centric tasks. Most critically, these amenities can help a viewer navigate the visualization

by highlighting relevant items through annotation, provide distributional context with tick

lines, and highlight potential correlations with trend lines.

4.5.2 Interaction Intents

Interaction commonly accompanies scatterplots to support the intentions of viewers. While

interactions are not necessarily visual design decisions, they are commonly used in conjunc-

tion with visual strategies to support the tasks of the viewer. Brehmer and Munzner [2013]

also motivate the inclusion of interaction intents as the “how” in their task typology—a

critical component to support changing the visual strategy to support viewers in their

analysis. In the same vein as Amar et al. [2005], these intents signify the desire of the

viewer to change the granularity of the visualization or change the reference frame. These

intents indicate a desire to directly contrast or evolve the current set of design decisions

with a new set, incorporating the strategies that will make the appropriate design variable

changes to support the given intent. With a change in the design, the spectrum of task

support changes—potentially in a deliberate way.

Interaction can signal that the viewer wants to change to a view that is more appropriate

for their desired analysis task. For example, a viewer may want to focus analysis on relevant
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items, in which case they may be able to interact with items in the visualization (direct

interaction), brushing (selection), or by interacting with a linked component (e.g., text-box,

table of attributes). To emphasize the relevant objects or groups, a point encoding could be

assigned to highlight the relevant marks. Two common pivots deal with changing the level

of granularity—seeing more detail or less detail; “elaborating” and “summarizing” by the

taxonomy of Schulz et al. [2013]. Seeing more detail could involve actions such as zooming

or jittering, both examples of point position design strategies. Seeing less detail could involve

abstraction through subsampling or aggregation, examples of point grouping strategies.

Thinking about interaction as an intent to change the visual design to support a com-

peting task can help rationalize the controls that a viewer has. For example, InterAxis [Kim

et al., 2016] allows viewers to use exemplar objects to dynamically weight and re-project

the dataset to identify related objects, allowing viewers to change their frame of reference.

Many lensing techniques, such as MoleView by Hurter et al. [2011], use the lens to select

relevant types of items as a way of reducing distraction from other overlapping elements.

MoleView also supports aggregation behavior (such as edge bundling) within the lens to

further reduce element complexity. This highlights an intent from the viewer to switch

from a high-level overview of the data toward a more localized, detailed neighborhood

exploration setting. These intents provide another layer of abstraction to group design

decisions for supporting analysis tasks.

4.6 Using the Framework to Drive Design

Our framework suggests that scatterplot designs should be matched to the tasks and data

characteristics that they are designed to support. The tasks and data characteristics form a

high-dimensional space—any scenario is a point in this space. For any one point in the

space, we can determine which design decisions are appropriate. Creating a map of this

entire space is challenging because it is large. Even if we divide the axes into discrete

buckets (such as §4.4), we are left with 12 (tasks) × 4 (points) × 3 (dims) × 2 (spatial) × 5

(distribution), yielding a grid of over 4300 discrete scatterplot scenarios.

For each scenario, we seek to determine which of the five design cluster strategies are
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appropriate. In some cases, this will be easy to determine. There may be examples that

prove the effectiveness of a design strategy for a scenario, or reasoning about factors can

determine inappropriateness (e.g., point encodings are inappropriate for identifying an

object among millions of points). In other cases, however, the decision may not be so clear:

it may require an empirical study to determine if a design is effective for a scenario; there is

the potential for a specific novel design that effectively employs the strategy for a scenario;

or the strategy is only effective under certain circumstances.

The massive grid of effectiveness decisions would be attractive, but also infeasible to

fully realize because of its size. Additionally, many entries would only be our current

subjective assessment subject to change based on newly discovered designs or empirical

evidence. For these reasons, we have not attempted to provide the full table. Instead, we

have given our (current, subjective) assessments for a large portion of the grid, provide

a web-based tool for exploring this high-dimensional table1, and show a representative

“slice” of the table below, showing how our framework can be used to match scatterplot

designs to analysis scenarios.

While a pre-determined table of appropriateness would be convenient, our framework

can be applied without it. The important part of the framework is that it enumerates the

factors to consider and the design choices–informing the structure of the grid. Specific

assessments of appropriateness should be the subjective opinion of the designer based on

the concerns detailed in Sections 4.3–4.5. Examples of applying this type of analysis for a

range of scenarios is provided in the next section.

4.6.1 A Slice of the Space: Tasks and Design Strategies

We illustrate our framework with a small slice of the entire grid: a specific set of data

characteristics, the entire range of tasks, and the entire set of design strategies. For the

sake of demonstration of the framework and to support discussion of the current high-

level trends and strategies in scatterplot design, we are providing 60 out of the 4300 cells

of the overall table. To demonstrate an interesting reference point where the design of

a faceless scatterplot becomes intractable for many tasks, we choose a particular set of
1http://graphics.cs.wisc.edu/Vis/scattertasks

http://graphics.cs.wisc.edu/Vis/scattertasks
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data characteristics. This slice fixes the set of data characteristics to a moderate number of

objects and number of classes, in an unstructured distribution of scattered data. We note

that we could also take an alternative slice of the map, with 10 points, no class label, in a

random distribution, and the map would provide a wildly different set of appropriateness

measures.

With this map and aforementioned slice in particular, we examine how and why certain

encoding decisions can or cannot support particular analysis tasks. As an example, identi-

fying and comparing numerosity in a faceless scatterplot can start to become challenging

when many points are overlapping, masking the viewer’s determination of density (and

thereby suggesting a design change). In Table 4.4, we denote appropriate design decisions

with a 4, potential design support with 4W, support possible with an accompanying de-

sign decision with G, and inappropriate support with 8. These determinations are made

and motivated by our assessments of the state-of-the-art, existence proofs of design and

interaction techniques in the research literature (informed by our survey detailed in §4.5),

and empirical experimentation of encoding decisions for specific viewer tasks. In the prose

below, we describe specific decisions in the slice and describe their extrapolation to the

broader table. We also contrast suggested designs with designs that may work better in

other scenarios with different data characteristics.

At a high-level, appropriateness for design decisions for various tasks begins to expose

clusters of similarly-supported tasks. The cells in the slice are referenced by the task (a

number) and the encoding type (a representing letter). We discuss some of the short-

comings of typical strategies for scatterplot design, and provide pointers to exemplar

systems that can scaffold the desired analysis tasks.

• Difficult to support aggregate-level tasks with point encodings (9A–11B) — Tasks 9, 10, and

11 deal with aggregate-level tasks that seek to uncover characteristics about the data on

a global scale, either by identifying those marks that are outliers or anomalies, gauging

correlation across the dataset, or understanding object density across the graph area.

Due to the aggregate nature of these tasks, utilizing the strategy of how marks are

encoded (A) or moving point positions (B) will not help. The similarity of encoding
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1 Identify object 4 4 G 4 4W

2 Locate object 4 G G 4 4

3 Verify object 4 4W G 4 4

4 Compare objects 4 4 G 4 4

5 Explore neighborhood 4 4 4 4 4

6 Search for motif 4 4 4 4 4W

7 Explore data 4 4 4 4 4

8 Characterize distribution 4 4 4 G 4

9 Find anomalies G 4W G 4W 4

10 Identify correlation 8 8 4 8 4

11 Characterize numerosity 8 8 4 8 8

12 Characterize distances 4W 4 4W 4W 4

Table 4.4: A 2D slice of the task support map by clusterings of visual encodings, with
data characteristics set to a “large” number of points with a few number of classes in a
non-clustered position (so the possibility of overdraw exists). 4 denotes general support,
4W denotes support in particular situations (discussed in prose), G requires concurrent
support from other encodings, while 8 identifies no improvement to task support.

strategy effectiveness among these three tasks suggest that it may be fruitful consider

these three tasks under an “aggregate-level” umbrella, where encoding decisions made

to support these tasks stand in opposition to “object-level” tasks. In scenarios with fewer

points, it may be possible to support these tasks with implicit grouping. However, such

approaches would not apply in situations with significant overdraw.

• Unclear how to design interaction and amenities for aggregate-level tasks (10D, 11D–E) —

There is a clear gap in designing interactions (D) for aggregate-level tasks such as iden-

tifying correlation (#10) or performing comparisons in object numerosity (#11). Direct

manipulation approaches have been proposed [Saket et al., 2017], though exactly how to
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prompt viewers to interact with the visualization to promote correlation or numerical

understanding is unclear. While graph amenities (E) can help to see correlation (such as

overlaying a trend line over the data), identifying and comparing numerosity in multiple

areas on the plot becomes difficult with many annotations and call-outs. To potentially

address these issues, landscape views [Tory et al., 2007] use point grouping strategies to

emphasize numerosity judgments.

• Losing mark fidelity with point grouping (1C–4C, 9C, 12C) — Point grouping (C) provides

a way to abstract and convey a particular narrative about the data. By aggregating marks

into large visual shapes, designs using point grouping strategies lose the support of

object-centric tasks such as finding outliers and comparing objects. As an example,

performing continuous aggregation via KDE [Scott, 2008] would support judgments of

comparing numerosity across the plot (C11), but would not support object-centric tasks

such as locate object (C2).

However, by compositing aggregation operations with point encodings, point positions,

and interaction intents, object-centric tasks can be supported. As an example, an in-

teraction where a viewer hovers over a filled-in region could subsequently highlight

exemplar points, which could then be explicitly selected for object comparison (#4). Many

scatterplot-like techniques use a composition to restore support for object-centric tasks,

such as Splatterplots [Mayorga and Gleicher, 2013] and the sampling strategy by Chen

et al. [2014]. Exactly what design patterns that may prompt a viewer or an analyst to

engage with an aggregated display to perform an object-centric task remains an open

question, though many systems use interactions such as brushing to populate an external

component, such as a “selected” list.

For specific concerns in Table 4.4, there exist several classes of design strategies that can

help bolster the efficacy of analytical tasks.

• Supporting distance judgments (12A–D) — The distance between marks (task #12) takes

on a different meaning based on the dimensionality being visualized. The marks may be

placed based on two continuous attributes of the objects, where the distance between

marks communicates the distance in attribute space, or the marks could be placed based
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on two dimensionally-reduced, derived dimensions, where data is placed based on the

total similarity of its continuous attributes. To support the analysis of dimensionally-

reduced data in a scatterplot, many visual analytics systems provide scaffolding by

amenities or external linked components. Dis-Function [Brown et al., 2012], for example,

supports direct interaction of individual marks to update the similarity projection of the

entire high-dimensional dataset.

• Dealing with overdraw (1E, 6E, 9D) — With significant data, the possibility of overdraw or

masking of object-representing marks exists. This hurts detection of individual points,

and designs have been constructed to preserve judgments of numerosity [Cottam et al.,

2013, Keim et al., 2010, Mayorga and Gleicher, 2013, Tory et al., 2007] or use alternative

methods such as visual aggregation (§2.3.2, Gleicher et al. [2013]) to preserve statistical

judgments. Many of these designs do not use graph amenities (1E). However, paired

with a lensing technique (see generally Tominski et al. [2016]), this analysis scenario

could be supported. Similarly, exposing a given distributional motif (6E) is difficult given

that this motif may not be known to the visualization designer a priori—but specialized

amenity techniques such as drawing moment lines [Chan et al., 2010] can convey an

aggregate sense of a motif. With increased numbers of points, however, these amenities

can themselves exacerbate the problem of overdraw.

Again in an overdraw scenario, it may be difficult to distinguish outliers or anomalies

with an interaction intent (9D)—how might an analyst specify “show me the outliers”

directly within the plot? One strategy is to compose strategies with other operations:

Splatterplots [Mayorga and Gleicher, 2013] explicitly selects those marks that fall outside

thresholded density regions, and ensures those marks are visible while zooming the

plot.

• Consciously supporting object-centric tasks (1C–4C, 9C, 2B) — Marks that represent objects

are needed to obtain information about individual objects. Object-specific tasks (#1–3)

and object-centric tasks (#4, 9), such as compare objects, depend on the specific marks

for a viewer to perform their desired analysis, but many point grouping techniques (C)

aggregate marks together. To be able to support these tasks, several different types of
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strategies have been developed; a common strategy to support these object-centric tasks

is to provide a external filtering component that selects objects based on semantic content

or viewer-defined thresholds, then highlights the selected objects as marks overlaying

the aggregate encodings. This strategy can also help finding the positions of marks if the

points are moved (2B). Many interactive lensing techniques have also been developed,

where a viewer can mouse-over to see more detail of the objects contained within the

lens scope [Heimerl et al., 2016, Tominski et al., 2016].

The supplemental material [Sarikaya and Gleicher, 2018] provides a listing of 62 strate-

gies that handle the analysis scenarios raised within this linking table, organized by the

characteristics of data supported, the analysis tasks supported, and the types of design

decisions used. We illustrate common themes in scatterplot design in the discussion

section.

4.7 Discussion

Throughout this chapter, we have developed a framework to discuss the design of scatter-

plots. Using the task list (§4.3), we are able to focus our attention on how those tasks are

supported by scatterplot designs and affected by characteristics of the data. Trends of task

support by data characteristics for traditional scatterplots have been identified, and lead

to suggestions of design strategies to support the desired tasks. These suggestions lead

to trade-offs in the design of scatterplots. There are instances in scatterplot design where

the circumstances of the data prevent a single design strategy from supporting all tasks.

For example, a density-based encoding with thousands of points can support the task of

numerosity comparison easily, but needs conscious design support for identifying outliers.

The following themes highlight potential challenges in designing effective scatterplots,

and suggest strategies for supporting common analysis scenarios.

Visual Complexity / Too Many Points — Dealing with visual clutter has been the focus of

many visualization techniques and taxonomies. In particular, Ellis and Dix [2007] explore

a wide range of strategies and the trade-offs between them. Many of the techniques that
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we found through our literature search employed some method of visual simplification,

explicitly supporting some analysis tasks while weakening support for others. These

strategies generally fall under the categories of point grouping and point position strategies.

Point grouping strategies generally abstract groups of points into fewer distinct visual

structures, emphasizing numerosity and distributional judgments at the expense of tasks

dealing with individual objects. Through the point grouping process, however, the ability

to identify both outliers and anomalies usually becomes hindered (aggregate-level tasks).

On the other hand, point position strategies such as projection and animation can pack

additional structural information into a scatterplot without sacrificing the viewer’s ability to

execute element-specific tasks. While these methods necessarily modify the “true state” of

each mark’s spatialization, these methods can emphasize hidden or overlapping structure

based on the characteristics of the data. As an example, generalized scatter plots [Keim

et al., 2010] warp the subspace of the plot area to maximize the use of space (point position)

and utilize a KDE-like point grouping strategy to emphasize the numerosity of points.

A common problem in scatterplots is the problem of overdraw when there are simply

too many marks for the available chart area. Similar to the visual complexity problem, both

grouping and position strategies can help alleviate the issues of incomprehensibility at

scale. A generalized set of point grouping strategies provide different levels of support

for analysis tasks. In principle, the plan of what features of the data to communicate

determines the scope of design strategies that emphasize those characteristics.

Demonstrating distributions is well-supported by density-driven encodings, such as

shape binning [Carr et al., 1987] or continuous density estimation [Scott, 2008]. By ab-

stracting away individual point marks and using visual weight to communicate relative

numerosity, we can support the aggregate-level tasks such as characterize distribution

or identify correlation at the expense of object-centric tasks such as object comparison or

verify object. While examples of these density-driven encodings are numerous, there are

particular design details within these strategies that have trade-offs of support between

the scatterplot analysis tasks.

