
MNTP: Enhancing Time Synchronization for Mobile
Devices

Sathiya Kumaran Mani†, Ramakrishnan Durairajan†, Paul Barford†+, Joel Sommers*

{sathiya,rkrish,pb}@cs.wisc.edu, jsommers@colgate.edu
†University of Wisconsin - Madison +comScore, Inc. *Colgate University

ABSTRACT
Clock synchronization between Internet hosts is important

in a variety of applications including gaming, finance and
measurement. While clock synchronization issues in wireline
networks have been well studied, mobile hosts present chal-
lenges that have not received as much attention. In this paper,
we describe a study of clock synchronization in mobile hosts,
which often implement a simplified version of the Network
Time Protocol (NTP), known as SNTP, due to resource con-
straints typical of mobile devices. We begin by reporting an
analysis of logs from NTP servers that highlights the signifi-
cant differences in synchronization behavior of wireline vs.
wireless hosts. This analysis motivates a laboratory-based
study of the details of clock synchronization on mobile hosts,
which reveals the causes and extent to which synchronization
can become misaligned. We then describe a new protocol
that we call Mobile NTP (MNTP), which is designed to be
simple, efficient and easy to deploy. We implement MNTP
on a wireless laptop and demonstrate its capability over a
range of operating conditions. We find that MNTP maintains
clock synchronization to within 25ms of a reference clock,
which is over 12 times better than standard SNTP.

CCS Concepts
•Networks → Network protocol design; Mobile net-

works;

Keywords: SNTP; Wireless; Mobile; Time; Measurement

1. INTRODUCTION
The notion of time and the invention of mechanisms to

track it have a long history. One perhaps inevitable aspect
of time was the need to synchronizing clocks in separate

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

IMC 2016, November 14-16, 2016, Santa Monica, CA, USA
© 2016 ACM. ISBN 978-1-4503-4526-2/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2987443.2987484

geographic locations. This capability first emerged in earnest
in the 19th century to enable complex railway schedules to
be managed [48]. Modern computing and communication
systems rely intrinsically on time synchronization for basic
operation and in a wide variety of distributed applications.

The basic operation of time synchronization in a distributed
environment assumes the presence of a high precision ref-
erence clock, which serves as the source of accurate time
for other systems. Remote systems interact with the ref-
erence clock periodically to synchronize (discipline) their
local clock. The primary challenges in such a distributed
environment are (i) the variation in crystal oscillator qual-
ity and environmental conditions (which determine clock
drift1), (ii) characteristics of the network paths that separate
the remote host from the reference clock (which can limit
synchronization accuracy [21]), and (iii) the protocol that is
used to discipline the clock on the remote host.

The efforts of Mills led to standardization of the Network
Time Protocol (NTP) in 1985 [37]. NTP is widely used in the
Internet today. At its core are high precision reference clocks
(typically atomic clocks or GPS-based clocks) that form the
foundation of a widely distributed hierarchy of public time
servers. The protocol mechanisms are based on periodic ex-
changes of information between clients and servers. However,
the specific behavior of any particular client and its level of
synchronization with a server can vary widely [52]. Further-
more, for devices that do not require all the performance and
accuracy benefits of NTP, a subset of NTP called Simple NTP
(SNTP) [39] is used.

While the use of mobile computing devices, including
smartphones, has exploded over the past decade, to the best
of our knowledge, very little attention has been paid to their
particular challenges for time synchronization. We argue
that the need for tight time synchronization for applications
such as gaming, finance and measurement will become in-
creasingly important as mobile handset use continues to grow.
We also argue that several of the key challenges for time
synchronization noted above—in particular, the possibility
of dramatic changes in environmental conditions and highly
variable path conditions between clients and servers—require
detailed consideration in order to understand the efficacy of
standard approaches.
1In this study, we follow the definitions described in §2 of Paxson et al. [45]
for the terms drift, offset, skew and accuracy.

http://dx.doi.org/10.1145/2987443.2987484


In this paper, we address the issue of time synchronization
in mobile systems. Our first objective is to understand the
time synchronization behavior of mobile hosts in the Internet
today. Our specific objective is to assess the time synchro-
nization protocols and configurations that are used by mobile
clients and in particular the one-way delay latencies that they
experience, which can limit synchronization. This aspect of
our study serves as a baseline for the second part of our inves-
tigation. Specifically, our second objective is to understand
the range of behaviors of mobile time synchronization under
a range of wireless operating conditions. This leads to the
final component of our study, which is the specification and
examination of Mobile NTP (MNTP), a new protocol for
time synchronization of mobile clients.

We begin our study by examining logs gathered from 19
NTP servers located in the US over a period of 24 hours.
Our focus is on the wireless hosts that are identified in the
logs using simple heuristics based on their IP addresses. The
logs include time synchronization requests from over 86,312
unique US mobile hosts. The logs reveal that over 95% of
the mobile hosts use the SNTP simplifications to NTP for
synchronization. The logs also reveal that typical one-way
delays (OWD) to mobile hosts vary between 1ms to 997ms.
The combination of the use of SNTP and highly variable
OWDs suggests that tight time synchronization in mobile
hosts is likely to be quite challenging.

We expand our examination by conducting a series of con-
trolled laboratory experiments. The focus of these efforts is to
assess the impact of SNTP and variable path conditions on the
ability of mobile hosts to synchronize with a reference server.
To facilitate repeatability of our laboratory experiments, we
develop a scriptable tool which is able to modify the transmis-
sion power of a wireless base station as well as flexibly inject
different forms of cross-traffic in order to create a wide range
of wireless network conditions. From our experiments using
this tool, we find that the time offsets—the measured differ-
ence between our clock’s time and the ‘true’ time according
to the national standards—relative to a reference server are
highly variable in all wireless settings compared with similar
experiments carried out using a wired network. A wireless
host running SNTP with the same clock hardware under the
same ambient temperature conditions, achieves time offsets
with a mean of 4ms and standard deviation of 7ms on a wired
network compared to time offsets with a mean of 31ms and
standard deviation of 47ms on a wireless network.

Motivated by the findings from our laboratory experiments,
we next describe Mobile NTP (MNTP). MNTP is designed
for mobile hosts, which are assumed to experience highly
variable and lossy channel conditions that present challenges
for standard time synchronization protocols. As a result, the
core idea in MNTP is cross-layer-awareness of wireless chan-
nel conditions. MNTP is designed to be simple and easily
deployable, with minimal modifications to the SNTP imple-
mentation of mobile hosts. MNTP is resistant to both clock
drift and variability and lossy channel conditions, while still
operating in a lightweight manner, thereby enabling accurate
time synchronization for mobile devices.

We demonstrate the capabilities of MNTP in a laboratory
setting over a range of operating conditions. Using the same
laboratory testbed as our initial experiments, we compare
MNTP’s synchronization accuracy with SNTP2 by compar-
ing the offset measurements that would be used to discipline
the local clock. In our evaluations, we find that MNTP offers
dramatic improvement over SNTP. In one particular experi-
ment in which we allow the local NTP process to update the
system clock, we find that MNTP’s maximum offset is 23ms,
and its average is 12 time better than for SNTP.

The remainder of this paper is organized as follows. In §2
we provide background on NTP and the SNTP. We present
our empirical study of NTP based on NTP server logs and
laboratory-based experiments, which focuses specifically on
wireless hosts, in §3. This is followed by a description of
MNTP in §4. We demonstrate the capabilities of MNTP and
compare it to SNTP in §5. Next, we provide a review of
related literature in §6. Finally, we summarize and discuss
future work in §7.