Effectively communicating numerosity can often be concurrently supported by strategies

that emphasize distribution, though caveats exist. For strategies that support kernel den-
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Figure 4.3: Three different designs (left-to-right: traditional scatterplot, contour map
[Collins et al., 2009], and Splatterplot [Mayorga and Gleicher, 2013]) display different
information about the same 100 item, four class (mapped to color) dataset. While the
traditional scatterplot exhibits some overdraw, the two alternative approaches use point
grouping techniques to emphasize numerosity and distribution comparison tasks. The
contour map conveys density gradients, while the Splatterplot uses thresholded regions to
convey dense areas.

sity estimation [Keim et al., 2010, Mayorga and Gleicher, 2013], a thresholded region may

communicate the range of a high-number of points, but without a complex contour map

[Collins et al., 2009], it can be difficult to compare approximate number of points. Aggrega-

tion commonly has computational complexity on the order of the number of points, though

some (such as Splatterplots) may use the GPU to compute repetitive density estimation.

Computationally simpler strategies can utilize blur [Staib et al., 2016] or alpha encodings

[Cottam et al., 2013] to communicate relative numerosity of marks, given an appropriate

normalization dependent on the current view [Matejka et al., 2015].

Figure 4.3 shows a side-by-side comparison of three scatterplot designs, all displaying

the same dataset with a “medium” number of points—individual points can be discerned,

and class distribution is still apparent in a faceless scatterplot. However, not all tasks

are equally supported by each design—the faceless scatterplot supports object-centric

tasks (#1–3) with some overdraw, while colored contour maps Collins et al. [2009] (center)

eschew object-centric tasks to focus attention on distributions and densities. Comparatively,

the Splatterplot Mayorga and Gleicher [2013] (right) shows outlier points, but aggregates

points together using a thresholded KDE, providing a sense of locality of dense regions

between the classes. While both the contour map and Splatterplot use point grouping

strategies, the contour map provides more information about density information than the
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Splatterplot—which could sway a designer’s choice of design strategy depending on the

analysis goals of the viewer.

Differentiating Groups of Marks / Too Many Classes — Many strategies have been pro-

posed to differentiate groups of marks. Much early work has concentrated on the perceptual

grouping of points, with Cleveland [1985] mentioning ways of emphasizing groups of

points by using distinct encodings. Mackinlay [1986] provides a perceptual ordering of

encoding decisions, Ware [2012] describes the perceptual basis behind the ordering of the

visual variables, and Li et al. explores perceptual sensitivity to these factors in scatterplot

applications [2008, 2010a, 2010b]. Using point encodings to separate marks into groups is a

very common trait, usually to split data into separate series or categories. While supporting

object-centric tasks such as locate object and identify anomalies, these type of solutions also

promote the exploration of data by creating interesting structures in the data to peruse.

An open problem in scatterplot design is how to communicate large numbers of series

or categorization for marks. In many analysis scenarios, the number of classes to consider

may number from the tens to hundreds of classifications, where comparison in numerosity

or distribution between any number of series may be important to the analysis. A core

limiting factor is the number of encodings to use to distinguish marks from each other: color

has a fidelity of around 12 distinct hues [Ware, 2012], which rapidly declines with smaller

visual area [Stone et al., 2014]. Different shapes can also provide additional separation, but

again suffer at small sizes. Some strategies allow the viewer to focus on a small subset of

series and place all other data into a “background” group [Kincaid and Dejgaard, 2009,

Staib et al., 2016], or take advantage of hierarchy within the data to group similar objects

together [Elmqvist and Fekete, 2010]. The literature lacks techniques for handling large

numbers of classes, even though the problem is common, often appearing in humanities

analysis contexts [Alexander and Gleicher, 2016, Heimerl et al., 2016].

Communicating High-Level Statistics — In many scenarios, it may be advantageous to

communicate the distribution of the data or highlight potential correlation. Studies such

as those by Gleicher et al. [2013] have shown how encoding decisions can affect viewer

judgments of group statistics without explicit representation by graph amenities or point
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grouping (such as the smoothings as presented by Cleveland and McGill [1984b]). While it

may be important to explicitly support statistics of the data through graph amenities (e.g.

annotations or showing a confidence interval), supporting statistical judgments implicitly

can help in analyses where the specific statistics important for analyses are not known a

priori. Some designs use shape aggregation to emphasize distributions, such as pictograms

by Lehmann et al. [2015] or glyph SPLOMs by Yates et al. [2014], sacrificing object-level

judgments for rapid distribution judgments.

Too Many Dimensions — Pragmatically, the number of dimensions should not affect the

appearance of a scatterplot, as only two dimensions are shown. However, tasks performed

with dimensionally-reduced or projected data tend to differ from the tasks done on two-

dimensional data. To this end, many dimensionally-reduced scenarios contain extra detail

about objects and can permit direct manipulation to feed back into the dimension-reduction

algorithm. Strategies such as Dis-Function [Brown et al., 2012] or InterAxis [Kim et al., 2016]

use direct viewer interaction to drive the semantic clustering of similar objects together. To

support visualizing multiple dimensions without precomputation, multi-axis embeddings

such as star coordinates [Kandogan, 2001] or their orthographic variant [Lehmann and

Theisel, 2013] can expose clusters in a two-dimensional embedding. Many of these scenar-

ios concentrate on object-centric and distributional scenarios that highlight the semantic

similarity between objects.

4.8 Conclusion

Scatterplots are a visualization design widely applicable to a large range of analysis sce-

narios. With the many different design strategies available to select from, understanding

the trade-offs between the many design choices is challenging. In this chapter, we have

introduced a framework to help determine the design appropriateness for task support,

and show how this framework can help gauge task performance that is dependent on char-

acteristics of the data. With the characterization of this design space, we have described

the challenges, existing solutions for these challenges, and potential areas for innovation in

scatterplot design.
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With both the table slice presented in Section 4.6 and the gradient of task support by

changing pairs of data characteristics, we build an understanding of how appropriate

scatterplot designs are dependent on the factors of task and data. Although we capture

how these factors address design, we acknowledge that the process for determining the

tasks that a viewer will perform with a scatterplot is difficult to determine automatically,

and generally falls under the purview of a designer as part of an iterative design process

[Sedlmair et al., 2012a].

The scatterplot tasks described herein, however, greatly reduces the space of scenarios

to support by clustering support together. Designing to support object-centric, aggregate-

level, and outlier tasks seem to be at odds with one another. Designs should therefore

deliberately support one set of tasks over another, using interaction to support viewers in

obtaining information that is difficult to obtain with a design strategy. This framework

provides a model and an organization to help visualization designers choose and rationalize

their design decisions for scatterplots, based on the factors of data and task.

Interaction to support the viewer’s exploration and understanding of the data is explored

in the next two chapters. Both chapters describe a biologically-motivated use case of

exploring large amounts of data, utilizing both summarization techniques and interaction to

recover both low-level, object-specific information and high-level trends of their respective

datasets.



5 case study: visualizing validation for protein surface

classifiers

In the first of the case studies, we explore the visualization space of validating machine

learning methods. In this particular scenario, the visualization treats the classifier as a

black box, and visualizes the performance of the classifier over a test set of proteins. In this

particular case, since the classifier makes decisions of a three-dimensional protein structure

binding a particular ligand, a visualization that shows performance necessarily needs to be

three-dimensional. However, practitioners commonly have to understand and evaluate

classifier performance over a large set of proteins, in the tens or hundreds of proteins.

Summary statistics (e.g., “classifier was 90% accurate”) leaves out important insights, such

as consistent spatial or feature motifs where the classifier fails to recognize a valid binding

site. Visualizing the performance of the classifier on the protein can highlight issues in the

classifier’s decision making process and can suggest avenues for training iteration of the

classifier. Simply showing 200 proteins is infeasible in 3D—by the nature of occlusion (data

on the protein opposite of the camera view), information would be left out of an overview.

In this chapter, we explore the ramifications and trade-offs of providing a two-dimensional

overview of inherently three-dimensional data, with design and development process simi-

lar to Sedlmair et al. [2012a]. With the reduction in dimensionality from a three-dimensional

to a two-dimensional representation, some information must be given up—either spatial

fidelity or aggregate trends. We highlight the trade-offs of different summary represen-

tations (§5.3.2), and show how these different summary representations can be used to

explore the data in the classifier case studies (§5.5).

To be able to summarize structural data into a two-dimensional summary, the data is

projected into a lower subspace through many techniques, such as linearizing the decisions

into a heatmap, using quilted blocks to maintain proportions of decisions per molecule,

or capturing three-dimensional cohesion through a squarified treemap. As each decision

carries only one of four values (true/false positive, true/false negative), and a protein is

made up of many of these decisions, the chief information that these summaries need

to convey is trends and outliers, followed by frequency and distribution. The design

89
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of the overview allows a viewer to choose between summary representations, and we

assert in this chapter that these different designs elicit different types of information

about classifier performance. More detail about these decisions are in Section 5.3. A

publication representing the work in this chapter was presented at the 2014 EuroVis

conference [Sarikaya et al., 2014].

5.1 Overview

The core challenge of structural biology is to understand how the form of a molecule

connects to its function. A key approach is the development of computational models that

predict locations on the surfaces of molecules where, for example, the molecule will bind

with another. Such models are validated by comparing their results with experimentally-

derived ground truth. Inspecting these results on a single molecule is challenging as the

similarities and differences are spread around a 3D surface that has occlusions and irregular

shape. Detailed examination of the results of an experiment involving dozens of molecules

is prohibitive. Bioinformaticians typically resort to examining only aggregate statistics,

losing the opportunity to examine the details of the experiments to find interesting cases

within the set or to provide feedback to the modeling process.

This chapter introduces an approach to explore the results of classification validation

experiments. We focus on surface classification, where the model predicts whether each

location on a protein’s surface is likely to bind to another molecule. The challenge is to

provide an overview of the results of an entire validation experiment with many molecules,

allowing the viewer to identify locations of interest, while retaining facilities for examining

the specific details of interesting sites. Our approach addresses this challenge with a

small-multiples view designed to allow a viewer to see aggregate properties on individual

molecules as well as to identify details of interest that lead to these properties. This overview

is connected to a detail view that provides specialized navigation controls over the 3D

structures, allowing regions of interest to be examined rapidly.

The approach is based on two key ideas. The first is that an overview can be designed

specifically for understanding aggregate properties over multiple scales. Using 3D views of
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Figure 5.1: Visualization of a validation experiment for a DNA-binding surface classifier.
The corpus overview (left) is configured to display each molecule as a quilted glyph and
orders these glyphs by classifier performance to show how performance varies over the
molecules. Selected molecules (left, yellow box) are visualized as heatmaps in a subset
view (middle) and ordered by molecule size to help localize the positions of errors relative
to correct answers. The detail view (right) shows a selected molecule to confirm that most
errors (blue, red) are close to the correctly found binding site (green).

molecules for the overview is impractical, as they require more space, more time to navigate

each surface, and do not afford quick summarization. Instead, we build on recent work

demonstrating that people can perceive aggregate properties over certain kinds of displays

to design 2D views that allow the viewer to quickly assess classifier results across an entire

set of molecules. This overview can be used to identify specific molecules to explore more

closely in 3D, as well as to suggest features of interest on these surfaces. The second key

idea is to use information about the viewer’s interest to drive navigation along the surface.

Our approach abstracts information over the surface to identify discrete regions of interest,

which are used to create navigation controls aligned with the information in the overview.

Bioinformatics classifier experiments are common: for example, a recent survey [Irsoy

et al., 2012] notes several hundred papers per year, in just three bioinformatics journals,

involve presenting classifier validation results. The survey notes that most of these papers

report only simple statistics, at best providing statistical confidence tests. Better tools for

exploring the results of these experiments could improve predictive model development

and application. For example, identifying specific molecules or classes of molecules where

a classifier performs well may help in understanding the generality of the predictive
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model. Identifying false positives may help in selecting challenging decoys. Patterns of

false negatives may suggest alternative mechanisms not represented or captured in the

model training process. Individual errors can be assessed to see if they are near misses or

anomalies.

The results of classifier validation experiments have a simple form. For each object in

a corpus, every location has a prediction (positive or negative) marked by its correctness

(true or false). This work specifically considers protein surface classifiers, where the objects

are protein surfaces and the locations are 3D positions along those surfaces. However, the

problem of comprehending validation experiments exists in other bioinformatics domains,

for example in classifying properties of sequences. The ideas of our approach should apply

more generally. Although the detail views are specific to 3D shapes, similar ones could be

developed to navigate long sequences.

In providing a system that addresses the needs of scientists assessing the results of

surface classifier experiments, our work makes several contributions. We demonstrate that

recent results in how viewers perceive visual information in aggregate can inform overview

designs and provide examples showing how glyph designs can be created to support a

variety of aggregate assessment tasks. We also show how region grouping can be applied

to provide interface support for exploration tasks. While our approach is demonstrated in

a specific application for examining molecules, we believe that the contributions generalize

to similar domains.

To present our approach, we begin by considering related work in the visualization of

molecules and machine learning results. We then discuss our overview display, exploring

a space of designs that leverage perceptual principles to support various assessment tasks.

Next, we describe our detail view, explaining our specialized molecular view and data-

driven interaction designs that aggregate regions of potential interest to support the viewer’s

tasks. Finally, we conclude by describing a prototype implementation and example use

cases.
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5.2 Background

The design of overview displays for large data collections is an important topic in visual-

ization, see Hornbæk and Hertzum [2011] for a survey of the issues and approaches. To be

effective, overviews must be designed to support efficient visual processing by considering

the abilities of the perceptual system, see Ware [2012] for more detail.

Perceptual science has built an understanding of the types of visual features that can be

processed efficiently. The visualization community has built upon this knowledge to guide

display design (see Healey and Enns [2012] for a survey). These perceptually efficient,

or “pre-attentive,” features allow for rapid search in complex displays by, for example,

leveraging “pop-out” effects, where properly encoded features can be located quickly in

a large complex displays. Our design follows these guidelines, using salient colors that

allow the viewer to rapidly find important locations.

Recent research in perceptual science demonstrates that people can efficiently estimate

aggregate properties of large collections of objects. For example, people can estimate nu-

merosity [Halberda et al., 2006] and average size [Ariely, 2001]. Recent work in visualization

(cf. Correll et al. [2012], Albers et al. [2014]) shows that this applies to visualization displays,

enabling visual aggregation where the viewer estimates statistical properties. Certain types

of visual features, such as color, can be averaged more effectively than others [Correll et al.,

2012], and performance can be further improved through other design choices. Albers

et al. [2014] consider a range of estimation tasks and show how different visual designs

can lead to displays that excel at different tasks. Our approach follows previous examples

of visualization systems specifically designed with these principles in mind (e.g., [Albers

et al., 2011, Correll et al., 2012]).

Flexible views can be effective to highlight patterns of interest when those patterns

are not known a priori. A common approach for creating flexible views is to use a small-

multiples display [Tufte, 1990]. The ability to reorder juxtaposed small-multiples can help

adapt them to support different tasks by spatially clustering objects with related properties.

While the basic concept of a reorderable display was introduced by Bertin [1983], work

by Slingsby et al. [2009] has highlighted the power of reordering to support answering
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the range of questions a viewer may seek. Our overview applies this flexible reordering

approach.

5.2.1 Molecular Visualization

Many existing visualization tools have been developed to support molecular visualization

tasks (see O’Donoghue et al. [2010] for a survey). Modern molecular graphics systems

provide many different views of large molecules, including views that encode data fields

on molecular surfaces. Such programs can be used to show results of classifier experiments

on specific molecules; however, they are not tailored to the specific needs of understanding

classifier performance across a corpus of molecules. Our approach provides a similar

view, but augments it with interaction techniques specific to the task, coupling it with an

overview display.

A handful of existing systems provide visualization over collections of molecules. Some

systems, such as the web interface to the Protein Data Bank (PDB) [Berman et al., 2000], pro-

vide visual galleries using standard 3D displays as icons for molecules. Karve and Gleicher

[2007] demonstrate a system designed to provide an overview of the metadata of a collec-

tion of proteins, but the design does not consider specific tasks or support classification

experiments, and their glyphs are not optimized for pre-attentive summarization. Khaz-

anov and Carlson [2013] present statistical properties over a large collection of molecules,

but use only standard summary statistic visualizations such as bar and line charts, and

provide no connections to specific molecules. To the best of our knowledge, our approach

is the first to consider providing an overview of a collection of molecules that supports

both summarization and detail finding.

5.2.2 Machine Learning Visualization

Visualization for machine learning applications strives to communicate either the internals

of the predictive process or trends in the outputs. Tools for understanding prediction

processes are tailored to particular machine learning algorithms, such as linear SVMs

[Caragea et al., 2001], decision trees [van den Elzen and van Wijk, 2011], and hidden
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Markov Models [Dai and Cheng, 2008]. Our work falls into the latter, helping viewers to

understand results.

Summarizing the results of a classifier can be problematic as there are different types

of errors in a model [Witten et al., 2011]. Several methods of quantifying performance

exist [Powers, 2011]. Basic metrics such as accuracy, precision, and recall do not capture

the error profile and are problematic for biased distributions. The Matthews correlation

coefficient (MCC) [Matthews, 1975] accounts for class distribution to compare a classifier’s

performance to chance, but still provides only a single summary statistic for performance.

Visual methods provide a more detailed presentation of machine learning results.

Talbot et al. [2009] use an interactive visualization to let the user explore the contributions

of individual models in an ensemble scenario. Fails and Olsen [2003] show interactive

adjustment of parameters to tune a predictive model. The user can explore shortcomings

in the model and make adjustments to improve it. Our work also provides this type of

feedback.

5.3 Experiment Overviews

Experimental results for binary classifiers consist of a large number of classification deci-

sions, each of which has one of four outcomes (true positive (TP), false positive (FP), true

negative (TN) and false negative (FN)), that form the binary confusion matrix [Stehman,

1997]. While the data is simple, it grows quickly: experiments generally are run over dozens

of molecules, and there are tens to hundreds of decisions for each molecule.

Our goal is to provide an overview of the collection of decisions and corresponding

experimental results. In addition to showing overall performance, the overview should

help identify the specific molecules, and even parts of molecules, for which the classifier

performs well or not. For instance, it should allow the viewer to assess whether performance

is uniform across all molecules or varying; to identify groups of molecules that perform

similarly; to identify outliers or anomalies that may represent problems; or to see high-level

patterns of performance between molecules. These assessments can occur at different

scales, for example an anomaly might be a particular molecule whose performance skews
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results, or a family of molecules skewed by concentrated groups of false negatives.

Our approach uses two main ideas to support this range of needs. First, it emphasizes

flexibility, allowing the viewer to reconfigure the display to suit their task. It allows for

re-ordering and for selecting among a set of glyph types. Second, the glyph designs are

designed to support rapid visual aggregation. This allows the viewer to see both the

aggregate properties of the data and low-level details that form these aggregates.

5.3.1 Reorderable Small-Multiples Design

The overview uses a small-multiples display, where each molecule is shown as a small

glyph in a grid. Different designs for the glyphs are provided (described below), but

they share features that allow for pre-attentive summarization. Each glyph relies heavily

on color encodings. Color supports pop-out [Healey and Enns, 2012] and pre-attentive

summarization [Albers et al., 2014], making it useful for conveying aggregate properties

as well as highlighting outliers. Each glyph has a gray border whose lightness gives an

indication of the overall performance (MCC score, with darker borders representing a

higher value).

The small multiples can be reordered to explore different types of questions. For

instance, ordering by performance (e.g., accuracy or MCC) places molecules with similar

performance together and allows for rapidly identifying strong and weak performers.

Ordering by molecule name facilitates finding a specific item of interest. Ordering by

metadata (properties of each molecule) emphasizes correlations between that property and

performance. Coupling the different orderings with different glyph designs provides a

wide range of configurations to support various questions. For example, sorting by the size

of the molecule and choosing an appropriate glyph type can not only show whether large

molecules perform better or worse than others, but can also indicate whether the errors

form large groups on the molecules.

The overview provides some basic interaction features that directly support common

tasks. Selecting a glyph can open the molecule in the detail view for closer examination.

Sets of glyphs can be selected and opened in a new overview window, allowing for more
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localized analysis of subsets of the dataset. The user can annotate the glyphs in order to

track which molecules have already been examined or should be explored in greater detail.

5.3.2 Glyph Design

3D views of the molecule would be difficult to see in the small space of the glyphs. Ad-

ditionally, because at least half of the molecule is occluded, some form of navigation or

surface unfolding would be required to make an assessment of the whole surface. The

highly irregular shapes of molecules, with their significant pockets and protrusions, make

meaningful flattening difficult. Our current set of glyphs does not provide a 3D or flattened

view and therefore generally does not convey the spatial layout of data on the molecule.

Instead, we leverage nonspatial 2D views that sacrifice information about the spatial

arrangement of elements in order to remedy occlusion problems inherent in 3D views.

Further, these views can be designed to support rapid visual comparisons both within an

element and between multiple elements by leveraging visual variables in the encoding

design. In our system, we leverage color as the dominant channel to encode classification

decisions to support rapid visual assessment, mapping TP to green, FP to blue, FN to red,

and TN to gray. This color mapping leverages salience to support classifier analysis tasks by

considering a priori characteristics of the data and task — TN are common and are mapped

to gray to decrease their saliency, while FN represent highly undesirable classifications

that generally require attention and are mapped to red.

Our system allows the user to switch between different glyph designs in order to

configure the display to their task. Each design supports certain kinds of visual queries.

Histograms (Figure 5.2a) are a standard encoding and are useful for showing the perfor-

mance distribution within a specific molecule. However, they become harder to interpret

when a single class dominates, and do not afford efficient visual aggregation.

Confusion Matrix Treemaps (Figure 5.2b) sacrifice some of the inter-class fidelity of his-

tograms, but better show weakly represented classes and make better use of space to afford

pre-attentive area judgements between elements. A vertical divider delineates the propor-

tion of correct classifications (left side), and incorrect classifications (right), providing a

quick indication of the predictive accuracy.
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(a) Histograms
support

proportional
comparison.

(b) Confusion
treemaps

show weakly
represented classes.

(c) Heatmaps
show proportions

and structure.

(d) Quilted blocks
show summary

statistics
pre-attentively.

(e) Cluster plots
show spatial cluster

sizes.

Figure 5.2: Different glyph encodings for overviews afford different observations about the
data.

Heatmaps (Figure 5.2c) encode the data from each decision using small patches visualized

in sequence order. Because the size of the patches in a glyph is inversely proportional to

the number of decisions in the corresponding molecule, this display gives a sense of the

molecule’s size. Averaging and proportion estimation is supported by the color encoded

design. As residue sequence order is related to spatial proximity, this view can also provide

some insight into how the various points are grouped along the surface.

Quilted Blocks (Figure 5.2d) are similar to heatmaps, except that the placement of the

pixels from each color patch is randomized within the glyph. This representation sacrifices

any sense of the structure of the sample to make pre-attentive summary statistics easier to

access [Correll et al., 2012] and to help highlight performance patterns at the molecular

level.

Cluster Plots (Figure 5.2e) use a squarified treemap representation [Bruls et al., 2000] to

indicate groups of similar classes that are spatially clustered on the surface. While the

glyph does not convey the positions of the groups, it does convey their number and size.
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The overview can visualize either raw binary decisions (positive or negative) or sup-

plement these decisions with the respective confidence of each decision. The viewer can

optionally show confidence values in the heatmap and quilted displays. When visualizing

confidence data, each of the four colors is replaced by a three-step sequential color ramp in

the same hue drawn from Colorbrewer [Harrower and Brewer, 2003].

5.4 Detail View

While 2D overviews trade-off spatial information to communicate performance across

multiple proteins, showing classifier decisions in the context of the surface is important

for understanding the connection between molecular shape, chemical properties, and the

decisions. Unfortunately, presenting the classification results on a molecular surface has

several problems. Because the 3D view necessarily occludes much of the surface, especially

when there are pockets and crevices, finding locations of interest can be challenging. Also,

when examining multiple disjoint features, the viewer must remember which ones have

already been examined. Our approach attempts to remedy such issues for classification

results presented on the molecular surface through interaction techniques designed to

assist search and memory.

The detail view is a standard molecular surface visualization, with triangle mesh

surfaces created using MSMS [Sanner et al., 1996]. Following Tarini et al. [2006], we

apply stylized shading to convey shape, which includes ambient occlusion shading and

contours. We perform visibility calculations for ambient occlusion on the bounding sphere

about the surface. Predictions are encoded on the molecular surface using the same color

scheme as the overview.

5.4.1 Regions of Clustered Data

Protein classification necessarily discretizes the molecular surface, though this sampling

hides the fact that the molecular surface is a continuous field. The viewer’s perceptual

system can group similar points to identify patches [Palmer, 1992]; however, when the
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Figure 5.3: Clustering similar values creates discrete regions that can be identified visually
and by interaction.

sampled predictions alone do not form coherent visual structures due to issues such as

noise or undersampling, perceptual grouping may be insufficient.

We simplify the extraction of high-level continuous patterns from classifier data by

explicitly grouping predictions along the surface. This approach represents a trade-off of

fidelity for simplicity: we sacrifice information about individual points in order to better

characterize the high-level continuous properties of the surface. This surface grouping is

illustrated in Figure 5.3. Classification regions are built by performing connected compo-

nents on labeled vertices. The resulting boundaries are jagged, but precise. The regions can

be simplified by smoothing region boundaries by the morphological operations of dilation

and erosion [Serra, 1982].

Grouping points into clusters provides a number of benefits. Visually, it allows the

display to emphasize the differences between groups by clearly marking the boundaries.

Simplifying boundaries reduces visual noise, making high-level patterns more apparent.

The resulting reduced set of elements also simplifies user interface support for interfacing

with task-driven interaction techniques. For instance, the discrete list of clusters provides a

visual checklist for the viewer to record regions they have already examined (Figure 5.5).
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Coupling this list with automatic navigation, we eliminate the need to manually locate

regions of interest along the surface. Such identification is particularly valuable in locating

small regions.

5.4.2 Automatic Viewpoint Selection

Locating individual clusters can be challenging. While some clusters may be large and

easily identifiable, others may be small, hidden in pockets, or occluded from the current

viewpoint. Automatic viewpoint selection brings a selected cluster to the center of the

viewport without requiring the user to manually navigate the surface. A user may navigate

by selecting a cluster from a reorderable list. Our method for viewpoint selection builds on

previous literature on finding optimal viewpoint navigation [Vázquez et al., 2001].

We characterize a “good” viewpoint as one that maximizes the visible area of the cluster.

To simplify the search for the best viewpoint for a given cluster, our approach restricts

camera positions and paths to a bounding sphere about the surface. Our implementation

computes the visibility for each vertex of the surface mesh, from a sampling of directions,

when the surface is first loaded. This is used for illumination computations to create

ambient occlusion shading and is also used for automatic viewpoint selection. To find the

best viewpoint for a region, the sampling direction from which the most vertices of the

requested region are visible is selected. The corresponding point on the bounding sphere

of the molecule is chosen for the new viewpoint. The viewing direction (look-at point) is

chosen as the center of the region.

Transitions to a selected camera position are created by spherically interpolating the

viewpoint on the bounding sphere, and linearly interpolating the look-at point. These

smooth transitions help the viewer remain oriented when they select a region to transition

to. These transitions also serve as the building block for “automatic tours,” where the

system generates a list of regions and shows them to the viewer in sequence. Such tours

are useful to give an impression of the entire surface of a molecule.
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TP

FN

FP

Figure 5.4: A multivariate encoding for a scalar field (shown as the purple-to-green color
field) overlayed on classification values shown as procedural textures (checkerboard, grid,
Perlin noise). Note how TP (checkerboard) and FP (grid) generally correlate with positive
charge (green), suggesting a correlation between charge and positive predictions.

5.4.3 Predictions and Scalar Fields, Simultaneously

Molecular graphics programs frequently use surfaces to display scalar data fields such as

electrostatic charge and hydrophobicity. Bivariate encodings can be used in order to make

comparisons between these data fields and the classification decisions. Although bivariate

color ramps can encode two fields [Ware, 2012], it is difficult to extract each independent

dimension from the encoding [Ware, 2009]. Bivariate ramp design is further complicated

by luminance changes introduced by shading on the molecular surfaces. Therefore, we

instead use textures to convey the classifier decisions, and reserve color for encoding the
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Figure 5.5: Our approach applied to the validation of a DNA-binding classifier. The
overview window (left) displays the corpus rendered as quilted blocks (§5.3.2), giving an
idea of aggregate performance across the corpus. The detail window (right) shows the
clustered classifications (§5.4.1) for PDB: 1PVR_A, highlighted in yellow in the overview
window. These clusters are itemized (lower right), allowing for highlighting regions of
interest and automatic navigation to view a selected region.

field of interest.

Complex surfaces generally do not lend themselves well to traditional surface parame-

terization for two-dimensional texturing. We instead use 3D procedural textures [Perlin,

1985] as they can be mapped using only the coordinate system of the molecule. Classi-

fication results are depicted using three disparate textures (TP as checkers, FP as grid,

FN as Perlin noise). For example, in Figure 5.4, the relationship between an input feature

(electrostatic charge) and the classification result is visualized by encoding feature data

with a seven-step, purple-to-green color ramp and classifications with texture. The scalar

field color ramp is intentionally distinct from the colors used to encode classification results

alone to avoid confusion. A histogram (bottom-right in Figure 5.4) displays the distribution

of the scalar field feature alongside the boundaries of the color ramp. This graph serves as

a control widget for updating the transfer function, allowing the color ramp to be modified

interactively.
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5.4.4 Dynamic Decision Boundary

To further help understand the classifier outputs, the decision boundary for the classifier

can be adjusted in the detail view. Changing this boundary affects the classifications

of predictions by raising or lowering the threshold of a positive prediction. The detail

view (Figure 5.5) contains a histogram illustrating the distribution of classifications for

the visualized molecule in the context of the current decision boundary. The viewer can

directly manipulate this boundary to highlight predictions with a high confidence while

reclassifying the remainder and can push the new decision boundary back to the overview

to reclassify the entire corpus.

5.5 Use Cases

The prototype implementation of our approach is implemented in C++, using FLTK and

OpenGL 3.3. The system can read in classification results for an entire corpus experiment

in a few seconds. In all cases we have tried, the overviews are drawn in a fraction of

a second so re-configurations of the overview display (reordering or changing glyph

type) is nearly instantaneous. The surface meshes for each protein are generated using a

standard external tool, MSMS Sanner et al. [1996]. While this tool may take up to several

minutes to generate a surface mesh for a large protein, these meshes can be pre-computed

before an interactive exploration. Our system can load a mesh and perform the visibility

computations required for ambient occlusion and navigation in less than three seconds,

even for very large molecules. Timing information used a machine with an Intel i7 920

(2.67 GHz) CPU and a nVidia GeForce GTS 250 graphics card.