2. BACKGROUND
Various applications and services hosted on telecommu-

nication networks require accurate time synchronization for
correct and consistent operation. Achieving this requirement
is complicated by clock drift, which is caused by differences
in environmental conditions or crystal oscillator quality and
leads to clocks advancing at different rates. To maintain clock
synchronization among independently running networked-
hosts, the Network Time Protocol (NTP) was created in 1985
(RFC 958 [37]). Due to the heterogeneity of computing and
network devices (e.g., mobile phones vs. routers vs. desk-
tops) and their varying requirements (e.g., tolerance to less
accurate time vs. bandwidth vs. battery life), several variants
of NTP including the Simple Network Time Protocol (SNTP)
(RFC 1769 [39]) and Precision Time Protocol (PTP) [27]
have been developed.

Precise time estimates from a hierarchy of time sources
(also known as stratum servers) can be obtained using NTP,
SNTP or PTP. At the top-level of the hierarchy are stratum
0 servers. GPS receivers and/or atomic crystals are used
by these high-quality time sources to correct clock drifts.
Stratum 0s offer highly-precise time estimates to stratum
1 servers, i.e., to servers in the next level of the hierarchy.
Stratum 1s are also referred to as primary servers. Secondary
or stratum 2 servers connect to stratum 1s, and so on, all the
way down to stratum 15. Stratum servers typically respond
with time estimates for synchronization requests from a wide
variety of hosts supporting any of the three protocol variants.
Hosts in the Internet synchronize time with multiple stratum
servers, typically at level 2 or higher.

Wired Internet hosts traditionally run the ntpd daemon
in order to synchronize their clock using NTP. This software
implements several NTP-standard filtering heuristics to select
the best time samples from the stratum servers. ntpd oper-
ates by exchanging timestamps with its reference servers (in
2We do not compare against NTP (which uses an exhaustive filtering and
selection pipeline for accepting packets) but plan to do so in future work.



a process called polling). The polling behavior is governed
by the clock discipline algorithm [7] and, as part of this proce-
dure, ntpd determines the optimal polling interval from the
measured round-trip delay, jitter and oscillator frequency [9].

Unlike the hosts in the wired Internet (e.g., routers, desk-
tops, and traditional laptops), wireless hosts such as mobile
devices typically use SNTP to acquire time estimates from
stratum servers. SNTP sets all fields in an NTP packet to zero
except the first octet and does not employ the sophisticated
clock correction and filtering algorithms of NTP. Hence the
accuracy of the time estimates obtained using SNTP are al-
ways lower [39]. Besides SNTP, wireless devices also support
a mechanism called Network Identity and Time Zone (NITZ)
to update clocks in a one-off fashion [5, 6]. NITZ is a weaker
mechanism to obtain time information as the estimates are
not obtained in a periodic fashion like NTP and are dependent
on the device crossing a network boundary.

In addition to the issues in SNTP and NITZ, commodity
operation systems (OS) shipped with wireless hosts inhibit
accurate clock synchronization due to a variety of vendor-
specific implementations, including differing frequencies at
which the synchronization requests are emitted and number
of retries on prior request failures. Specifically, upon detailed
analysis of code from Android’s codebase [1], we found
that Android SNTP implementations poll once a day if data
from NITZ are unavailable. To further aggravate the issue,
Android performs only three retries upon error and updates
the system time only if the estimate differs by more than
5000ms. Similarly, the Windows Mobile OS updates the
system clock once every 7 days. Even if the synchronization
request fails, no further retries are sent.

3. CLOCK SYNCHRONIZATION OVER
WIRELESS LINKS

In this section, we analyze the problem of accurate clock
synchronization in mobile hosts. We begin by examining
NTP server logs3 and classifying clients as wired or wireless.
We then discuss the basic characteristics of latencies for the
various hosts identified in the logs. Next, we describe a series
of laboratory-based experiments conducted with wired and
wireless hosts that are designed to quantify the extent of time
skew, which is defined as the measured frequency difference
between our clock and the ‘true’ time clock, in these devices.
We conclude by discussing the results from the logs and
experiments, which motivate the need for a new scheme for
mobile host clock synchronization.

3.1 NTP Server Logs
Dataset. In this study, we rely on a new source of net-

work latency measurements—passively collected traffic from
NTP servers. We reached out and explained our research
objectives4 to several NTP server administrators. Eight ad-
ministrators responded positively with tcpdump traces from
3To preserve anonymity, NTP server and service provider names (in results)
are removed.
4We carefully selected a number of NTP administrators from pool.ntp.org
based on server location and stratum, and explained our goals here: http:
//ntp-study.cs.wisc.edu/

a total of 19 NTP servers across 9 states in the US. We de-
veloped a light-weight tool based on netdissect.h and
print-ntp.c, available as part of [15], to process the logs
and extracted relevant information such as total number of
unique clients, one-way delays (OWD) to and from NTP
servers and the time synchronization protocol used using the
filtering heuristic described in Durairajan et al. [23]. The
heuristic is necessary to infer the state of synchronization of
the client’s clock with respect to the NTP server, in order to
eliminate invalid latency measurements.

Basic Characteristics. Table 1 summarizes the basic
statistics and some key attributes of the 19 NTP servers such
as a server’s stratum number, IP version, total number of mea-
surements collected, and number of distinct clients. The NTP
servers used in our study include 5 stratum 1’s and 14 stratum
2’s with a combination of both IPv4 and IPv6 support. This
dataset, collected over a period of one day, include a total
of 209,447,922 OWD measurements to 17,823,505 unique
clients, as indicated by the unique number of IP addresses
seen in server logs.

Wired vs. Wireless. To classify the hosts seen in the NTP
logs into wired or wireless, we use Team Cymru’s IP-to-ASN
mapping service [16] and group hosts based on AS number
and provider name in hostnames. We follow a simple process
that leverages keywords and provider names (e.g., mobile,
cloud, Amazon, Sprint, etc.) present in hostnames to classify
clients into various service provider categories (described
below). Even though the keyword-based classification is
fairly rudimentary, we argue that it is sufficient enough to
highlight wired vs. wireless service providers.

Figure 1-(left) shows a comparison of the minimum OWDs
of clients belonging to various service providers that are listed
based on the average of minimum OWDs as seen in logs of
three NTP servers5. Four categories of latency characteris-
tics are evident: (1) cloud and hosting providers (SP 1–3)
exhibit very low minimum OWDs with a median of 40ms,
(2) Internet service providers (SP 4–9) show a medium trend
with a median of 50ms minOWDs, (3) broadband providers
(SP 10–21) exhibit high latency characteristics with median
delays of about 250ms, and (4) mobile providers (SP 22–25)
exhibit very high latencies with high interquartile ranges and
median latencies as high as 550ms. To complement the la-
tency characteristics shown in Figure 1-(right), we plot the
distribution of minimum OWDs of clients belonging to top
25 service providers, which are ranked based on the number
of unique IP addresses, as depicted in Figure 1-(left). One
of the striking characteristic of the extracted latencies is the
linear trend of the mobile providers (note SP 22–25). We
hypothesize that this characteristic is related to the broader
geographic distribution of mobile wireless clients compared
with fixed-location wireline clients. For all servers, 50% of
the hosts from the three mobile providers exhibit a latency of
more than 400ms and this observation is consistent across all
the 19 NTP servers.