We demonstrate our methods using two protein classifier datasets: a DNA-binding

classifier with a test corpus of 219 proteins (Figure 5.5) and a calcium-binding classifier

with a test corpus of nine proteins (Figure 5.7). Prior to our tool, assessment of results

was done by looking at tables of statistics, and by loading surface colors into standard

molecular graphics tools. The executable and use cases are available online at the project

website at http://graphics.cs.wisc.edu/Vis/PSCVis/.

http://graphics.cs.wisc.edu/Vis/PSCVis/
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(a) PDB: 2I05_A, an example of good performance.
A large pocket (green) holds DNA while FN and
FP are on the fringes.

(b) The region cluster plot summary glyph enables
identification of proteins having FP regions with
similarly-sized TP regions.

(c) PDB: 2W7N_B, selected from the region cluster
plot above, shows large region of FP adjacent to
the discovered binding site.

(d) PDB: 3FDQ_A; the linear shape of the bind-
ing site leads to large regions of FN, suggesting
alternative binding mechanisms.

Figure 5.6: Analyzing the spatial clustering of a DNA-binding classifier reveals high-level
trends of classification.

5.5.1 DNA-binding Classifier

Figures 5.5 and 5.6 show a validation experiment of the DNA-binding, residue-granularity,

predictive binding model named DNA-Binding Site Identifier (DBSI) [Zhu et al., 2013].

Ground truth labels indicate that DNA has been found to bind within five Angstroms of the

residue in the crystallographic structure. The model performs well, in terms of summary

statistics including F1 and MCC scores. However, closer examination of the validation

results reveal more about its performance.

Figure 5.5 shows the DBSI test set (219 proteins, sizes of 41–932 residues) loaded into the

visualization prototype. Using an overview with quilted blocks ordered by performance

confirms the overall peformance, but shows three different types of errors. Molecules
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with good overall performance (MCC) are predominantly TP, with some FN and FP. Mid-

performing molecules often have some TP, but also large FP regions. Poorly performing

molecules often have large amounts of FN.

To examine the first type of errors, a region cluster plot shows that many molecules

have large TP regions, and many small incorrectly classified regions. Examining these

clusters in a detail view (e.g., Figure 5.6a) shows that the small errors are usually at the

fringes of a correctly identified site. Automated touring allows multiple examples to be

examined rapidly to confirm this trend. These “near-misses” are unlikely to be meaningful

in practice as precise localization is difficult because proteins are dynamic. However, it

suggests that the classifier designers consider spatial grouping in order to improve their

performance scores.

The region cluster overview also showed patterns in the larger errors. One trend was

molecules with large regions of FP and TP (Figure 5.6b). The detailed views show the FP

regions surrounded the TP regions (Figure 5.6c). Screenshots of the visualization were used

to communicate results to scientists, who suggested explanations. For example, binding

different sequences of DNA could result in minor conformational differences that change

the label of nearby residues.

A third observation came from examination of some of the poor performing molecules.

The overview identifies molecules with large false negative clusters. When examined in

the detail view), they often have a false negative cluster with a long narrow shape (Figure

5.6d). The linear nature of the binding site does not seem to be captured by the classifier —

instead of the typical conformation of the protein enveloping the DNA, the binding site of

this particular protein seems to tuck itself into the grooves of DNA.

These three observations use elements of our approach, with chosen overviews leading

to details. Each would have been difficult, or impossible, to make with the traditional

approach of tables of statistics and manual inspection.

5.5.2 Calcium-binding Classifier

We applied our system to the validation of a calcium-binding classifier based on surface

descriptors [Cipriano et al., 2012], but using a simpler machine learning approach than in
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(a) Confusion treemaps shows the
results of the calcium-binding clas-
sifier overestimate potential bind-
ing sites with significant FP.

(b) PDB: 3ICB_A showing clas-
sification regions with decision
boundary 0.0 (left) and 2.61 (right).

(c) A heatmaps overview with
the decision boundary changed to
2.61, showing fewer false positives,
and the possible existence of mul-
tiple binding mechanisms.

Figure 5.7: Analysis of a surface descriptor-based, calcium-binding classifier. Modifying
the decision boundary indicates that calcium may bind in multiple environments not
adequately generalized by the classifier.

the paper. The validation experiment had 11 proteins. As decisions were made for each

mesh vertex, each molecule had between 11k and 63k data points.

This classifier performs poorly over the test corpus (MCC: 0.163); this is shown in

Figure 5.7a. The large number of FP (blue) shows that the classifier overestimates the

number of binding sites. Examining a specific example (Figure 5.7b, left) confirms this

trend. Adjusting the decision boundary to be more conservative (Figure 5.7b, right) better

captures the true binding sites. Pushing the adjusted boundary to the entire test corpus

reveals that the more conservative decision boundary causes entire binding sites to be

missed (red, FN, Figure 5.7c).

Corpus-level visual inspection reveals some trends in the data and identifies the errors.

The large number of small binding sites, and the diversity of these sites, suggests that

calcium binds in many different kinds of environments. However, the error patterns show

that while some sites are discovered correctly, many are missed. This suggests that the

classifier is only capturing some of the ways that calcium may bind. The simple algorithm

of the classifier, which cannot capture multiple modes, is insufficient; the complexity of the

published algorithm may be warranted.
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5.6 Discussion

This chapter introduces an approach for exploring protein surface classifier validation

results. The approach couples an overview of a collection of molecules with a detail view

for examining specific molecules. The overview helps not only to identify patterns of

performance across the corpus, but also to find specific molecules of interest. The detail

view is designed to address the search and memory issues involved with exploring complex

objects.

There are several limitations to this work. At present, it does not support the comparison

of multiple classifiers. While some limited support for adjusting the decision boundary

is provided, we have no explicit mechanisms to compare the different patterns that occur

from adjusting this boundary. We also do not provide any 2D summaries that convey the

relative spatial layout of disjoint classifications. For example, none of the current encodings

can show that the false classifications occur close to true ones. While the overview supports

direct navigation to detailed views of specific molecules, it does not allow navigation to

specific regions of interest within these molecules. While our approach should apply to

classifiers for objects other than molecular surfaces, we have not tailored the system for

such applications nor designed new detail views.

The flexibility of our overview is a tradeoff: the ability to reconfigure the display

allows it to support a range of queries; however, this requires the user to make informed

configuration choices. In time, we will evolve the set of options and provide guidance on

how to match them with tasks. In practice, we believe that rapid reconfiguration allows a

user to find an appropriate view, potentially discovering other perspectives on their data

en route.

To date, the evaluation of our approach has been limited to a few anecdotes and use

cases. While specific elements of our design could be evaluated in controlled studies,

direct assessment of the overall approach is more challenging. Tests on controlled data

sets can allow the confirmation that users can actually identify the kinds of performance

patterns our system is designed to expose. However, a better validation of our approach

will be its success at helping in the design of more effective classifiers. A challenge will
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be to convince classifier developers of the potential value of close examination of their

experimental results.

Even in our initial use cases, we have used the system to help reveal insights into

the physical groupings of the classifications on protein surfaces. Summaries allowed

identifying trends and selecting examples to explore in detail. The detail views enabled

relating patterns of error to the performance of the classifiers.



6 case study: visualizing co-occurrence in populations of

viral genomes

In the second of the case studies, we look at the issues of identifying correlations between

genomic mutations in viral populations. For this problem, we deal with uncertainty in

what makes a “significant” correlation, as well as large amounts of data (upwards of 1GB

uncompressed RNA sequence data). In order to support this problem with a visualization,

we gathered requirements from virologist stakeholders and collaboratively developed a

solution to address a scientific need. As with the previous case study, a successful design

hinged on appropriately addressing the factors of data and viewer task. We present a

negatively-received design in this chapter, and describe how this experience led to the final

improved, more appropriate design of CooccurViewer.

To highlight significant co-occurrences of mutations in genomes, the summary visual-

izations used herein utilize filtering to identify and show only relevant genomic positions.

Due to the ambiguity of what constitutes a significant co-occurrence, the thresholds for

significance are viewer-controlled. Counts of mutated and non-mutated RNA bases are

collected for each genomic position, and significant co-occurrences display these counts

using a Sankey-like, parallel sets design technique. The main characteristics of data commu-

nicated through this visualization are correlation, though the distribution of co-occurrences

through the genomic axis are also relevant for analysis (see Section 6.7). In order to empha-

size correlations, signficant co-occurrences are filtered and aggregated to allow the viewer

to quicly identify correlations that are relevant for analysis—focusing the analysis on this

analysis scenario. A publication representing the work in this chapter was presented at the

2016 EuroVis conference [Sarikaya et al., 2016].

6.1 Overview

Many analytic activities involve understanding events in sequences. Events may be signifi-

cant points in time-series data, locations in text documents, or positions along a genomic

sequence. A wide variety of techniques in the visual analytics literature focus on identifying

110
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and interpreting events as sparse sets of interesting locations in a sequence. However, the

problem of identifying interesting patterns of co-occurrence of observations relating events

together is much less studied. Examining co-occurrence requires considering a much larger

space than with individual events: rather than the one-dimensional space of a sequence,

co-occurrence must consider the space of all pairwise relationships. Additionally, analysis

must consider incomplete data, as observations may not capture all pairs of events.

In this chapter, we present a design study for the problem of the identification and

analysis of co-occurrences of mutations within DNA sequence data. In our design study we

gather requirements, determine an abstraction of the problem, formulate a strategy based

on prior research, evaluate prototypes, and arrive at a final visualization design, driven by

participatory design with our collaborators. Through this process, we encountered issues

of scale associated with displaying all potential correlations. A key idea in our strategy is

to define metrics for quantifying “interestingness,” affording a user-driven exploration of

the space of correlations. While our motivating application is the population dynamics of

viruses and correlation of mutations, we believe the lessons from this design study have

broader applicability to discovering correlations in other one-dimensional sequence data.

The specific biological question we consider involves the mutation patterns that a virus

makes over the course of its infection in a specific host-individual. When a host is infected

with a virus such as HIV or influenza, the virus rapidly makes many copies of itself.

Because replication is imperfect, many of the copies of the virus will contain multiple point

mutations [Sanjuán et al., 2010]. Some of these variants are advantageous and accumulate

within the virus population (e.g., variants that evade the host’s immune response). New

deep sequencing technologies enable surveillance of viral genomes throughout entire

populations. While workflows currently exist for identifying correlation between two

genomic positions, the analysis process is a manual effort and prone to errors. Better

analysis tools and support are needed to rapidly identify significant co-occurrences of

mutations in genomes.

Our contribution is a design study (see Sedlmair et al. [2012a]) of the rapid identification

of correlations between mutations in populations of a viral genome, where technology

has become available to understand the population dynamics of viruses. We provide a
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characterization and abstraction of the problem, allowing us to propose a solution for the

generalized problem. We consider standard encodings for sequence and correlation data,

and explore their use in an initial prototype. Through a participatory design, we reconcile

failures in early prototypes and iterate on our design to better match virologists’ needs.

We assess this system through two case studies, and end with a discussion of the lessons

learned through the problem characterization and the design study.

6.2 Biological Background

Our work is a part of an established collaboration between virologists and computer

scientists to develop better tools for understanding the genetic mechanisms involved in

viral infections. Team members from both backgrounds have worked together to build an

understanding of problems, and have evolved tools that address them. Here, we describe

the general problem of understanding viral population dynamics and the need for new

tools to examine co-occurrence in this domain.

For the purposes of this chapter, the key biological concept is that the genome replication

process of RNA viruses (e.g., HIV, influenza) is highly error-prone, resulting in the incor-

poration of random mutations of nucleotides throughout the viral genome. In an infected

host, HIV and influenza exist as a diverse collection of similar yet distinct viral particles,

each with its own genome. While most mutations in RNA viruses are catastrophic to the

continued survival of the virus, those mutations that are beneficial to viral fitness continue

to propagate. Generally, the longer a virus has infected the host, the more variation in the

viral population.

Identifying combinations of mutations (co-occurrences) in the viral genome is critical

for understanding important biological functions. For example, simultaneous mutations

at three or four positions on an external viral protein haemagglutinin (HA) of an avian

H5N1 influenza virus permits transmission to mammals [Imai et al., 2012]. Interestingly,

these mutations do not confer transmission individually, but rather they need to exist

together on the same viral genome (a concept named epistasis). Epistatic mutations are

co-occurring mutations that, together, can allow a new biological function. Identifying co-
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occurring mutations from virus populations allows for detailed characterization of genetic

diversity and accurate assessments of viral function. A global view of co-occurrence can

help understanding of how a virus works at a high-level, and serves to target in vivo

experimentation of viral activity of larger epistatic interaction.

Nucleotides that mutate can cause the functionality of a virus to change by affecting

emitted proteins. Regions of the genome that code for proteins are called open reading

frames (ORFs), where a reading frame is a particular sequence of codons, which themselves

are triplets of nucleotides. The translation from codons to amino acids (the building blocks

of proteins) is degenerate as there are 64 unique codons (43) and just 20 amino acids that

can be represented by the genetic code. Therefore, a mutation in the genome does not

necessarily confer a change in protein coding—these are instances of synonymous mutations.

Identifying these synomymous mutations as not significant mutations are important to

consider (though even synonymous mutations may have RNA structure—and thereby

functional—implications).

The rapid identification of epistasis and characterizing the functionality of sub-populations

remains a challenging task. New genomic sequencing technology allows for analysis of

the diverse genomic populations and continued disease progression. In particular, Next-

Generation Sequencing (NGS) analyzes millions of nucleic acid sequences simultaneously,

enabling detailed characterization that captures the proportional presence of viral sub-

populations in a sample. The output of the NGS system are aligned sequences of short-read

data—see Figure 6.1 for an abstract representation. These reads (on the order of hundreds

of thousands) have associated start points in the global genomic sequence space. Due

to limitations in current technology, however, only 300–500 nucleotides can be called for

each read, limiting the range of co-occurrences that can be observed in pairwise genomic

space. Newer techniques, such as including analysis from “paired reads,” can increase this

bandwidth, but still represents a hard limit on analyzing distant pairs in the genome.
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6.3 Problem Details and Requirements

The process of discovering these co-occurrences of mutations in viral populations is not

well-supported by any existing tool. Current workflows for discovering sub-populations

demand either expensive processes examining all potential combinations, manual curation

and exploration through the data using tools such as Microsoft Excel, or line-by-line

inspection of aligned reads in programs such as Geneious Pro [Kearse et al., 2012], CLC

Genomics Workbench [CLC bio], or the Integrated Genome Viewer [Robinson et al., 2011].

Our discussions with virologists identified two main analysis goals. The first is an

idea of diversity: a better understanding of the amount of variation in sequence space.

For example, higher variation within a population could indicate there are environmental

pressures (e.g., an effective immune response) that is forcing the virus to diversify to

survive. The second insight regards functionality, where the population of viruses can

be separated into sub-populations that share coordinated mutations. This separation can

provide researchers with a vector of attack to characterize the viral sub-population in vivo

to see if a functionality shift is occurring.

The general problem is to identify pairs of genomic positions where mutations are

observed to co-occur together. If we think of the reads (rows in Fig. 6.1) as observers

making measurements about events in a global context (columns in Fig. 6.1), we can begin

to determine how these observers connect these events. To understand the correlation

of events, we can gather statistics from pairs of positions that are observed together—we

call this observer continuity. In contrast, looking at observations without regard of observer

continuity reduces to an independent event comparison problem, which is supported by

existing visual analysis techniques for time-series data (cf. Javed et al. [2010]) or existing

metrics (such as mutual information [Steuer et al., 2002]).