5The remaining 16 NTP servers exhibited similar characteristics and are not
shown here due to space constraints.

pool.ntp.org
http://ntp-study.cs.wisc.edu/
http://ntp-study.cs.wisc.edu/


Table 1: Summary of client statistics seen in the NTP logs.
Server ID AG1 CI1 CI2 CI3 CI4 EN1 EN2 JW1 JW2 MW1 MW2 MW3 MW4 MI1 SU1 UI1 UI2 UI3 PP1
Unique Clients 639,704 606 359 335 262 228 232 12,769 35,548 2,746 9,482,918 1,141,163 2,525,072 1,078,308 21,101 36,559 18,925 1,77,957 128,644
Server Stratum 2 2 2 2 2 2 2 1 1 1 2 2 2 1 1 2 2 2 2
IP Version v4 v4/v6 v4/v6 v4/v6 v4/v6 v4/v6 v4/v6 v4 v4 v4 v4 v4 v4 v4 v4/v6 v4 v4 v4 v4/v6
Total Measurements 9,988,576 1,480,571 1,268,928 812,104 7,63,847 4,11,253 4,37,440 3,54,530 8,69,721 1,97,900 46,232,069 10,948,402 11,126,121 63,907,095 16,404,882 18,426,282 14,194,081 9,254,843 2,369,277

Figure 1: Comparison of minimum OWDs of clients of different service providers seen in the logs of NTP AG1 (top-left),
JW2 (middle-left) and SU1 (bottom-left). CDF of minimum OWDs of clients of different service providers seen in the
logs of NTP servers AG1 (top-right), JW2 (middle-right) and SU1 (bottom-right).

SNTP vs. NTP. Next, we classify the hosts into SNTP or
NTP based on the protocol used for clock synchronization, as
seen from the tcpdump traces of the servers. Figure 2-(left)

shows the percentage of SNTP vs. NTP hosts seen across
the 19 NTP servers, where a majority of hosts seen across
all servers (except CI1-4 and EN1-2, which are ISP-specific



NTP servers) use SNTP to synchronize time. For each server,
we also calculate the percentage of SNTP vs. NTP clients
for the top 25 service providers observed in the NTP logs
and find that over 95% of the clients of mobile providers
use SNTP—a result consistent with other information (e.g.,
Android codebase [1]). Because of simplifications in SNTP
compared with NTP, we can expect these hosts not to be able
to synchronize with the same level of accuracy as full NTP
clients. We seek to quantify this limitation, next.

3.2 Wireless Experiments
In this section, we seek answers to the question: what is the

combined impact of wireless effects such as channel fading,
interference due to adjacent channels, signal attenuation, etc.
on time synchronization procedure used by mobile hosts? To
address this question, we use the laboratory-based wireless
testbed shown in Figure 3. The architecture of our testbed is
designed to provide control over network delay characteris-
tics, e.g., to repeatably introduce large and variable delays,
with the goal of evaluating the presence of wireless hop(s) on
SNTP-based time synchronization between hosts and their
corresponding references. Our testbed consists of three types
of nodes: (1) a wireless access point, (2) a target node, and
(3) a monitor node.

For the wireless access point (WAP) in our testbed, we
turn a laptop with a 802.11 b/g/n wireless adaptor into a WiFi
hotspot. The WAP is connected to the wired Internet and
shares its connection to the other nodes in the testbed. Both
the monitor node (MN) and the target node (TN) are associ-
ated with the WAP, making the last hop completely wireless.
The WAP has the ability to programmatically increase or
decrease the transmission power (within legal limits) of the
wireless adaptor upon receiving commands from the MN.

SNTP and NTP measurements are all launched from the tar-
get node (TN) in the testbed. When TN is booted, it is config-
ured to use its default OS-specific NTP server such that TN’s
system clock is in tight synchronization throughout the exper-
iments. In our experiments, the TN is a Macbook pro laptop
and the default NTP server used is time.apple.com. Once the
TN has achieved synchronization with its OS-specific NTP
server, we record TN’s system clock offset—which we call
the true time offset—obtained by using the ntpq utility as
the baseline in our evaluations. We launch SNTP requests to
0.pool.ntp.org (also known as a pool server) to get the
SNTP-based time estimates from a remote reference clock
over the wireless network6. Every SNTP request to the pool
server is randomly assigned to a new NTP time reference
enabling unbiased time server selection. All responses from
the pool servers include exact time at the remote NTP server
and TN’s clock offset with respect to remote server’s clock.
We compare these reported offsets with the true time offset to
quantify the effect of the wireless hop on clock synchroniza-
tion. The TN also sends statistics collected through active
measurement to the MN using tools like ping, which are tar-
geted to a user-configured probe destination. To characterize
6We note that the use of an NTP pool server is commonly employed in
mobile wireless devices, such as Android-based devices.

the impact of the wireless hop on the time estimates obtained
from reference servers, all experiments were repeated by
connecting the TN to the wired Internet.

The monitor node (MN) in the testbed manipulates the
delay and variability characteristics in the wireless last
hop which are required for our experiments. In order
to achieve the required characteristics, the MN employs
two strategies: (i) the WAP’s outgoing Internet connection
is occupied intermittently by downloading a large file at
random intervals from a fixed download destination (i.e.,
ubuntu.com/download), and (ii) control commands are
sent to the WAP to randomly increase or decrease the WAP’s
transmission power and file download frequency. The chan-
nel occupancy is determined by the file download pattern and
duration of the traffic and are automatically tuned at the MN
based on channel statistics reported by the TN. Specifically,
if the latencies of ping probes reported by TN increases, as
observed from the number of packet losses in ping probes, the
file download frequency is decreased and the transmission
power value is increased thereby making the channel less
lossy and dynamic. Otherwise, the frequency of downloads
and transmission power are increased and decreased respec-
tively. Once the channel stabilizes, as denoted by no packet
losses in ping traffic, our tool automatically responds by a
decrease in transmission power and increase in download
frequency, making the channel conditions variable and lossy
at random intervals.

We note that wireless experiments that include interference
using our scriptable tool are difficult to repeat exactly since
we are experimenting in a live environment. However, we
argue that repeating the same set of experimental steps will
lead to results that have the similar statistical properties to
those we report. In addition, the RTS/CTS feature which
is used to help cope with hidden-terminal situations was
disabled for the experiments described below. Given the
introduction of additional variable delays due to RTS/CTS,
we would expect the performance of SNTP to be even worse
with this feature enabled.

Figure 4 shows the SNTP time offsets reported by the TN
with (left) and without (right) reference to a NTP time source
from 0.pool.ntp.org. Specifically, the figures depict the
clock offsets reported from SNTP when the TN is connected
to the (1) wired network with and without NTP time as base-
line and (2) wireless network with and without NTP time
reference. From these figures, the impact of a variable and
lossy wireless channel on the time synchronization is clearly
evident. In particular, the mean and standard deviation of the
offset for the wireless experiments with NTP clock correc-
tion7 are 31ms and 47ms, and for the experiments without
clock correction they are 118ms and 133ms. In contrast, on a
wired network, when TN’s system clock is corrected using
NTP, the offsets reported by SNTP requests with respect to
7We use the term ‘NTP clock correction’ to refer to the scenario where TN’s
system clock is corrected using NTP—specifically, using NTP’s sophisti-
cated sample filtering and clock selection heuristics. Furthermore, SNTP
only reports the offset of TN’s system clock with respect to the NTP time
source (0.pool.ntp.org). This helps us measure the error in the clock
offsets reported by SNTP relative to an expected clock offset of 0ms.



Figure 2: Percentage of clients in the US seen in logs of 19 NTP servers (left) and top 25 service providers seen in logs of
SU1 NTP server (right) using NTP and SNTP protocol.

Figure 3: Laboratory-based experiment testbed.

the reference clocks are always close to 0ms. Even when
the clock correction is suspended on a wired network, the
drift is steady and is dependent on the temperature of the
vendor-specific oscillator present in the device.

In a network with varying load and delay characteristics,
which is not atypical in wireless deployments [18], the off-
sets obtained from SNTP requests often exhibit high variance
as shown in Figure 4-(left) (in green), despite NTP correct-
ing TN’s system clock. For example, the offset was as bad
as 600ms compared to the NTP reference clock during a
highly-varying and lossy channel condition (at x=245), which
was absent in the wired counterpart of the experiment. Fur-
thermore, the presence of a wireless hop and the impact of
channel effects on clock synchronization is more pronounced
in the absence of an NTP-based reference clock as shown
in Figure 4-(right), where the reported SNTP offsets were
as bad as 1.58s (at x=522). We also considered different
hardware platforms and repeated the experiments at different
times of the day to verify this behavior. We do not show
results of these additional configurations due to space con-
straints, but what we found in our experiments was that the

time synchronization mechanism is susceptible to wireless
effects, regardless of hardware platforms and/or time of the
day.

3.3 Cellular Network Experiments
We repeat the experiments described in §3.2 by replacing

the TN with a mobile phone—specifically, Samsung Galaxy
S4 with Android OS v4.4.4 (KitKat)—and ran the experi-
ments for 3 hours on a 4G network (of SP 22) without MN
and download traffic. To establish a baseline time for com-
parisons, we use the SmartTimeSync app [13] to correct the
device’s system clock. To obtain SNTP offsets from the time
source (0.pool.ntp.org), we use SNTP Time app [10].
Since the SNTP Time app does not support logging capability,
we modified the codebase given here [11] to log the SNTP
offsets computed against the system clock that is corrected
using GPS fixes. Figure 5 shows the clock offset reported by
SNTP Time app after GPS correction. We see in the figure
that the reported SNTP offset can vary significantly, and was
as high as 840ms. Overall, the mean offset was 192ms with a
standard deviation of 55ms. Similar to §3.2, we repeated the
experiments multiple times at different times of the day and
found the poor synchronization behavior to hold across the
runs.

3.4 Discussion
A natural question is whether GPS or NTP might be used

to correct major clock offsets in mobile and wireless devices.
We argue that using GPS-based time synchronization is not
a widely applicable solution, as many mobile and wireless
devices have minimal or no support for GPS, especially in
the developing world. Even if the devices have a built-in
GPS receiver or support for a GPS module, vendor-specific
OS implementations (e.g., iOS) often prohibit GPS-based
time synchronization [3, 4]. Moreover, GPS availability can
depend on location (e.g., GPS valleys such as building and
tunnels) and has been observed to be power-hungry in mobile
devices [43, 51]. Should these limitations resolve at some
point in the future, the GPS would be an attractive option.



Figure 4: Comparison of SNTP clock offsets in wired vs. wireless environments with (left) and without (right) NTP clock
correction.

Figure 5: SNTP clock offsets reported by mobile host on
a 4G network.

Using NTP for time synchronization is also a less attractive
solution for mobile devices because of its heavier-weight
communication characteristics, including periodic polling
behavior and requirement to maintain state at the devices.
We posit that these characteristics are ill-suited for mobile
devices and would have a negative impact on battery life due
to the following two reasons. First, an outcome of NTP’s
polling algorithm is that a time source is polled intermittently
with ∼128B of data by the client. A measurement study by
Balasubramanian et al. has shown that a few 100B transfers
periodically on mobile phones with 3G/GSM technology
can consume more energy than bulk one-shot transfers [19].
Second, another effort by Haverinen et al. showed that UDP-
based protocols (such as NTP) require frequent keep-alive
messages to maintain state at the devices, which in turn can
lead to short battery lifetimes [26].

Main Findings and Implications. SNTP uses clock off-
set to update the local clock directly and none of the time-
tested filtering algorithms as would be used in a full NTP
client. As a result, the significant and highly variable offsets
we observe have a direct impact on the synchronization of
the client’s clock. Because of the disadvantages of using a

GPS- and NTP-based clock synchronization, SNTP has been
widely deployed on mobile devices, but as our experiments
show, it provides poor time synchronization. These findings
call for a new clock synchronization mechanism or the need
to modify an existing mechanism to support mobile/wireless
devices.

4. MNTP DESIGN
To enhance the accuracy of the time synchronization under

varying and lossy conditions described in §3, we contend
that mobile devices should dynamically adapt to the channel
conditions and pace their requests to reference servers based
on the collected channel information. In order to decide when
to emit SNTP requests to servers during ideal channel condi-
tions, we must answer the following three questions:

• What wireless channel information should devices use to
detect an ideal/stable portion of the channel?

• Over what timescale should the wireless environment be
monitored to identify an ideal channel condition?

• At what interval (across ideal conditions) should requests
be sent to synchronize devices with reference(s)?

In this section, we attempt to answer these questions and use
the answers to guide the design of Mobile NTP, a lightweight,
simple and easy-to-deploy modification of SNTP, which im-
proves clock synchronization for mobile devices.

4.1 Measured Channel Information
Similar to §3.2, we monitor the following channel infor-

mation (or wireless hints)—specifically, Received Signal
Strength Indication (RSSI) (in decibels) and noise level (in
decibels)—to calculate the Signal-to-Noise Ratio (SNR) mar-
gin (defined as RSSI - Noise) and guide the establishment of
ideal channel conditions (§4.2) at the host, which needs its
clock synchronized with a time reference. We obtain these
hints directly from the wireless adaptor of the wireless device.
We note that all these hints, among other information, can
easily be obtained for a variety of hardware platforms. For



example, the wireless hints for mobile devices can be mea-
sured using techniques and tools available as part of Zhang
et al. [54]. Similarly, for Mac OS-, Windows OS-, and linux-
based laptops, the wireless hints from the channel can be
obtained using the airport utility (for Mac), iwconfig utility
(for linux) and other free surveying tools [17].

Algorithm 1: MNTP clock synchronization algorithm
input :warmupPeriod = time to estimate clock offsets
input :warmupWaitTime = interval between requests in

warmupPeriod
input :regularWaitTime = interval between requests in

regularPeriod
input :resetPeriod = duration of warm-up plus regular

periods

1 inWarmup = True
2 recordedO f f sets = {}
3 dri f tEst = None
4 if inWarmup then

// Acquire offset only when channel is

stable

5 wait(favorableSNRCondition())
6 o f f set = getOffsetUsingMultipleSources()
7 if accept(o f f set) then
8 measureSystemClock(o f f set)
9 recordedOffsets.add(o f f set)

10 wait(warmupWaitTime)
11 if exitingWarmup then
12 dri f tEst = estimateDrift(recordedO f f sets)
13 inWarmup = False

14 goto Step 4

15 else
16 correctSystemClockDrift(dri f tEst)

// Acquire offset only when channel is

stable

17 wait(favorableSNRCondition())
18 o f f set = getOffsetUsingSingleSource()
19 if accept(o f f set) then
20 correctSystemClock(o f f set)
21 recordedOffsets.add(o f f set)

22 wait(regularWaitTime)
23 if elapsed(resetPeriod) then
24 goto Step 1

25 else
26 goto Step 4

27 Function estimateDrift(recordedO f f sets)
28 trendLine = leastSquaresFit(recordedO f f sets)
29 dri f tEst = getSlope(trendLine)
30 return dri f tEst

4.2 MNTP Overview and Algorithm
Overview. In this section, we describe a new clock syn-

chronization protocol called MNTP. MNTP is sensitive to

varying channel conditions and reuses/sends SNTP requests
in a channel-aware fashion based on wireless hints from the
channel. Using the wireless hints that are captured from
the device (as described above), we monitor the channel for
stable and less-dynamic portions and pace the clock synchro-
nization such that we send the SNTP requests only during
those identified stable channel conditions—the twin goals of
MNTP.

Algorithm. The key steps of MNTP are shown in Algo-
rithm 1. The algorithm starts with identification and estab-
lishment of ideal channel conditions and needs the following:
(1) baseline thresholds for the wireless hints to filter bad off-
sets and (2) time period over which the channel should be
observed so that SNTP requests can be emitted.

To create a baseline threshold for the wireless hints, we
set the values of RSSI, noise and SNR margin to be -75 dB,
-70 dB and 20 dB respectively. That is, RSSI value should be
greater than -75 dB, noise level should be lesser than -70 dB
and the SNR margin should be greater than or equal to 20 dB.
These values are not arbitrary, rather they emerged through an
iterative process of refining our experiments and information
given in online forums [2,12,14]. In our experiments, we find
that the baseline thresholds work effectively, but we expect
that these parameters would likely need fine tuning for other
external or outdoor settings.