From this problem characterization, and through iteration and discussion with our

collaborators (see §6.6.1), we collected a series of analysis tasks. The first (T1) is to identify

significant co-occurrences of mutations. Virologists must be able to explore in detail a

co-occurrence pair (T2), evaluating whether the particular correlation is important and

requires further research. Important co-occurrences within the entire genome must be
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Figure 6.1: A visual abstraction of viral genomic data, where red boxes denote nucleotides
that do not match the reference genome. Rows are individual reads from NGS, while
columns are genomic positions. Two positions (i, j) are checked for mutation co-occurrence.

easily summarized (T3), requiring overview of all significant correlations in the genome.

We collected additional requirements based on the specific task domain. The presenta-

tion of the data in the visualization must align with the analysts’ existing mental models of

genomic data by (1) always presenting data in genomic sequence order (R1) and (2) dis-

playing annotations alongside the genome to provide wayfinding for the analyst (R2). We

found through discussions with virologists that a mental ‘map’ helped to orient themselves

while navigating the viral genome. To be able to discover significant co-occurrences, there

needs to be a scaffold to navigate the space of all pairwise correlations (R3). Finally, the

visualization must scale to the typical dataset size (R4): hundreds of genome positions and

hundreds of thousands of individual read segments, while remaining interactive to the

anaylst in a web-browser-based deployment (which simplifies sharing of datasets).

Our approach to deal with the vast space of correlations is to define interest metrics

to aid in filtering. Discussions with stakeholders suggested that there are a variety of
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factors to consider in developing such metrics. The simplest of these measures is positive

correlation, which can indicate potential epistatic mutations. The inverse, negative correlation,

can also be interesting, demonstrating that combinations of mutations can be catastrophic

to viral fitness. Secondly, there may be issues with coverage, where there may not be enough

observations relating two positions to make significant judgments about correlation. Finally,

the base rate of mutations at a particular position must be over the error rate of the NGS

sequencer to be significant, otherwise spurious correlations that are misaligned may be

counted as significant. We elaborate on these metrics in Section 6.5.

6.4 Related Work

6.4.1 Visualizing genomic data

There are many genomic data viewers that support the visualization and analysis of variants

(see Nielsen et al. [2010] for a broad survey). The most common of these analysis tools are

genome browsers, which juxtapose the raw genomic sequence alongside supplemental

data, such as computational predictions and homologies. There are many examples of

these tools, each of which are specific either to a particular task (e.g., resolving reads

from NGS data [Fiume et al., 2010]) or a particular biological domain (e.g., cancer [Dees

et al., 2012] or humans [Kent et al., 2002]). Although there are many browsers, most

make assumptions that break our model of multiple, competing viral genome populations.

For example, the MuSiC system [Dees et al., 2012] contains functionality that identifies

statistically-probable correlations of mutations [Ding et al., 2008]. In particular, the use of

fixed statistical judgments and sub-sampling methods are not well-suited to analysis of a

viral population, as it assumes that non-matching reads are errors instead of an indication

of a sub-population.

Specialized genomic visualizations can make visual encoding decisions that directly

support particular analysis tasks. These systems either expose trends and relationships

between annotations [Van Brakel et al., 2013], between variants and annotations [Ferstay

et al., 2013, Demiralp et al., 2013], or between alternative splicing of genes [Strobelt et al.,
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2016]. Many of these systems directly encode correlation. COMBat [Van Brakel et al.,

2013] uses a re-orderable matrix view to highlight correlation between annotations, in-

tentionally scrambling the genomic axis. Variant View [Ferstay et al., 2013] uses tracks to

show overlapping annotations, as well as concise glyphs to convey information on types of

mutations at particular positions. DecisionFlow [Gotz and Stavropoulos, 2014] allows the

analyst to drive exploration through a large electronic health record space and presents

health outcomes in Sankey-like diagrams, while Vials [Strobelt et al., 2016] uses a common

genomic axis to ground analysis of splice groups. While some of these tools violate several

of our initial requirements (e.g., COMBat violates R1 and R2, Variant View does not scale

to the data scales needed in this application R4), they provide precedent for the visual

support of our three tasks (T1–3).

Many solutions for analyzing viruses, like Alvira [Enault et al., 2007], use a ‘scaffold

view’ where sequencing reads are stacked atop one another, mutations are highlighted,

and frequency of variants is highlighted by proportional sequence logos. These visual

encodings have notorious disadvantages, including inablility to scale and and potentially

skewing proportionality judgments (see Maguire et al. [2014] for a discussion), suggesting

a more principled ensemble encoding. Similar to our system, LayerCake [Correll et al.,

2015] supports finding variants between multiple aligned samples of populations of viral

genomes by using color as an ensemble encoding, compressing horizontal space by binning

positions together but otherwise maintaining strict sequence order. LayerCake highlights

population dynamics only between viral samples, not within a particular sample. Therefore,

LayerCake does not support discovering correlations between mutations as there is no

notion of observer continuity.

6.4.2 Visualizing correlation

Visualizing correlation between events is a task of substantial interest in the visual analytics

literature. Two primary methods of visualizing relationships between elements are through

node-link and matrix-based visualizations (see Ghoniem et al. [2004] for a discussion).

While node-link visualizations have issues of scale with increasing number of nodes, they

are invaluable for analyzing multi-stage connections. On the other hand, matrices excel at
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larger number of connections, though they suffer at providing aggregate judgments (cf.

Díaz et al. [2002]).

Several studies have modified the typical uses of node-link and matrix-based visual-

izations to uncover trends in combinatorial relationships. Henry and Fekete [2006] use a

matrix view in conjunction with a node-link view to better support analysis tasks of social

network connections between individuals. Dunne and Shneiderman [2013] use aggregate

glyphs to represent common visual patterns in node-link diagrams, managing complexity

in the number of elements and connections shown. Other visual methods such as parallel

sets [Bendix et al., 2005], parallel coordinates [Inselberg, 1997], and Sankey diagrams show

how similar elements relate to one another through many continuous or categorical dimen-

sions. These methods are helpful for conveying a general sense of how a subset interacts

with different data dimensions, and we use parallel sets to visually communicate the level

of correlation in a co-occurrence pair.

We use general trends found in these works to inform our own design decisions. For

example, we anticipated in early designs that a matrix view would be a good way to re-

order positions to identify significant co-occurrences. This led us to the requirement of

maintaining genome continuity (R2) in order to support the virologists’ mental models,

upon which we elaborate in Section 6.6.

6.5 Interest Metrics

To reduce the correlation space that an analyst needs to explore, we identified the following

three metrics that capture the intuitions of our audience for what is considered an “inter-

esting” correlation. The first is coverage: we must have a sufficient number of the events

in order to be confident that the measures we receive are not due to sampling error or

noise. The second is variation, where each of the two sites must have a sufficient diversity

of observations. The third is a metric of co-occurrence, which quantifies how unlikely is the

relationship between the two sites relative to chance, given what would be expected by the

statistics at each individual position under an assumption of independence.

Abstractly, we consider the set of events E in a data sequence, and observers O that
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make observations about those events. Each observer Ok therefore represents a set of

observations of the form {(i,+), · · · (j,−)}, where each tuple contains a reference to an event

in E (e.g., position i) and a categorical observation (e.g., +)—for example, if a mutation is

observed at this position or not (a tuple is a square in Figure 6.1). Throughout our notation,

we use Q as a collector of observers that have made a given observation about an event.

These metrics are summarizations of a co-occurrence pair, but do not individually confer

a clear indication of significance. In different situations, an analyst may have different

considerations. Therefore, we allow the user to dynamically set thresholds for these metrics.

Coverage metric: The coverage metric Ci for a particular position i counts the number of

observations made about a position and can be used to determine coverage in comparison

to other positions. Ci is computed by gathering all observers B ∈ O that reference the

position i and counting the number of observations in the returned set.

Ci = |Q(i∗)| = |{B ∈ O | (i, ∗) ∈ B}|. (6.1)

We can extend this definition of Q to select sequences that have a particular type of obser-

vation at a position. As an example, Q(i−) would match sequences that have observations

at i that are negative.

Variation metric: The variation metric Vi can be used to threshold the prior probability for

a variant to occur at a position. As an example, Vi− below is the percentage of reads that

are mutations at position i in our genomics context:

Vi− = Pr(i−) =
|Q(i−)|

|Q(i∗)|
. (6.2)

Co-occurrence metric: Correlations that are interesting tend to be those where observations

regarding one position seem to be conditionally dependent on the observation at another.

To quantify this, we first count the observers of both occurrences. We augment Q again,

capturing observations about a pair of positions, taking into account observer continuity—

that is, an observation is only considered if and only if it contains data about both i and



120

j:

Q(i−,j+) = {B ∈ O | (i,−) ∈ B∧ (j,+) ∈ B}.

Now, we can define a conditional probability. Let us assume that we are interested in

the conditional probability that an observation is negative at position j given the negative

observation at i:

Pr(j−|i−) =
|Q(i−,j−)|

|Q(i−,j∗)|
.

With these formulations, we can define a co-occurrence metric Mi,j∗ .

Mi,j− = Pr(j−|i−) − Pr(j−|i+) =
|Q(i−,j−)|

|Q(i−,j∗)|
−

|Q(i+,j−)|

|Q(i+,j∗)|
. (6.3)

This metric is similar to metrics such as mutual information (see Steuer et al. [2002]). A

key difference is that it takes account of observer continuity, allowing us to use conditional

probability in our metric, in contrast to depending on joint probability (a potentially weaker

assertion). Our metric also yields values in a fixed domain [−1, 1], where−1 identifies strong

negative correlation, 1 denotes strong positive correlation, and 0 implies no correlation.

This is in contrast to mutual information, which has an unbounded, unsigned domain.

6.5.1 Interestingness in the virology problem

With Next-Generation Sequencing technology, researchers have the ability to understand

the population dynamics of highly varying samples of viruses without the limitations

of previous sequencing technology that would implicitly boost only the sequences with

the highest occurrence. In engineering our solution, we decided to implement a pre-

computation process that would compile counts of paired bases (all paired combinations of

Q). With these precomputed counts, a front-end visualization permits interactive tuning of

interest metrics. To determine mutations at nucleotide positions, we compare the collected

data against a reference genome sequence. As our overall goal is to find co-occurrences of

mutations, we de-emphasize the common case of reference-to-reference correlation, as this

indicates the lack of any sort of epistatic functonality.



121

(a)

(b) (c)

(d)

(e)

Figure 6.2: Our initial prototype to identify pairwise correlations between all positions i
(x-axis) and j (y-axis). The matrix view (a) shows these co-occurences, and the overview (b)
provides a horizontal overview of the space. The super-zoom window (c) highlights the
coordinates and co-occurrence metric currently under the cursor, while the bar chart (d)
presents the proportion of reads at a selected pair of positions. The legend (e) presents the
2D color key.

6.6 Visualization Design

Here we will describe our experience designing a visual analytics solution for the given

problem, first presenting our early prototype (§6.6.1) using a matrix-based solution. The

failure of this initial prototype prompted us to derive task T3 (supporting overview), and

requirements R2 and R3 (wayfinding and tunable filter parameters). We describe the

rationale for the designs, and some of our lessons learned (§6.6.2) in incorporating implicit

assumptions of the analyst into requirements for the final design (§6.6.3).

6.6.1 Initial prototype: Matrix-based visualization

For our initial prototype, we developed a matrix-based technique for looking at the cor-

relations of mutations between pairs of positions (§6.4.2, see Figure 6.2). The design was

inspired by previous work that use matrices to communicate relations, which excel at

displaying large numbers of relationships in comparison to node-link diagrams.
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Each cell in the matrix communicate the level of mutation co-occurrence (Mi,j−) at a

pair of positions i and j. We use a bi-variate color ramp [Trumbo, 1981] to communicate

the co-occurrence metric (a ColorBrewer red-to-blue diverging ramp [Brewer et al., 2003])

and the coverage (lightness attenuation in Lab color space), together identifying significant

co-occurrence. Details are available through a linked “super-zoom” panel, which displays

the metrics for a 3×3 area under the current mouse position. A bar chart (below) compares

the mutations and reference reads at the two positions, and allows for conditioning on the

nucleotide type.

We took advantage of the technological limitations of NGS, where direct correlations

are limited to a window in the low hundreds of positions (the maximum read length).

This produces a banded matrix about the diagonal, so we thereby limit navigation of the

space to a one-dimensional diagonal pan and zoom to prevent getting lost in the data space.

To overcome the technical limitation of loading millions of data points to the client and

displaying them in a web-based interface, we used WebGL to load the data into buffers in

the GPU and to render the matrix interface. Supplemental views such as the super-zoom

were implemented using the D3 library [Bostock et al., 2011]. Using the GPU for rendering

allowed for real-time navigation of a 20,000 × 20,000 cell-space, as well as interactive

updates by modifying uniform variables sent to shaders (see McDonnel and Elmqvist

[2009] for a discussion).

6.6.2 Lessons learned from the matrix-based prototype

This early implementation had several pragmatic problems for exploring NGS data. The

visualization was overwhelmed by many false positive results at nearly every pair of

positions—many co-occurrence pairs had a saturated color (see Figure 6.2) but were not

significant in practice. Through iteration on this design with stakeholders and a root-cause

analysis, we found that although the co-occurrence metric was high in magnitude, the

overall proportions of variant reads at those positions were very small (on the order of

1–5%), even though they had very high correlation to other positions. Many of these reads

were determined to be misaligned reads by the sequencer. In additional, simultaneously

visualizing a third metric (variation) requires a tri-variate color map, which are considered
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Figure 6.3: After filtering data points that fails the minimum variance threshold, the data in
the early matrix prototype becomes sparse. Positions that have interesting co-occurrences
cover very little visual space, making them difficult to find and highlighting the issues
with the use of a matrix representation for our domain task.

to be impractical [Ware, 2009]. These constraints suggests an alternative method to filter

out task-irrelevant co-occurrences (R3).

In order to assist analysts in identifying pairs of positions with significant co-occurrences,

we added in a filtering gate to remove co-occurrence pairs where at least one position meets

a minimum variant probability. This filtering made the data too sparse in the matrix to

identify interesting co-occurrences (see Figure 6.3), suggesting task T3: providing overview.

While matrix re-ordering could help to emphasize correlation between positions, re-

ordering the genomic sequence prevents analysts from leveraging their knowledge of

particular sections of the genome, such as critical gene-coding regions. A requirement (R2)

that emerged from discussion with collaborators was to provide a mechanism that exposed

annotations, or interval identifers of the genome that provide a wayfinding mechanism.
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They stressed that annotations can provide information on reading frames or identifying

regions of interest. The overall difficulty of discovering interesting co-occurrences within

the matrix view suggests a guided, interactive approach that does not embed relationships

within the full data space.

6.6.3 CooccurViewer visualization

Our experience with the first prototype lead to a second design with revised tasks and

requirements to support it (§6.3). Based on feedback from analysts and brainstorming

potential solutions within our team and other virologists, we elected to modify our strategy

to be driven by analyst focus (see Shneiderman and Plaisant [2015] for a discussion). To

achieve this, we integrated our three tasks directly into the design (see Figure 6.4): a

one-dimensional map that forms the overview and designates positions where interesting

co-occurrence is happening (T3), metrics with which to filter the space of correlations (T1),

and a detail view that describes the correlation between pairs of positions with explicit

metrics (T2).