We follow a two-part approach in MNTP’s design to
determine the time period over which the channel should
be monitored and requests can be sent to reference clocks.
The first part of the algorithm is the warm-up phase (steps
4 to 14), where the wireless host is put on a test pe-
riod for warmupPeriod time at the start of the device
and/or the algorithm. In this test period, the channel
condition is determined based on the measured wireless
hints (step 5) and SNTP requests are emitted to three
reference clocks. Specifically, the SNTP requests are
emitted to 0.pool.ntp.org, 1.pool.ntp.org and
3.pool.ntp.org, on every warmupWaitTime interval, in
parallel, till the warmupPeriod (step 6). These requests are
emitted only when the measured wireless hints satisfy the
established baseline thresholds. Otherwise the synchroniza-
tion requests are deferred. For the offset responses received
from time sources, we follow the philosophy of NTP’s clock
selection heuristic [8]. We calculate the mean and standard
deviation of the offsets and classify the time sources whose
offsets exceed the mean plus one standard deviation as false
tickers. We reject the false tickers to ensure very tight clock
synchronization.

Since a network could be completely lossy at the start of
clock synchronization, we may not be able to emit any SNTP
requests. To address this issue, we wait until the network
conditions are favorable and record 10 offset values reported
by SNTP to create a trend line for the clock skew or clock
drift (steps 7 to 9). The waiting time is determined by the
warmupPeriod and warmupWaitTime variables, which are
user-tunable parameters and which depend on the level of
accuracy needed by users of the apps installed on hosts. It
is possible that our algorithm never perceives the network
conditions to be favorable, or at least not over a very long



period of time. In this work, we do not consider such perpet-
ually unstable network conditions and plan to address such
scenarios in future work.

Once the initial trend is created, the direction of the sub-
sequent reported offsets is determined based on the estab-
lished trend line and an accept or reject decision is made.
Specifically, we find the squared error of each of the reported
offset with respect to the fitted trend line and then extend the
trend line to get an estimate of where the next sample should
be. Next, we calculate the error of the reported offsets with
respect to this estimate. If the square of that error is one stan-
dard deviation above or below the mean, then we reject the
reported offset. Otherwise the offset is accepted and the trend
line is extended (steps 11 to 14). MNTP’s filtering capability
ensures accurate clock synchronization by rejecting large off-
sets as we show in §5. Since the clock skews are not always
linear and the constant skew factor of the clock dominates
its variable counterpart [42], we fit a trend line using least
squares polynomial fit with a first degree polynomial. We
note that our algorithm does not make any assumptions about
linearity in clock skew.

Finally, once the trend lines are determined and when
the warm-up phase is complete, MNTP starts the regular
phase for clock synchronization. Note that the actual clock
update happens only during the second part of the algorithm
(steps 16 to 26). This step is similar to the warm-up phase
with the exception of two things: (i) the interval at which
the requests are emitted to references, which is based on
the regularWaitTime variable; and (ii) SNTP requests are
emitted to a single reference clock only. The actual clock
update and drift correction mechanisms vary, depending on
vendor-specific system calls available to MNTP.

Advantages. MNTP has the following advantages over
standard SNTP for clock synchronization. First, MNTP is
efficient in terms of how the synchronization requests are
paced and emitted based on the wireless channel conditions.
In addition, simple examination of MNTP’s CPU utilization
during tests indicate loads less than 0.5%. Our initial focus
on efficiency has been from a network load perspective and
even though MNTP’s CPU impact is low, we intend to con-
sider the efficiency of our implementation from a system load
perspective in future work. Next, MNTP algorithm (Algo-
rithm 1) is implemented in about 274 lines of python code8,
which conveys the fact that MNTP is simple. Next, MNTP
is also easily deployable with minimal support from the end
hosts. Specifically, the only support needed form the wireless
hosts is that the wireless host should allow MNTP to measure
wireless hints. Finally, MNTP can also offer accurate clock
synchronization to wireless/mobile devices as explained in
§5.

5. MNTP EVALUATION
In this section, we evaluate the clock synchronization

accuracy of MNTP compared with an unmodified SNTP
8We have open-sourced our MNTP implementation and it is available for
download at https://github.com/satkum/mntp

implementation. We begin by conducting a set of base-
line laboratory-based experiments with SNTP and MNTP
in which synchronization requests are emitted every 5 sec-
onds for one hour during varying channel conditions using
the same experimental setup (including noise generation) as
in §3. In these experiments, we do not consider warmup
and regular periods, and we switched off the drift correction
feature in MNTP to create a head-to-head comparison with
SNTP. For the similar reason, in all our experiments, we only
compare MNTP against SNTP and not NTP, because of the
NTP’s exhaustive filtering overhead. Our focus for these one-
hour experiments is to highlight the reduction in the reported
clock offsets by MNTP versus SNTP, and to experiment in
a wide variety of operating conditions including tests on (1)
wireline and wireless networks and (2) with and without NTP
for system clock correction.

Next, we conduct experiments for 4 hours to demonstrate
the efficacy of MNTP. All the experiments were run on a Mac-
book Pro laptop (with Intel core i5 processor and 4GB RAM)
and the wireless hints are measured using the airport utility.
Finally, we analyze the effect of MNTP’s parameters on its
synchronization accuracy through a trace-driven analysis on
the logs collected in the longer experiments.

5.1 Baseline experiments

We begin by considering a simple wireless network sce-
nario with variable channel conditions and compare the clock
offsets reported by MNTP and SNTP. Throughout this ex-
periment, we use NTP to correct the laptop’s system clock
from which the clock synchronization requests are emitted.
Using NTP to establish a baseline is simply a design choice
and can be easily replaced with a GPS receiver, which we
plan to investigate in future work. Figure 6 shows the clock
offsets reported by both SNTP and MNTP when the laptop
is connected on a wireless network along with the large off-
sets that are rejected by MNTP’s filter. We can see that the
offsets reported by SNTP are susceptible to the varying chan-
nel conditions and are as much as 292ms from the system
clock. However, the offsets reported by MNTP are very close
to the system clock with a maximum offset value of 23ms,
which is a 12-fold improvement over standard SNTP on a
wireless network with lossy conditions. From this figure, it
is also evident that all the outlier offsets are effectively dis-
carded by our MNTP filter, thus enabling much tighter clock
synchronization.

To explain the gains achieved using MNTP versus SNTP,
we plot the measured wireless hints in Figure 7. Both the re-
ported and rejected offsets by the MNTP filter are also shown.
We note that the advantages of MNTP are due to the follow-
ing two properties of MNTP’s filtering and channel-aware
request pacing heuristics. First, many of the synchronization
requests are deferred due to either RSSI, or noise, or SNR
margin not meeting the established baseline thresholds. Sec-
ond, many of the large reported offsets are effectively rejected
by the MNTP filter allowing only those offsets that are close
to the clock drift trend line.



Figure 6: Reported SNTP vs. MNTP offsets on wireless
network with NTP clock correction.

Figure 7: Signals and selection plot.

Next, we repeat the above experiment without allowing
NTP to correct the system clock. Figure 8 depicts the offsets
reported by SNTP and MNTP on wireless network without
NTP-based clock correction. The figure highlights the disad-
vantages of using SNTP on a wireless network, with reported
clock offsets as high as 450ms. On the other hand, the clock
offsets reported by MNTP were always close to the fitted
trend line for the clock skew, which we believe will easily
be corrected using our estimated drift available as part of
the MNTP filter. The maximum offset reported by MNTP
is 24ms, which is, on average, within 4.5ms of the reference
clock and 17 times more accurate than standard SNTP.

Third, we test the clock synchronization accuracy of
MNTP when the host is connected to a wireless network
compared with SNTP when the same host is connected to
a wired network. In this experiment, NTP is turned on and
the clocks are synchronized with the OS-specific NTP time
source before starting the experiments. Figure 9 depicts the
clock offsets reported by SNTP and MNTP on a wired and
wireless network respectively. The figure shows that even
when the SNTP offsets were obtained from a wired network,
SNTP can be as high as 50ms compared to MNTP on a wire-

Figure 8: Reported SNTP vs. MNTP offsets on wireless
network without NTP clock correction.

less network, where reported offsets are about 20ms. The
gains we see with MNTP are, again, due to emitting requests
only during favorable network conditions, whereas SNTP
emits requests blindly, and rejection of outliers, whereas
SNTP does no such rejection.

Figure 9: Reported SNTP offsets on wired network vs.
MNTP offsets on wireless network with NTP clock cor-
rection.

Similarly, we compare the offsets reported by MNTP on
a wireless network against offsets reported by SNTP when
connected on a wired network without NTP clock correc-
tion. Figure 10 plots the clock offsets reported by SNTP and
MNTP on a wired and wireless network respectively without
NTP clock correction. Similar to the third experiment, we
observe that the SNTP offsets reported were as high as 50ms
despite the host being connected to a wired network.

5.2 Longer experiment
Next, we demonstrate the efficacy of MNTP by extending

the baseline clock synchronization experiment for a longer
duration. In this experiment, we follow the setting described
in §5.1 and we emit synchronization requests every 5 sec-
onds for a duration of 4 hours. Specifically, we record the



Figure 10: Reported SNTP offsets on wired network vs.
MNTP offsets on wireless network without NTP clock
correction.

offsets reported by SNTP client connected to a wireless host
and simultaneously collect the offsets reported by MNTP.
Throughout the experiment, the wireless host’s clock is al-
lowed to drift, i.e., the clock correction using NTP is turned
off.

Figure 12 shows the comparison of the offsets reported by
standard SNTP and MNTP on a wireless network without
NTP’s clock correction. The fitted trend line for clock skew
and the clock correction feature capabilities of MNTP along
with the large offsets rejected by MNTP are also shown. We
again observe high offsets with SNTP—as high as 392ms—
whereas the offsets reported by MNTP are always less than
20ms, as seen from MNTP’s clock corrected drift values
(shown in blue). Further, we see that many of the large off-
sets reported by SNTP are effectively rejected by MNTP’s
filtering logic producing a robust and accurate clock synchro-
nization for wireless devices despite the presence of lossy
channel conditions.

5.3 Tuning MNTP
In order to tune the four parameters of MNTP—

specifically, warmupPeriod, warmupWaitTime, regularWait-
Time and resetPeriod—shown in Algorithm 1 for various
indoor and outdoor settings, we built a stand-alone tool called
the MNTP tuner. At the core of the MNTP tuner tool is the
ability to perform trace-driven analysis on the recorded clock
offset values. Using the MNTP tuner tool, our goal is to
evaluate the impact of various input parameter choices and
the suitability of parameters in a given network condition.

MNTP tuner consists of three components: (a) a logger,
(b) an emulator, and (c) a searcher. First, the logging compo-
nent runs on the TN of our testbed and emits SNTP requests
to multiple reference clocks every 5 seconds and records
the responses in the form of traces. It also records the corre-
sponding wireless hints from the channel every time an SNTP
request is emitted. Next, the emulator is capable of running
the MNTP algorithm using the captured traces and wireless
hints and prints the offsets reported by MNTP.

To run the emulator, the four input parameters required by
MNTP need to initialized, which is satisfied by the search
component. When provided with a range of values for the
input parameters, e.g. the duration of the warm-up or regular
waiting times, the search component generates all possible
values of the parameters and invokes the emulator for each
generated combination. The search component then calcu-
lates the accuracy of MNTP for the given combination of
input parameters using the offsets reported by the emulator.
Specifically, the search component measures the Root Mean
Square Error (RMSE) of the MNTP offsets with respect to a
perfectly synchronized clock (i.e., offset value of 0 ms) and
outputs the various configurations. A sample list of configura-
tions, along with the values for MNTP parameter and RMSE
of clock offsets, are shown in Table 2. The corresponding
achievable clock offset values for the six sample configura-
tions are depicted in Figure 11. The values indicate that while
the RMSE can indeed be reduced as the number of tuning
requests grows, relatively speaking, MNTP performs well
with only modest tuning.

Apart from tuning the input parameters, the tool can also
be used to gain useful insights about the factor that influences
the accuracy of MNTP for a given network condition. For ex-
ample, using the analysis tool, we discovered that sometimes
the MNTP filter did not accept any offsets during the regular
period for some values of warmupWaitTime. Investigating
this further, we discovered that the number of samples were
too low causing the MNTP to underestimate the clock drift
value. And because of this underestimation of the clock drift,
the MNTP filter was too conservative in accepting the offsets
resulting in all the offsets being rejected in the regular phase.
This insight led us to change our MNTP filter to reestimate
the clock drift value with every new offset sample.

6. RELATED WORK
Accurate clock synchronization of networked systems has

been a subject of interest in the research community for
over three decades. The pioneering work by Lamport [30],
Marzullo [33], and Mills [35, 36] paved the way for the de-
velopment of synchronization protocols such as the near-
ubiquitous Network Time Protocol [34, 37, 40]. While NTP
and the related SNTP have been deployed widely in ordi-
nary wireline and wireless networks, time synchronization
protocols have also been developed for more specialized de-
ployments such as wireless sensor networking [22, 24, 25],
underwater sensor networks [20, 31, 32] and acoustic net-
works [50].

There has been substantial work in analyzing the NTP’s
synchronization accuracy, which has led to improvements
to the protocol and to new protocols e.g., [21, 38, 46, 47, 52].
Our work on MNTP relates to this research in that we design
mechanisms to improve the accuracy of clock synchroniza-
tion using SNTP through wireless channel-aware pacing of
synchronization requests, and we propose improvements to
the filtering and clock correction heuristics. An issue re-
lated to clock synchronization is that of correctly process-
ing packet trace data containing timestamps from two in-



Figure 11: Outputs produced by our MNTP tuning emulator.
Table 2: Sample list of values for parameters, RMSE of offsets, and the number of requests generated by MNTP tuner.

Configuration no. warmupPeriod (min) warmupWaitTime (min) regularWaitTime (min) resetPeriod (min) RMSE (ms) Number of requests
1 30 0.25 15 240 13.08 239
2 40 0.25 15 240 11.66 316
3 50 0.25 15 240 11.09 387
4 70 0.25 30 240 10.86 534
5 90 0.084 15 240 9.27 1210
6 240 0.084 15 240 8.9 2913

dependent clocks by correcting for clock skew and other
artifacts [41, 44]. Key findings from these studies that inform

the design of MNTP are that clock skew can be non-linear
and highly erratic.



Figure 12: Reported SNTP versus MNTP offsets on wire-
less network without NTP clock correction. The experi-
ments were ran for 4 hours.

The idea of measuring and exposing wireless hints to
higher protocol layers is similar to other efforts in the area of
cross-layer design of mobile systems [28, 29, 49, 53]. In par-
ticular, MNTP considers wireless conditions when emitting
synchronization requests in order to avoid collecting clock
offsets that may be skewed due to channel contention. To
the best of our knowledge, MNTP exploits cross-layer infor-
mation for enhancing clock synchronization in mobile and
wireless devices in a way that has not been considered in
prior studies.

7. SUMMARY AND FUTURE WORK
Synchronizing independent clocks in a network setting is

important for a wide variety of applications and has been
extensively studied. The problem of clock synchronization
on mobile wireless devices poses particular challenges and
has received little attention in prior work. Our study seeks to
address this gap, with the goal of improving clock synchro-
nization on mobile wireless hosts and with low overhead.