Overview

To support user-driven exploration of significant co-occurrence of mutations, we brought

filtering to the forefront of the analysis. The virologist has the option to tune parameters

of significance (§6.5), and only those correlations that meet the analyst-defined standards

are displayed. The overview of these significant co-occurrences appears at the top of

the visualization. Each position displayed has at least one significant co-occurrence with

another position. These single positions are connected to their positions on the genomic

sequence by gray wedges and are clustered together based on their proximity in genomic

space. The overview can support up to 500 positions, but becomes more comfortable with

less than 75 individual positions. Virologists using our tool to explore co-occurrences

tended to tune the metrics until about 50 positions were visible in the overview.

The CoocurViewer overview includes a linear representation of the genome with anno-

tation data. These annotations are represented by the colored bars above the genome axis
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Figure 6.4: An overall view of SIV (§6.7.2) loaded into CooccurViewer. Annotations (a)
denote regions of the genome that have some biological context, and the overview (b)
denotes positions of significant co-occurrence, summarizing the three metrics (§6.5) using
color. The correlation diagrams (c) provide a representation of correlation between pairs
of positions, and some details (d) about metric values. The current position’s summary
of correlations (e) is given on the left, with small-multiple representations. The sliders (f)
control the thresholds for the interest metrics and filters the co-occurrences shown in the
visualization.

(Figure 6.4(a)), and provide virologists with biological context for positions in the genome.

In particular, annotations marked as reading frames are used to determine if mutations

within the region are synonymous mutations. Viewers are given the option of suppressing

synonymous mutations, which treat those mutations as matching the reference genome.

In practice, we found that virologists would activate this option to remove synonymous
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Figure 6.5: A close-up of a co-occurrence summary between two positions (counts included
for explanation). The positions being compared are mapped to rectangles, with both refer-
ence (green) and variant (red) nucleotide types. The links show the correlated proportion
of reads between the two positions. The gray arcs represent the proportion of reads that
overlap one position but not the other.

mutations from display, but would also occassionally deactivate the option to identify

mutations that could still have conformational implications.

Each position with significant co-occurrence is summarized by the three metrics intro-

duced in Section 6.5, each color-encoded using separate ramps: coverage (i.e., read depth, in

green), the base amount of variation at that position (in red), and the magnitude of the

co-occurrence metric (in purple). In order to summarize correlations between multiple

potential positions, the glyph at each position shows the maximum value of each metric

independently. Sliders linked to these metrics (Figure 6.4(f)) allow the analyst to modify

thresholds to filter out less interesting co-occurrences.
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Co-occurrence Details

Once the virologist has selected a particular position of interest, the main view populates

matching co-occurrences with that position. Through collaborative design, we developed

a design to show “flow” between nucleotide types at two positions, similar to a version of

parallel sets [Bendix et al., 2005] (see Figure 6.5). The connecting arcs show the proportion

of reads (observations) that are one type at position i and are either the same or opposite

type at position j. The gray arcs represent observations that exist at that position, but do

not overlap the paired position. Tooltips can present more details on demand such as

the number and proportion of nucleotide observations, including whether a particular

nucleotide is potentially synonymous. For reasons of screen-space, only two pairs of co-

occurrence detail can be shown at once, though all correlations for the current position are

shown in a small-multiple display (see Figure 6.4(e)) and can be brought into full view by

selection or through pagination.

6.6.4 Implementation

CooccurViewer is a system implemented in JavaScript, using the D3 library [Bostock

et al., 2011] to map data to shapes on an SVG canvas. We use a pre-processing step to

gather the 4 × 4 contingency tables (nucleotides at each position pair) from SAM files

(short sequence read alignments) [Li et al., 2009] by comparing reads to a given reference

sequence and counting paired combinations of bases for each pair of positions. We also

compute the co-occurrence metric from these counts (see §6.5) and compile other data

such as annotations. These data are packed into the binary files that are served to the

visualization. This allows for minimal transport over the network, and the client-side

nature of the visualization entails near-interactive rates for filtering the data shown to the

viewer. CooccurViewer and the pre-processing library are open-sourced on GitHub and

available at http://graphics.cs.wisc.edu/Vis/CooccurViewer/.

http://graphics.cs.wisc.edu/Vis/CooccurViewer/
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6.7 Case Studies

We present two case studies to demonstrate the utility of our visualization prototype.

Through these examples, we illustrate how the visualization can expose significant corre-

lation information. We show how the system is robust to displaying populations of viral

genome samples in datasets of millions of pairwise correlations. We also highlight how our

visualization design can help reveal new questions and insights about existing datasets.

6.7.1 Avian Influenza (H5N1)

In our first case study, different variants of the H5N1 influenza virus are explored. To

understand the impact of within-host viral genetic diversity on replication and transmission

of avian influenza viruses, Wilker et al. [2013] used deep sequencing to assess genetic

variation from inoculated ferrets and ferrets infected via respiratory droplet transmission

[Imai et al., 2012]. The authors reported that sub-populations present at low frequencies

(∼ 6%) could transmit via respiratory droplets. Interestingly, they showed that only one

to two combinations of co-occurring mutations in the hemagglutinin (HA) gene were

detectable early after infection in contact animals. Taken together, this shows that selective

forces imposed a significant reduction in influenza genetic diversity during transmission.

We imported reference-based assemblies of the HA gene (1788 base pairs in length) from

infected ferrets (six pairs, six samples each) into our pre-processing library. On average,

each reference-based assembly contained 140k to 348k sequences (avg. 205k) and individual

reads were 100 to 160 base pairs in length (avg. 149). Annotations denote regions in the

sequence that code for the pre-processed HA protein (blue), a post-processed HA protein

that becomes packaged in the viral envelope (orange), and a region on the HA protein

that binds to host-cell receptors (green). A single sample’s packaged data averages around

42MB.

There is a significant level of nucleotide variation near the receptor-binding domain of

H5N1 viruses infecting ferrets. In Figure 6.6, using sequence data from a directly inoculated

ferret sampled five days post-infection, there are a number of significant co-occurrences.

Virologists focused on two particular positions with relatively higher amounts of nucleotide
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Figure 6.6: For this particular sample of an H5N1 viral population, a strong inverse correla-
tion is identified between mutations at 738 to non-variant reads at 728, as well as a inverse
correlation between positions 728 and 788, validating the results presented by the reference
study [Wilker et al., 2013].

variability, where the summary glyphs are saturated red. Selecting position 728 (the farthest

left summary), a strong inverted correlation is found between non-variant nucleotides at

728 and variants nucleotides at 788—this relationship was identified in the original study.

Through the use of the visualization, potentially interesting co-occurrences were read-

ily identified. This is in contrast to the intensive, manual workflow used to identify co-

occurrences in the original work [Wilker et al., 2013], which involved concatenation of all

polymorphic sites and tabular exploration through these varying sites to find potential

correlation (taking several weeks). The visualization, by contrast, specifically targets the
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analytical task of rapidly identifying these interesting co-occurrences in the timescale of

minutes.

6.7.2 Simian Immunodeficiency Virus (SIV)

SIV is a commonly-studied virus as an analog to HIV (human immunodeficiency virus).

Variants accumulate during an HIV or SIV infection confer resistance to antiretroviral drug

treatment or expand the range of cells the virus can productively infect. Understanding

epistatic interactions are critical to target antiretroviral treatments. The dataset shown in

Figure 6.7 comes from a macaque monkey 54 weeks after infection with a clonal, pathogenic

strain of SIV [O’Connor et al., 2012]. In this case, we know the exact sequence and compo-

sition of the viral sequence (9,973 base pairs) that initiated the infection. The data contains

238k read segments, where each segment length is between 24 to 151 base pairs long (avg.

92). The 2.78 million pairwise count data and associated metadata is minimized to 170MB.

Virologists immediately saw from the summary (see Figure 6.7) that there is a high

amount of variation in this particular SIV sample. Many of these significant correlations

are inverse correlations, identified by a strong absolute co-occurrence metric (purple).

In particular, virologists observed correlations in this dataset that may merit additional

follow-up. First, there are comparatively few correlated variants in the structural proteins

of Gag and Pol (the blue and orange regions stretching from positions 1309 to 5666). These

are HIV/SIV genes thought to be under the greatest constraints; variation in these genes

likely compromises the ability of the virus to replicate. The lack of correlated variants in

these genes compared to the accessory and regulatory genes suggests that compensatory

variants here are relatively infrequent. Second, they identified a cluster of correlated

variants from nucleotides 9,609 to 9,660 that occurs within a known viral sub-population

that is recognized by macaque CD8+ T cells. While it is known that the virus can evade

detection by immune responses through mutations in this region, the virologists noted that

examining the impact of correlated variants within this epitope may resolve sub-structure

to the escape variant populations that would be missed with other analytic tools. The ability

to foster these global insights demonstrates a remarkable improvement over virologists’

previous manual workflows.
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Figure 6.7: In this SIV sample, a cluster of correlated mutations appears within the Nef
protein (top-right, dark yellow bar), known to harbor viral escape. Variants at positions
9,645 and 9,651 are inversely co-occurring with reference reads (mid-top), while reads at
positions 9,646 and 9,651 are positively correlated (mid-bottom).

6.8 Discussion

Through this design study, we have learned several key lessons that generalize from

our domain problem. Respecting the analysts’ mental model of the anaylsis space and

providing scaffolds for wayfinding proved to be critical in our design. We use a conjunction

of multiple interest metrics to help narrow exploration in the large pairwise space of

all pairwise correlations. We have also shown that combining multiple metrics through

conjunction can help focus analysis when a single metric is insufficient.
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In order to support analytical targeting for our design, we captured discrete components

of significant correlations and generated definitions of these components. We quickly dis-

covered that there was no single metric that captured if a co-occurrence between positions

was significant or not, and elected to provide a mechanism to allow the analyst to select

relevant thresholds dynamically. This interactive exploration affords analysis that can

adapt to different analysts and datasets.

In this work, we focused on the problem of discovering co-occurrences of events within

one sample of a population of viral genomes, and have shown it to scale to a significant

amount of data (e.g., a viral genome 12k positions long with 250k reads leading to a

ceiling of nearly 3 million potential co-occurrences). Extending our work to the problem

of multi-sample comparison is important future work, though an independent problem.

As an example, longitudinal studies of virus mutation usually span multiple timepoints,

sometimes under different environmental or transmission conditions. While comparisons

can be made implicitly between viral populations by switching the dataset shown in the

visualization from one genome to another, it can be difficult to make explicit comparisons

of correlation across samples.

The largest dataset we have supported thus far is the SIV dataset, which encodes 2.78

million 4×4 contingency matrices of pairwise correlations into our web-based visualization.

We can scale to support the additional data of multi-level correlation (beyond pairwise

correlation) and comparison across multiple timepoints by loading data directly to the

GPU or offloading computation to a remote server [Moritz et al., 2015]. Applying data

management principles such as indexing within the data (such as the imMens system [Liu

et al., 2013]) could also increase data retrieval rates.

Finally, we have determined that our viral population dynamics problem is an instance of

the abstract problem of understanding partially observed co-occurrences. This abstraction

permits us to convey statistics and trends of co-occurrence events in a visual manner. The

abstraction also allows us to generalize our work to other domains such as large-scale text

analysis and time-series data, although our development of such applications is still in

progress.

In this work, we have presented a design study for the rapid identification of correlated
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mutations in populations of a viral genome. Through our characterization of the problem,

we have identified requirements that led to metrics used to focus analysis on significant

co-occurrences. We have shared our experiences in creating visualization prototypes to

support our model task, demonstrated the effectiveness of our prototype design through

our case studies, and summarized the lessons we have learned through this work. We hope

to extend this work to higher-level correlations, and apply the lessons we have learned

through this design study to other sequence-based data domains.

Beyond the application to sequence-based domains, the lessons in summarizing co-

occurrence data have strong engineering and design implications. The decision to pre-

process the data before visualization is a common decision, but the requirement of tunable

parameters entailed on-the-fly computation from the core data source, necessitating trans-

ferring the full gamut of data. These data and viewer requirements helped to guide the

iterative design process, resulting in the final design for CooccurViewer. The next chapter

discusses engineering programmer abstractions for visualizations in a more general case,

including support for scenarios with large amounts of data.



7 programming abstractions of scalable visualization

There are many challenges for effective, scalable visual representation of large datasets.

Many of these core challenges for creating effective representations lie in creating scalable

visual designs as well as efficient implementations that allow for interaction. Scalable

visualizations allow the viewer to obtain an overview of the trends in the dataset, while

interactive elements (e.g., zooming, expanding particular trends) allow the viewer to recover

individual details upon closer inspection. Interactive methods and implementations are

needed in order to tackle the challenge of aggregating and summarizing many elements

while remaining interactive and comprehensible to the viewer.

With better guidelines regarding effective visualization, programming abstractions that

promote effective design can help the visualization design process, enabling the use of

exploratory visualization in their analysis. In this chapter, we describe lessons learned about

the design of visualization programming interfaces, including creating the abstractions

necessary to interface with underlying graphics interfaces and technology (WebGL) and the

abstraction of concepts for the visualization designer. With this abstraction, practitioners are

shielded from the nuances of the graphics interface, and are free to concentrate on high-level

design decisions. Here, we start with a discussion of using WebGL as a tool to dynamically

transform data relative to the current view, transition to discussing visualization-focused

interfaces for WebGL, and conclude with a discussion of the d3-twodim scatterplot library,

which focuses on providing scatterplot-like designs for the d3.js ecosystem [Bostock et al.,

2011].

7.1 Using WebGL: Implementing the Splatterplot System

With WebGL, information visualizations can use the power of the client’s GPU to bring

interactive speeds to the scalable display of data contained within the ubiquitous nature of

the internet browser. However, implementing visualizations in this environment imposes

constraints, from the comparatively slow performance of JavaScript to the communication

pipeline between JavaScript and the GPU, both of which require additional consideration. In

134
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Figure 7.1: Our WebGL implementation of the Splatterplot technique [Mayorga and Gle-
icher, 2013], showing a subsample of five different sampled Gaussian distributions (about
7.5k points per series). The web-based implementation allows for interactive exploration
of hundreds of thousands of two-dimensional points.

this section, we present our experiences in implementing the Splatterplot system [Mayorga

and Gleicher, 2013] for WebGL (named SplatterJs), with discussion on how we worked

within constraints for maintaining client interactivity in the browser (see Figure 7.1).

In our iterative development of SplatterJs, we ran into several pitfalls when porting the

native-code OpenGL implementation to one using WebGL. One of the most significant

issues was the amount of CPU-based computation done in the original model, which had

a significant adverse affect on performance when directly ported to JavaScript and WebGL.

This forced us to re-evaluate how we performed operations on the data, including the

consideration of moving these computations to the GPU through the use of WebGL. In

order to perform reduction and subsampling operations, we used general-purpose GPU

(GPGPU) algorithms and store the results to textures to be used in downstream rendering

steps. We expand on the specifics of the WebGL implementation of SplatterJs, and then

expand on general lessons from our experience using WebGL to architect visual scalability

for information visualization.
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7.1.1 Architecting Visualizations for WebGL

The GPU (graphics processing unit) is a powerful piece of hardware that excels at the

massively parallelizable operations such as determining the color of each pixel, given many

inputs. The power of the graphics primitive pipeline to take data through programmer-

defined vertex shaders, fragment shaders, and various compositing operations is a con-

venient tool to have in the visualization designers’ toolbox. The allure of WebGL is in

the marriage of GPU control coupled with the increasingly ubiquitous nature of inter-

net browsers—it is an opportunity to bring GPU-accelerated graphics to the mainstream,

without the overhead of installing a native application for the viewer.

WebGL itself is growing in popularity, thanks in part to the adoption of WebGL as

the graphics standard for many mobile devices. Though the functionality in the adopted

standard is considerably behind the current version of OpenGL (WebGL 1.0 currently im-

plements similar functionality to OpenGL ES 2.0 [Khronos Group, 2015b]), the opportunity

that WebGL presents by providing an interface to utilizing clients’ GPUs as a computational

unit is very promising for designing visualizations that can handle, process, and render

constantly increasing amounts of data. Previous work has started to probe the utility of GL

in general in information visualization, most notably the work by McDonnel and Elmqvist

[2009] and Andrews and Wright [2014] that use OpenGL and WebGL shaders, respectively,

to render common information visualization designs.

In typical programming practice, manipulation of the data (such as abstraction, filtering,

projection, and subsampling; Chapter 3) is often done in CPU code, with familiar data

structures. Once the data is transformed appropriately, it is handed off to the rendering

procedures. In the browser, rendering can be done chiefly in one of two modes: those

methods that bind data to shapes and modify those shapes depending on the data char-

acteristics (e.g., creating an SVG drawing using D3.js [Bostock et al., 2011]), or methods

that use raster-based methods (2D canvas or WebGL), which uses the GPU to compose

the final visualization. In addition to the computations done on data to be visualized,

methods also exist to operate over image space, which operate in the rendering step (such

as color blending, depth-checking) over the shapes generated in an SVG image, or the
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pixels generated on a canvas.

In natively-compiled code, data-space computations are typically done on the CPU,

while image-space operations are often done on the GPU. This paradigm does not necessar-

ily port well to WebGL—while the GPU is a powerful computational unit, the already-thin

connection with which to repeatedly transfer transformed data becomes fragile within a

web browser. To maintain responsiveness for the client, care must be taken to minimize the

unnecessary transfer of data across this interface. Our experiences in porting the Splatter-

plot application to WebGL shows that minimizing this data transfer is key to maintaining

interactive speeds for the user.

To minimize the transfer of transformed data from main memory to a GPU buffer, one

possible solution could be to push computations to a backend server. While this operation

may seem expensive, recent developments in HTML5 have enabled the transfer of binary

data directly to WebGL through well-typed arrays in JavaScript called arraybuffers [Khronos

Group, 2015b]. Arraybuffers can be filled manually, through XML HTTP requests (XHR),

WebSockets (essentially TCP connections directly to the client), or WebWorkers (“multi-

threading” for JavaScript) [Khronos Group, 2015a]. Using these interfaces (e.g., setting

the messageType to arraybuffer), one could conceivably use a database or computational

backend to stream new or transformed data directly to the client’s GPU buffer for immediate

visualization. Previous work has started to explore this space of loading data through

well-formed blobs, such as the imMens system [Liu et al., 2013] that brings a data cube

client-side through the loading of specially-designed PNGs to support interactive brushing

and linking of large amounts of data, using the client’s GPU as a processing unit. We note

that this area is potentially ripe for additional work, and encourage the exploration of this

space.

An alternative solution to moving data-space computation to the backend could be to

move data-space computation directly to the GPU. The utility of this solution depends on

the feasibility of porting the data transformation to the GPU, and managing the pipeline of

data-space and image-space computations done on the data from data ingest to visualiza-

tion rendering. The data-space transformations of abstraction, filtering, projection, and

subsampling can be performed in WebGL using fragment shaders by employing GPGPU
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algorithms and re-purposing image-space algorithms for data. For example, to find a

maximum value in a dataset, we can use the GPGPU pattern of reduction [Buck and Purcell,

2004] to use max() to repeatedly reduce the values in a texture into a particular corner until

one value remains (the maximum). We can subsample points by using the depth test, and

compute distance fields using algorithms such as the jump-flooding algorithm Rong and

Tan [2006]. We elaborate on this solution with a discussion of our experiences implement-

ing Splatterplots in WebGL, noting the possible ways that data-space computation can be

adapted to use the client’s GPU.

7.1.2 Adapting Splatterplots to WebGL

Splatterplots [Mayorga and Gleicher, 2013] is an information visualization technique that

deals with the issue of overdraw that occurs when plotting thousands to millions of individ-

ual points in a scatterplot. As an example, if many points occupy the same x- and y-position

in a scatterplot, it can be impossible to distinguish whether one or many points are at a

particular position, or even provide an idea of how many points are at that particular

position (the concept of “clumpy” as discussed in §4.4).

Splatterplots deal with these issues of overdraw by utilizing kernel density estimation

(KDE), which abstracts low-level features (individual points) to provide the viewer with an

idea of the density of points in space. The key idea in Splatterplots is to use a screen-space

KDE, which has the effect of performing abstraction at overview scales and revealing

details at detail scales, while also highlighting representative outlier points outside of

the thresholded region. These heuristics combine to create a visual paradigm that can

handle visual scalability for scatterplots at a high-level overview, while also supporting

interactivity (through its screen-space parameterization of its KDE) to recover individual

points and positions at smaller scales.

The processing pipeline for every rendered frame in Splatterplots is shown in Figure 7.2.

Each operation is colored based on which computational unit it utilized in the original

implementation. For each data series, the points are drawn to a texture that collects the

density of points on each pixel (overdraw). This density is then approximated by a kernel

density estimation (KDE), using a Guassian distribution as the kernel. The maximum
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Figure 7.2: Data flow through the Splatterplot visualization technique. All processes
(hexagons) produce outputs (rectangles), which take the form of textures. Those computa-
tions that are performed on the CPU in the original implementation are in orange, while
GPU implementations are in red and the one-time preprocessing computation is in green.
We adapted all rendering steps to the GPU, including rendering steps that transform input
data for downstream rendering (§7.1.2).

density is recorded, a thresholded region is defined (by default, those pixels containing

50% of the maximum density), and representative points are randomly subsampled at

regular intervals outside of the thresholded area to reinforce that data exists outside of the

thresholded region. Finally, each series is composited together to form the final Splatterplot,

using generated colors for each data series that are selected to be the most discriminable,

and mixing in a perceptually-motivated way. Of particular note in our discussion here are

the operations that find the maximum density value (an operation also done by previous

visualization systems using density textures, cf. Gansner et al. [2011]) and the subsampling

of points for drawing representative outliers.

Through these operations, many of them were suited directly for implementation in

WebGL. For example, OpenGL is well-suited for collecting the per-pixel density for every

pixel in the viewport: disable the depth test, enable blending, and change both the blend

equation to add (gl.FUNC_ADD) and the blend function to one (gl.ONE), all of which results

in full addition of pixel values in the fragment shader. Some operations, however, were

conceptually easier to implement in native code, such as determining the maximum density

(read the texture into memory and iterate through the buffer) or subsampling the points
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(use a spatial data structure to iterate and subsample points to use as outliers). While

potentially inefficient for performance, native code (the Splatterplot project was originally

implemented in both C++ and C#) swallows the cost, and the technique remains interactive

for the viewer when panning and zooming the dataset (see Mayorga and Gleicher [2013]

for detail in the scale of the data).

After the paper was presented, the technique stirred interest, but potential users wanted

an online solution that would let them quickly visualize their own data and see higher-level

patterns. A natural choice to implement this system was WebGL, given the similarity

between the GL interfaces. In the implementation of this system, however, several is-

sues were encountered, and needed alternative implementations to maintain the real-time

interactivity of the visualization. Most notably, performing transformations of the data

(hundreds of thousands to millions of points) to support the various heuristics of Splat-

terplots in JavaScript proved to bog down clients on even the most advanced systems.

Reading a (float-encoded) texture back into local memory is an illegal operation in WebGL

1.0 [Khronos Group, 2015b, §5.14.12], the method used by the original implementation

(though WebGL workarounds exist). Randomly subsampling data points to select exemplar

outliers iteratively in JavaScript proved to be too slow.

These sort of issues motivated us to explore re-architecting Splatterplots for WebGL.

We appreciated not only having a completed prototype through this exploration, but also

reusable components (such as the KDE implementation) for future visualizations using

WebGL. From our experiences herein, we abstracted these rendering methods into two

methods (drawPoints and drawQuad), discussed in further detail in Section 7.2.

Performing Data Transformations in WebGL

Here, we will describe some of these issues in detail and describe some of the WebGL

techniques we employed to address these performance issues.

In determining how to threshold data series in Splatterplots, it is necessary to determine

the maximum density value currently in view. Previously, density data for all pixels were

read back into main memory, using an iterative search to find the maximum value, which

was then used as a uniform parameter to downstream calls. Although WebGL does not
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support the readPixels method to read values from textures with encoded floats, methods

have been derived for encoding float values into four uint8 values of a RGBA texture

according to the IEEE 754 specification (cf. Scheidegger [2015]), then calling readPixels

on the surrogate texture to retrieve the original float value. We elected instead to use the

common GPGPU design pattern of reduction [Buck and Purcell, 2004] that reduces values

in a texture by consolidating values to a particular corner in order to find the maximum

density value.

Given a texture and a step size, an aggregation measure (in this case, max) can be done

in several passes over the texture. With a step size of 8 pixels, an 8 × 8 square can be

minimized to a single pixel by repeatedly applying the aggregation function. For a canvas

of 800×600 pixels, three passes (with a step size of 8) are necessary to reduce the nearly 500k

pixels to two. Instead of passing a float uniform to downstream shaders that determine the

thresholded region, the final max texture can be passed along, with subsequent shaders

instructed to pull the value of the maximum density from the top-left corner of the reduced

texture.

Representative outlier points are shown in Splatterplots to alert the analyst that data

exists outside of the thresholded and shaded regions, even when viewing the dataset at

an overview-level where the points would normally be blurred away. To minimize excess

data display, only a single point is shown in every 25× 25 pixel block (parameter-tunable).

In the original native code implementation, points were iteratively picked at random at

binned intervals in main memory. This approach did not scale when porting to JavaScript

due to the high computational cost.

As all data points are retained in a data buffer in the GPU, we utilized a two-pass

algorithm to (1) write point coordinates to a binned location in a temporary texture and

(2) draw the point at the coordinates provided by each binned location. To select just one

particular point from every grid cell, we associate each data point with a random value

between zero and one and assign it to the z-coordinate with the depth test turned on. This

has the effect of always selecting a single point for each spatial bin, as well as preventing

twinkling (points winking into and out of existence) of individual outlier points when

panning and zooming the display.
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Implementation of WebGL Splatterplots

In the user interface of the WebGL Splatterplots application, we have added several sliders

that allow the viewer control over the bandwidth of the KDE function, the threshold of the

thresholded regions, as well as a outlier clutter metric (nominally the subsampling grid

size). The event handlers for these elements modify the uniform parameters passed to the

shaders and trigger a redraw of the canvas to interactively provide the user feedback when

the slider is moved.

The application allows the viewer to upload their own data files, and asks for feedback

when parsing a flat file for the two dimensions to plot (x and y dimensions), as well as an op-

tional ‘group by’ column, which is used to separate the singular file into multiple data series.

A working demo (allowing data uploads) and the source code of the WebGL splatterplots

application are available online at http://github.com/uwgraphics/splatterjs.

7.1.3 Discussion

Through this section, we have discussed the use of WebGL for enabling web-based, interac-

tive data visualizations that previously were only possible in natively-coded applications.

Through several techniques of moving some data transformations to the GPU, we can

empower viewers to use a complex visualization system without the additional cost of

having to run and install software. A web-client’s GPU can be utilized to transform data

through aggregation and subsampling for use in downstream visual rendering.

The Splatterplot paradigm can even be used as part of a web mapping application

(see Figure 7.3). The dynamic nature of the technique and the use of WebGL enables

the visualization to remain responsive, even when the number of points number in the

tens of thousands. As the threshold for dense, filled-in regions is dependent on the

current maximum density within the current viewport, panning around a map can lead to

discontinuity in the thresholded regions—they may sporadically grow and shrink. This

can be resolved by computing and storing a maximum density value for every zoom-

level, regardless of the viewport’s position. Notwithstanding, the Splatterplot technique

provides a view-independent interface to spatial data, and protects representative outliers

http://github.com/uwgraphics/splatterjs
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Figure 7.3: A single year (2011) of FARS (Fatality Analysis Reporting System) data shown
in SplatterJs. The dataset comprises nearly 31,000 points. The viewer is free to zoom and
pan about the dataset, much like in typical web-mapping applications.

by maintaining their display when zooming in for more detail.

WebGL has proven to be a very portable way to present and disseminate a data visualiza-

tion. From our experience, however, there are several factors to consider when evaluating

the use of WebGL in an information visualization. Chief among these factors is the reality

that most of the data-space computation will need to be done in WebGL. While it may be

more natural for the programmer to implement data-space operations using JavaScript, the

nature of loading data repetitively from the client’s browser to the client’s GPU and vice

versa has shown to be an expensive operation. If possible, all time-consuming data-space

operations will have been done before WebGL receives the data, or these operations must

be possible with vertex shaders. The method of delivering data to the client must be reliably

quick—although we use flat files in this case, some of our other forthcoming work take

advantage of binary interfaces for efficiently loading large amounts of data. Finally, the

image-space operations required for visualization rendering must fit the GL paradigm;

data must either be discrete and be aggregated for display by (multiple) shaders, or be
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encoded in such a way that the data element maps directly to a graphics primitive.

We transform the data in our WebGL splatterplot implementation in JavaScript from

uploaded comma-delimited files, but we also have had success in other applications using

XHR requests for binary data (using xhr.responseType = arraybuffer) to fill well-typed

arrays in JavaScript, and subsequently loading WebGL buffers with that data, though care

must be taken to handle varying endianness of the data [Mozilla Developer Network, 2015].

As noted before, loading binary data to a JavaScript application is not just limited to XHR

requests; WebWorkers and WebSockets can also handle binary data, which potentially

enable receiving streaming binary-packed data from database sources. Additionally, using

the DataView construct available in ECMAScript v5 allows for parsing of heterogeneous

binary streams. We see this functionality in conjunction with WebGL’s ability to handle

streaming data as a ripe area for future exploration.

Although we have shown just two particular data-space implementations on the GPU,

we believe that exploring the space of data transformation implementations in WebGL can

help enable visualizations of larger scale and greater complexity in an implementation space

more accessible to viewers. Through the use of WebGL, we can take advantage of parallel

computation to compute per-pixel densities, and compose image-space representations to

realize an interactive, scalable visualization. In particular for scatter data, the use of WebGL

helps to take advantage of the collection of point densities, which can then be composited

through multiple image-space operations to generate a Splatterplot.

To help generalize this methods for other visualizations, we have created a layer of

abstraction around the main rendering operations used in SplatterJs, discussed in the

following section. These methods include collecting point densities (drawPoints) and op-

erating on the output(s) of previous rendering steps (drawQuad). The use of these methods

only require the input of data and a shader program from the programmer—the necessary

flags for enabling collection of frequencies and drawing full-frame triangles to enable

proper texel coordinates are set within the methods. These two methods perform the neces-

sary operations to set rendering flags (such as blending modes) and configure framebuffer

and texture bindings without direct involvement from the programmer for these low-level

details. These abstractions also help to abstract away historical WebGL implementation
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details that may change over time.

7.2 d3-twodim: Scatterplot-like Designs in the Browser

We developed a d3.js plugin [Bostock et al., 2011] to abstract the programmer interface for

exploratory scatterplots. The genesis for this project began with our collaboration with

humanists, who were interested in using computational methods for “distant reading” of

recently digitized, historical texts. These methods included topic modeling, which generate

very high-dimensional vectors (30–150) per text [Alexander et al., 2014]. A common method

for exploring these high-dimensional spaces involves using a dimensionality reduction

(DR) technique such as principle-components analysis (PCA) or spectral analysis to display

texts as points in a scatterplot [see Alexander et al., 2014, Fig. 7]. The scatterplot becomes a

critical component to support exploration—specifically the development and confirmation

of hypotheses, particularly supporting judgments of similarity between works that cluster

in the visualization.