We begin by examining the one-way delay characteris-
tics of likely wireless hosts through analysis of packet traces
collected at 19 NTP servers in the US, observing high aver-
age delays as well as high variance. In particular, for three
predominantly wireless service providers, we see median
latencies of 550 ms and high variance, whereas for other
service providers we see median latencies of 40–50ms with
low variance. Through further analysis of the traces, we at-
tribute these characteristics to the fact that the majority of
these clients implement SNTP, and thus do not employ any of
the mechanisms used in NTP that would generally eliminate
poor latency samples.

In a set of laboratory testbed experiments, we further exam-
ine the degree to which SNTP exhibits poor synchronization.
We create a tool that enables wireless interference to be pro-
grammatically altered through manipulation of base station
transmit power and introduction of cross-traffic. We find that
the mean time offset with respect to a reference clock of the
latency samples observed with SNTP is significantly higher

in experiments over a wireless network (100’s of ms) than in
experiments with a wired network (close to zero).

Based on the results of our laboratory experiments, we
describe MNTP, a set of modifications to SNTP that improve
its behavior by (1) exposing wireless link-layer information
to pace out polling request to NTP servers when wireless
channel conditions are favorable, and (2) adding lightweight
filtering heuristics which result in discarding outlier latency
samples. We evaluate MNTP in a laboratory setting, com-
paring it with SNTP. Our results show that MNTP is able to
maintain synchronization with a reference clock to within 25
ms, which is a 12-fold improvement over SNTP.

In future work, we intend to extensively test and enhance
our MNTP implementation toward the goal of broader deploy-
ment. Unfortunately, there are no known implementations of
NTP for any of the popular mobile operating systems, which
complicates this effort. However, we plan to build a reference
NTP implementation and perform an exhaustive benchmark-
ing of MNTP against SNTP and NTP in terms of metrics
like processor and battery performance on various mobile
platforms.

We also plan to investigate self-tuning of parameter settings
and to evaluate MNTP in a wider variety of cellular and
WiFi settings and to evaluate the trade-offs between MNTP’s
performance and the tuning of its parameters. We intend to
carry out longer-term in situ experiments in order to evaluate
not only the trade-offs but also MNTP’s effectiveness in day-
to-day operation.

Acknowledgements
We thank the NTP operators for providing NTP server

logs, and our shepherd Sharon Goldberg and the anonymous
reviewers for their valuable comments. This material is based
upon work supported by the NSF under grant CNS-1054985,
DHS grant BAA 11-01 and AFRL grant FA8750-12-2-0328.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect the views of the NSF, DHS or AFRL.

References
[1] Android Codebase. https://source.android.com/source/.
[2] Cisco wireless site survey FAQ. http://www.cisco.com/c/

en/us/support/docs/wireless-mobility/wireless-lan-wlan/
68666-wireless-site-survey-faq.html#qa23.

[3] Getting time from GPS on iOS. http://stackoverflow.com/
questions/31920829/getting-time-from-gps-on-ios.

[4] Is it possible to get the atomic clock timestamp from the
iPhone GPS.
http://stackoverflow.com/questions/1444456/
is-it-possible-to-get-the-atomic-clock-timestamp-from-the-
iphone-gps .

[5] NITZ functionality for non-3gpp devices. http://goo.gl/
xQUECH.

[6] NITZ Service Description. http://www.3gpp.org/DynaReport/
22042.htm.

[7] NTP Clock Discipline Algorithm. https://www.eecis.udel.edu/
~mills/ntp/html/discipline.html.

[8] NTP Clock Select Algorithm. https://www.eecis.udel.edu/
~mills/ntp/html/discipline.html.

https://source.android.com/source/
http://www.cisco.com/c/en/us/support/docs/wireless-mobility/wireless-lan-wlan/68666-wireless-site-survey-faq.html#qa23
http://www.cisco.com/c/en/us/support/docs/wireless-mobility/wireless-lan-wlan/68666-wireless-site-survey-faq.html#qa23
http://www.cisco.com/c/en/us/support/docs/wireless-mobility/wireless-lan-wlan/68666-wireless-site-survey-faq.html#qa23
http://stackoverflow.com/questions/31920829/getting-time-from-gps-on-ios
http://stackoverflow.com/questions/31920829/getting-time-from-gps-on-ios
http://stackoverflow.com/questions/1444456/is-it-possible-to-get-the-atomic-clock-timestamp-from-the-iphone-gps
http://stackoverflow.com/questions/1444456/is-it-possible-to-get-the-atomic-clock-timestamp-from-the-iphone-gps
http://stackoverflow.com/questions/1444456/is-it-possible-to-get-the-atomic-clock-timestamp-from-the-iphone-gps
http://goo.gl/xQUECH
http://goo.gl/xQUECH
http://www.3gpp.org/DynaReport/22042.htm
http://www.3gpp.org/DynaReport/22042.htm
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html
https://www.eecis.udel.edu/~mills/ntp/html/discipline.html


[9] NTP Polling Interval. http://www.eecis.udel.edu/~mills/ntp/
html/poll.html.

[10] NTPSync app. https://github.com/Free-Software-for-Android/
NTPSync.

[11] NTPSync code snippet. https://github.com/
Free-Software-for-Android/NTPSync/blob/master/
NTPSync/src/main/java/org/ntpsync/service/
NtpSyncRemoteService.java.

[12] Relationship between SNR and RSSI. http://community.
arubanetworks.com/t5/Controller-Based-WLANs/
What-is-the-relationship-between-data-rate-SNR-and-RSSI/
ta-p/178312.

[13] Smart GPS Time app. https://play.google.com/store/apps/
details?id=com.pautinanet.smartgpstime&hl=en.

[14] SNR and RSSI values. https://supportforums.cisco.com/
discussion/10954591/snr-and-rssi-values.

[15] Tcpdump Tool. https://github.com/the-tcpdump-group/
tcpdump.

[16] Team Cymru whois lookup service. http://www.team-cymru.
org/IP-ASN-mapping.html#whois.

[17] Windows and Mac Stumbler and Survey Tools.
http://www.networkworld.com/article/2925081/wi-fi/
7-free-wi-fi-stumbling-and-surveying-tools-for-windows-
and-mac.html .

[18] AKELLA, A., JUDD, G., SESHAN, S., AND STEENKISTE, P.
Self-Management in Chaotic Wireless Deployments. Wireless
Networks (2007).

[19] BALASUBRAMANIAN, N., BALASUBRAMANIAN, A., AND
VENKATARAMANI, A. Energy Consumption in Mobile
Phones: A Measurement Study and Implications for Network
Applications. In ACM IMC (2009).

[20] CHIRDCHOO, N., SOH, W.-S., AND CHUA, K. C. MU-Sync:
A Time Synchronization Protocol for Underwater Mobile Net-
works. In WuWNeT (2008).

[21] D. VEITCH AND K. VIJAYALAYAN. Network Timing and the
2015 Leap Second. In PAM (2016).

[22] DAI, H., AND HAN, R. TSync: A Lightweight Bidirectional
Time Synchronization Service for Wireless Sensor Networks.
SIGMOBILE CCR (2004).

[23] DURAIRAJAN, R., MANI, S., SOMMERS, J., AND BARFORD,
P. Time’s Forgotten: Using NTP to Understand Internet La-
tency. In ACM HotNets (2015).

[24] ELSON, J., GIROD, L., AND ESTRIN, D. Fine-grained
Network Time Synchronization Using Reference Broadcasts.
OSDI (2002).

[25] ELSON, J., AND RÖMER, K. Wireless Sensor Networks: A
New Regime for Time Synchronization. SIGCOMM CCR
(2003).

[26] HAVERINEN, H., SIREN, J., AND ERONEN, P. Energy Con-
sumption of Always-on Applications in WCDMA Networks.
In IEEE VTC (2007).

[27] IEEE. IEEE 1588 Precision Time Protocol (PTP), Version 2
Specification, March 2008.