In recognition of the scatterplot’s importance in DR scenarios (more detail in §4.2 and

Sedlmair et al. [2013]), we developed a scatterplot-based library to support viewer explo-

ration of data in two-dimensions. The development of this library focused on supporting

viewer interaction, and therefore provides support for linked components such as legends,

as well as direct interactions such as mark selection. In addition, the library provides

programmer abstractions for constructing scatter-based visualizations using WebGL. With

available hooks, external components such as data tables can connect the marks in the

visualization to object metadata. The full implementation of the library is available as a

plugin on GitHub: https://github.com/uwgraphics/d3-twodim.

Through the development and use of the library in internal settings, a common interac-

tion paradigm began to emerge. A frequent method of interaction with the data would

be to select a particular subset of the data, and this “highlighted” data compared against

the base distribution of all points. To support this, d3-twodim supports message passing of

highlight events between components—helping components respond to adapting the con-

figuration to better support these subset views (see Figure 7.4). This highlight interaction

https://github.com/uwgraphics/d3-twodim
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Figure 7.4: A subset of points highlighted over the full set of texts under consideration.
Marks not in the highlighted set have a reduced opacity value, highlighting the set of marks
under consideration. Click and hover events allow a viewer to recover metadata and data
about individual marks through external components and pop-overs.

is baked into the library—all components must be responsive to this highlight mechanism

and adapt to emphasize the given subset.

To remain flexible in the visual representation, multiple encoding types are supported.

The modular design of the library permits programmers to add their own designs, given

the data supplied through the library. As an example, a hexagonal binning implementa-

tion can replace the traditional circle-mark scatterplot. Multiple rendering mechanisms

are supported, including 2D Canvas and WebGL. To support implementation of WebGL

techniques, we generated a low-level interface for visualization designers to take advantage

of WebGL. This interface provides only two drawing methods, but is sufficient to imple-

ment Splatterplots using the interface. The key insight here is to allow the programmer to

manage components such as textures, buffers, and the current viewport bounds of the data,

while abstracting the minutiae of blending methods and binding textures and buffers.
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With this interface, the library allows the programmer to set data, define color ramps,

and pass arbitrary shader code to the rendering methods. Utility code supports flattening

data objects, allocating space for buffers and textures, and computing sensical bounds for

the viewport. Once setting up the data source and other required buffers and textures,

the programmer can choose to call a drawPoints() or drawQuad() method, passing in

any uniform values, textures or buffers to bind, and the shader program to execute as an

anonymous JavaScript object. The drawPoints() method draws data from the buffer based

on two given dimensions for each data item, and positions the points based on the given

viewport bounds (which is converted inside the WebGL shim to screen-space coordinates).

In order to support more complex rendering methods (such as for Splatterplots; see

Figure 7.2), d3-twodim supports rendering directly to a texture. The drawQuad() texture

supports reading textures from previous rendering passes as the “input” data, enabling

pixel-by-pixel operations in the shader. This type of rendering is used extensively in the

SplatterJs rendering pipeline, such as blurring density data, shading individual groups, and

blending multiple series together. Though still operating at a low-level—the programmer

is responsible for developing working GLSL shader code—these abstractions reduce the

friction of dealing with functional WebGL code. As a proof-of-concept, Splatterplots have

been implemented in d3-twodim using these WebGL abstractions.

7.3 Discussion

The two engineering projects described within this chapter have stressed the need and

utility for methods that provide abstractions for visualization practitioners. These projects

presents avenues of solutions that take advantage of rendering techniques for data process-

ing (GPGPU algorithms) to make WebGL tenable for large data scale in the browser, and

abstractions for presenting scatterplot-like designs. The d3-twodim library delivered herein

helps to scaffold internal exploration and discussion of rich humanties data, providing a

visualization front-end component to support computational exploration of literary data.

Usable tools with which to design and implement visualizations is often the goal of

visualization researchers, but the engineering work tends to be undervalued in terms of
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academic contribution. In response, much visualization work presents code or abstractions

that work in a limited number of scenarios, generally limited to a particular data domain

or analysis scenario. Here, we have attempted to provide abstractions that support a

generalized set of scenarios and data, supporting the construction of scatterplot-like designs

for exploratory analysis. With the contributions of earlier chapters in this dissertation,

we hope to see such development of usable tools support a greater breadth of use cases,

including analysis scenarios for the development of machine learning models and generally

in data science. We expand on these ideas in the final chapter.



8 discussion

The use of overview to summarize data has been a long-standing goal of visualization [Card

and Mackinlay, 1997]. Many different approaches to help scaffold the potential solutions

have been proposed, either by minimizing the data before the visualization, or by novel

visualization techniques that aggregate and transform the visual representation to show

high-level information [Casner, 1991]. With the continued generation of data, scientists,

professionals, and the general public need a consistent, accurate visual representation in

order to interface with data that can affect their daily decision making.

In this thesis I have organized and categorized the methods and factors that lead to

effective summarization of data. Using published papers in the data visualization research

literature, we have gathered trends of different methods of data minimization and how it

affects the high-level information communicated by a resulting summary visualization.

Based on these results, we create an actionable framework for the effective use of scatterplot

and scatterplot-like designs at scale, proposing a host of factors that affect design. These

two organizations clarify the role of how factors can affect the type of summary afforded

by a visualization, and provides avenues to continue to build upon these organizations for

semi-automatic design selection for effective visualization.

We performed two case studies that utilized summary visualizations to deal with

large amounts of biological data. In the two scenarios, we applied an iterative design

methodology [Sedlmair et al., 2012a] to gather requirements, and derive designs that met

those requirements. Iteration on these designs involved the collection of factors that prompt

design decisions, including understanding how the scientists interacted with their data

(what tasks did they perform?) and the characteristics of their data (what is complex about

their data?). Within each case study, we describe how we made design decisions to address

the concerns of scalability and complexity, and describe how these design solutions can

be abstracted to similar problems in other data domains. We also describe how domain

experts were able to use these visualization systems to derive new insights to their own

data, helping to satisfy the goal of any visualization designer.

In the final chapter, we describe our early efforts to use these developed abstractions to

149
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drive abstractions for programming and designing visualizations. We take advantage of

the WebGL interface to use the graphics architecture as a parallelizable component that

can perform data-space aggregation that is screen-space aware, and seek to abstract its

usage through the d3-twodim library. With the two rendering methods (render buffer to

viewport or rendering multiple “input” textures to the viewport), we can promote per-

pixel computation to get the flexibility to define custom color space mixing and support

high-performing multi-step rendering processes. These methods help to create web-based

visualizations that scale to larger data volumes, while remaining responsive to interaction

by the viewer.

8.1 Utility of the Proposed Framework

All together, this work informs how visualizations can be made to more effectively sum-

marize large amounts of data for exploratory purposes. While the work presented herein

presents a foundation for effective summarization of data using visualization, there remains

a great deal of research to scaffold the design process for domain experts and visualization

practitioners.

While the framework has not been realized into an available prototype for practical use,

the organization presented within this dissertation both provides a process for visualization

design and informs potential assistive tools for designers. The design process is a wildly

open process, as noted by books on design [e.g., Williams, 2015] and for visualizations

specifically [cf. Sedlmair et al., 2012a]. Such a framework informed by this work can quickly

whittle away those combinations of design decisions that are not appropriate for the given

analysis or presentation goals. The process of design rationalization can be supported by

considering factors and attributes presented herein (purpose, data type, tasks to support,

characteristics of the data to communicate).

Chapter 4 describes the relationships between the factors of task, data characteristics,

and design decisions at a high-level. While not codified into a tool, the relationships

between these factors described within the chapter can help visualization designers to

select between methods. Figure 4.3 displays three types of scatterplot-like visualizations
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side-by-side: a traditional scatterplot, a contour map, and a Splatterplot. The limtations of

each design can be considered in order to support a more principled selection between

these designs. As an example, the contour plot describes multiple levels of per-series point

densities (additional fidelity to make more nuanced distributional judgments), but does not

display outlier points that lie outside contained regions. By constrast, Splatterplots does

display representative outliers (supporting tasks of identifying anomalies), but the design

thresholds density to a single level, preventing viewers from discerning different levels of

density within-series. While all design strategies have limitations, using the framework

in this manner can help to make more principled decisions and rationalize choosing a

particular visualization technique, given the analysis scenario at hand.

Chapter 3 describes these relationships at a high-level for summary visualizations in

general. Chapter 4 describes these at a practical level, identifying combinations of factors

that are or are not appropriate, given a potential design strategy. The scatterplot framework

can be considered actionable—that is, several relationships between proposed factors have

been proposed, and can be used to motivate the design rationalization process or populate

the “business logic” of a potential designer-focused, visualization authoring application.

The designer would retain ultimate control over the design of the visualization, but the

factors such as task and data would help focus the attention on relevant design decisions.

The organizations proposed within Chapters 3 and 4 are derived through source ma-

terial, and validated through statistical and logical means. The framework itself has not

been applied and evaluated empirically with designers in practice. This validation would

help to refine the grounded framework, and potential avenues toward this ultimate goal

are described in the following section.

8.2 Future Work

The work in this thesis raises issues and highlights limitations of how we consider and

evaluate the effectiveness of summary visualizations. While some of these issues are

discussed within their respective chapters, provided here is a high-level outline of future

work. The limitations of this work is discussed in the context of future work, championed
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by research goals that are tenable in both academia and industry.

• Task-Driven Design — The first two chapters address the factors that address design,

adapting the design process described in Munzner [2014]. These factors include the

tasks that viewers perform with the visualization, and the characteristics of the

data such as the dataset size, numbers and types of dimensions, and distributional

qualities. While identifying these factors and the designs that support them, we do

not provide an proportionate reductionist lens to the design decisions themselves.

In the scatterplot design chapter (Chapter 4), we cluster design decisions based on

their aggregate effects, but do not make judgments nor evaluate individual design

decisions on their task support. We see this work as providing the holistic foundation

for identifying the relevant factors for design, and future work would seek to quantify

and clarify the support for different analysis tasks. This work can take the form

of empirical evaluation with samples of the viewer population (the general public

or other target audience) or by holistic evaluation of different versions of a visual

analytics tool. With these results, we can then provide a matrix of design decisions

and their support for tasks under different data characteristics, enabling speculative

and semi-automatic design of visualizations.

While we have developed such a list of factors for scatterplots, there are many other

common visualization designs that do not have such tailored lists. Identifying com-

mon factors in data characteristics that lead to appropriate designs has been champi-

oned by Mackinlay et al. [2007] and used in the Tableau Desktop application. Rolling

in viewer task to help identify appropriate design decisions could help generate more

actionable visualizations for communicating and identifying anomalies and trends

in a given dataset. Generating and disseminating this type of organization can help

to organize (and discover) existing visualization techniques and identify areas of

opportunity for novel techniques and combination of design decisions.

• Validating Appropriate Design Decisions for Speculative Design — Building off

of task-driven design, semi-automatic and speculative scaffolding for the design

process can help practitioners build more effective visualizations. By raising the floor
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of effective design, such an approach can prevent domain scientists and practitioners

from making critical mistakes that may misrepresent their data. Work such as Lyra

[Satyanarayan and Heer, 2014] helps to support practitioners to create visualizations

without programming, but do not scaffold the design process with an understand-

ing of the factors that can affect design. By building factors into the programmer

abstractions provided by a visualization library, or by building analysis scenarios

into visualization design tools, more effective design defaults can be promoted. Work

in this area would codify appropriateness measures from studies such as those pre-

sented in Chapter 3 and 4 into software interfaces, which would then reduce the

space of design decisions available to the designer.

• Validating Visualization Best-Practices — “Best practices” with little empirical val-

idation have long been embedded into the design principles for information visu-

alization (see the discussion in Craft and Cairns [2005]). These practices are now

possible to verify with improved evaluative techniques from the fields of perceptual

psychology and human-computer interaction, such as crowd-sourcing perceptual ex-

periments. While validating or discovering discrepancies in unconfirmed, anecdotal

guidance may lead to new “tenets” of visualizations, work in this area also has the

attractive advantage of lighting up under-explored areas of the design space, where

no appropriate visual strategy exists for a particular combination of data, task, and

data reduction technique. While the work presented within this document does not

directly address longstanding best practices in visualization design, we supply the

groundwork and organizations upon which to build new tenets upon.

• Visualization in the Data Science Workflow — The role of the human in the data

science workflow has been somewhat understudied in the recent flurry of activity

in machine learning. With current advances in information visualization, the work

in this thesis addresses the challenges of using visualization for model verification,

feature validation, and context-forming. With respect to the protein classifier work

(Chapter 5), an attainable approach to these human-centered issues can be to treat the

machine learning model as a black-box for extensibility. Learning method-specific
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visualization has the risk of rapid obsolescence with the pace of technique innovation,

though success stories exist (see §5.2.2).

Such a visualization will help one evaluate the output of the model in the context

in which they are situated. How do the responses fare against human intuition? If

discrepancies arise, can they be correlated with input features, the construction of

the model, or correspondences within the data? Gauging the long-term vitality of

long-running models (e.g., Facebook’s News Feed or behavioral models) is also an

important consideration for research, especially as visualization can play a critical

role in discovering patterns through hypothesis formation, confirmation, and model

exploration. Understanding human-centered processes in the iteration process and

mapping these tasks to visualization-focused tasks can drive the development of

tailored visualizations. The use of visualization would help to more intimately

incorporate the viewer into the model development process.

• Visualization for the People — Data visualization has the unique ability to recast

large amounts of complex data into a general, digestible format. While the work

presented within this thesis is geared toward the “ideal” viewer or domain experts,

the general public has much greater variation in experience (§2.3.1) and visualization

literacy [Boy et al., 2014]. To ensure unbiased interpretation of graphics by a wide

audience, more research is needed in adapting visualizations for individual differ-

ences. This evaluation would be in conjunction with evaluating the appropriateness

of design techniques in a holistic manner with a diverse population. The ultimate

goal in this space would be to democratize data visualization—to ensure that everyone

can use visualization, and that everyone can design effective visualization.

The phenomenon of data journalism, in particular, has begun to introduce visualiza-

tions into the public discourse. It is becoming more and more important, therefore,

for the public to be able to evaluate and critique these visualizations, to both under-

stand what the visualization shows and to build trust in the message that it conveys.

Creating a scaffold for how we discuss and critique visualization will likely lead

to the genesis of critical visualization, similar to the subfield of critical cartography,
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where the message and context of a visualization are evaluated in situ. With the

proliferation of open data, there is a great opportunity to enable greater participation

and vetting of systems that are constructed to serve the public through visualization

to equalize the power relationship: evaluating budget priorities, exposing services

available to the public, and illustrating the potential ramifications of implementing

laws. Visualization in this space would enable very unique opportunities for collabo-

ration with local government, journalists, and social science researchers, as well as

serving as a potential application for performing data science research for societal

good.

The work presented in this document supports the thesis that effective design of sum-

mary visualizations can be determined by the methods of data reduction, viewer tasks, and

data characteristics. By providing organizations and example case studies of exploration-

focused visualizations, I have built a foundation upon which to build and concretize this

theory of task- and other factor-driven design of summary visualization. The greatest

challenge is to bring these organizations and guidance developed to support the design

of visualizations towards addressing current challenges in science, communication, and

decision making.
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