[28] KHAN, S., PENG, Y., STEINBACH, E., SGROI, M., AND
KELLERER, W. Application-driven Cross-layer Optimization
for Video Streaming over Wireless Networks. IEEE Communi-
cations Magazine (2006).

[29] KUMAR, S., CIFUENTES, D., GOLLAKOTA, S., AND
KATABI, D. Bringing Cross-layer MIMO to Today’s Wire-
less LANs. In ACM SIGCOMM (2013).

[30] LAMPORT, L. Time, Clocks, and the Ordering of Events in a
Distributed System. Communications of ACM (1978).

[31] LIU, J., ZHOU, Z., PENG, Z., CUI, J.-H., ZUBA, M., AND
FIONDELLA, L. Mobi-Sync: Efficient Time Synchronization
for Mobile Underwater Sensor Networks. IEEE TPDS (2013).

[32] LU, F., MIRZA, D., AND SCHURGERS, C. D-sync: Doppler-
based Time Synchronization for Mobile Underwater Sensor
Networks. In WuWNet (2010).

[33] MARZULLO, K. Loosely-coupled distributed services: a dis-
tributed time service. PhD thesis, Stanford University, 1983.

[34] MILLS, D. Network Time Protocol (Version 3): Specification,
Implementation and Analysis. https://www.ietf.org/rfc/rfc1305.
txt.

[35] MILLS, D. DCNet Internet Clock Service. https://tools.ietf.
org/html/rfc778, April 1981.

[36] MILLS, D. Internet Delay Experiments. https://tools.ietf.org/
html/rfc889, December 1983.

[37] MILLS, D. Network Time Protocol (NTP). https://tools.ietf.
org/html/rfc958, September 1985.

[38] MILLS, D. Measured Performance of the Network Time Pro-
tocol in the Internet System. https://tools.ietf.org/html/rfc1128,
October 1989.

[39] MILLS, D. Simple Network Time Protocol (SNTP). https:
//tools.ietf.org/html/rfc1769, March 1995.

[40] MILLS, D., MARTIN, J., BURBANK, J., AND KASCH, W.
Network Time Protocol Version 4: Protocol and Algorithms
Specification. https://tools.ietf.org/html/rfc5905, June 2010.

[41] MOON, S. B., SKELLY, P., AND TOWSLEY, D. Estimation and
Removal of Clock Skew from Network Delay Measurements.
In IEEE Infocom (1999).

[42] MURDOCH, S. J. Hot or Not: Revealing Hidden Services by
their Clock Skew. In ACM CCS (2006).

[43] PAEK, J., KIM, J., AND GOVINDAN, R. Energy-efficient
Rate-adaptive GPS-based Positioning for Smartphones. In Pro-
ceedings of the MobiSys (2010).

[44] PAXSON, V. Measurements and Analysis of End-to-end Inter-
net Dynamics. PhD thesis, University of California, Berkeley,
1997.

[45] PAXSON, V. On Calibrating Measurements of Packet Transit
Times. In ACM SIGMETRICS (1998).

[46] RIDOUX, J., AND VEITCH, D. Principles of Robust Timing
over the Internet. Queue (2010).

[47] RIDOUX, J., VEITCH, D., AND BROOMHEAD, T. The Case
for Feed-forward Clock Synchronization. IEEE/ACM TON
(2012).

[48] SCHIVELBUSCH, W. The Railway Journey: The Industrializa-
tion of Time and Space in the Nineteenth Century. 2014.

[49] SHAKKOTTAI, S., RAPPAPORT, T. S., AND KARLSSON, P. C.
Cross-layer Design for Wireless Networks. IEEE Communica-
tions Magazine (2003).

[50] SYED, A. A., HEIDEMANN, J. S., ET AL. Time synchro-
nization for high latency acoustic networks. In IEEE Infocom
(2006).

[51] THIAGARAJAN, A., RAVINDRANATH, L., LACURTS, K.,
MADDEN, S., BALAKRISHNAN, H., TOLEDO, S., AND
ERIKSSON, J. VTrack: Accurate, Energy-aware Road Traffic
Delay Estimation using Mobile Phones. In Proceedings of the
SenSys (2009).

[52] VIJAYALAYAN, K., AND VEITCH, D. Rot at the Roots? Exam-
ining Public Timing Infrastructure. In IEEE Infocom (2016).

[53] VUTUKURU, M., BALAKRISHNAN, H., AND JAMIESON, K.
Cross-layer Wireless Bit Rate Adaptation. ACM SIGCOMM
(2009).

[54] ZHANG, T., PATRO, A., LENG, N., AND BANERJEE, S. A
Wireless Spectrum Analyzer in Your Pocket. In ACM HotMo-
bile (2015).

http://www.eecis.udel.edu/~mills/ntp/html/poll.html
http://www.eecis.udel.edu/~mills/ntp/html/poll.html
https://github.com/Free-Software-for-Android/NTPSync
https://github.com/Free-Software-for-Android/NTPSync
https://github.com/Free-Software-for-Android/NTPSync/blob/master/NTPSync/src/main/java/org/ntpsync/service/NtpSyncRemoteService.java
https://github.com/Free-Software-for-Android/NTPSync/blob/master/NTPSync/src/main/java/org/ntpsync/service/NtpSyncRemoteService.java
https://github.com/Free-Software-for-Android/NTPSync/blob/master/NTPSync/src/main/java/org/ntpsync/service/NtpSyncRemoteService.java
https://github.com/Free-Software-for-Android/NTPSync/blob/master/NTPSync/src/main/java/org/ntpsync/service/NtpSyncRemoteService.java
http://community.arubanetworks.com/t5/Controller-Based-WLANs/What-is-the-relationship-between-data-rate-SNR-and-RSSI/ta-p/178312
http://community.arubanetworks.com/t5/Controller-Based-WLANs/What-is-the-relationship-between-data-rate-SNR-and-RSSI/ta-p/178312
http://community.arubanetworks.com/t5/Controller-Based-WLANs/What-is-the-relationship-between-data-rate-SNR-and-RSSI/ta-p/178312
http://community.arubanetworks.com/t5/Controller-Based-WLANs/What-is-the-relationship-between-data-rate-SNR-and-RSSI/ta-p/178312
https://play.google.com/store/apps/details?id=com.pautinanet.smartgpstime&hl=en
https://play.google.com/store/apps/details?id=com.pautinanet.smartgpstime&hl=en
https://supportforums.cisco.com/discussion/10954591/snr-and-rssi-values
https://supportforums.cisco.com/discussion/10954591/snr-and-rssi-values
https://github.com/the-tcpdump-group/tcpdump
https://github.com/the-tcpdump-group/tcpdump
http://www.team-cymru.org/IP-ASN-mapping.html#whois
http://www.team-cymru.org/IP-ASN-mapping.html#whois
http://www.networkworld.com/article/2925081/wi-fi/7-free-wi-fi-stumbling-and-surveying-tools-for-windows-and-mac.html
http://www.networkworld.com/article/2925081/wi-fi/7-free-wi-fi-stumbling-and-surveying-tools-for-windows-and-mac.html
http://www.networkworld.com/article/2925081/wi-fi/7-free-wi-fi-stumbling-and-surveying-tools-for-windows-and-mac.html
https://www.ietf.org/rfc/rfc1305.txt
https://www.ietf.org/rfc/rfc1305.txt
https://tools.ietf.org/html/rfc778
https://tools.ietf.org/html/rfc778
https://tools.ietf.org/html/rfc889
https://tools.ietf.org/html/rfc889
https://tools.ietf.org/html/rfc958
https://tools.ietf.org/html/rfc958
https://tools.ietf.org/html/rfc1128
https://tools.ietf.org/html/rfc1769
https://tools.ietf.org/html/rfc1769
https://tools.ietf.org/html/rfc5905

