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Abstract

Honeypots are systems used to trap, monitor, and identify erroneous requests within a network. For
this project we conducted a study using honeypots within various cloud computing platforms ( such as
Amazon EC2, Windows Azure etc.) with the objective of learning more about what kind of packets
they receive. We used various honeypots such as Dionaea, Kippo, and Amun on our cloud instances and
gathered data about where attacks came from, what kinds of attacks were made, and differences among
cloud instances. We discovered that most attack traffic comes from the US and China and that most
attacks are on SSH and HTTP. We also found that for the most part, attack traffic among the clouds
was quite similar. We also identified Dionaea and Kippo as the honeypots which are most effective in
the cloud setting.

1 Introduction

With the rise of the internet, there has been a growing amount of traffic used for nefarious purposes. Thus,
there is an growing need for detection and defense against the malicious traffic existing on the net. One
tool used in network security is the honeypot. A honeypot is a decoy system used to attract and detect
unauthorized or malicious traffic on the network. Honeypots are typically used for gathering information
about attackers and gaining insight into their attack methodology.

1.1 Motivation

Cloud computing is an emerging market with different types of services such as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). The inherent structure of the cloud
presents security concerns unique to cloud networks. Users are allocated virtual machine instances that
share physical resources with other users; this presents threats to each client’s privacy and the integrity
of the system as a whole. The clouds also serve as enticing targets for attackers, as they represent single
locations where tousands of potential targets can be found. Thus, with its nascent popularity, cloud security
is important both for companies that provide the service and those who rely on those services.

1.2 Contributions

In this paper we present a study of honeypots in the cloud setting with with an emphasis on characterizing
attack traffic across multiple clouds. We focus mainly on identifying the following:

1. Where do attacks come from?

2. What kind of attacks are made?

3. Are there differences across different cloud providers?

The remainder of this article is organized as follows. Section 2 is a summary of related work. Section 3
discusses background on honeypots, and Section 4 discusses our experimental methodology and setup. In
Section 5 we present our results, and in Section 7 we summarize our findings.
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2 Related Work

Honeypots have been used in many research papers to profile and detect unauthorized traffic. A vast majority
of them involve honeypots in a non-cloud setting used for a variety of purposes such as detecting spam and
trapping database attacks. A number of papers [3][4] use honeypots to monitor botnet activity and use this
information to detect and disrupt botnets. Alata et.al perform a study using a high-interaction honeypot
to examine attacks on SSH [1]. Similarly, [6] examines attack traffic using both low and high interaction
honeypots within a university network.

There have also been some papers that mention honeypots in a cloud setting. [2] suggests that cloud
providers should provide honeypots as a profit-driven service to further their own security, while [7] describes
the importance of honeypots as an emerging security tool for the cloud.

3 Honeypots

As mentioned before, honeypots are systems that emulate vulnerabilities with the purpose of trapping and
examining attacker traffic. There are multiple types of honeypots: low interaction, medium interaction, high
interaction, and pure. Low interaction honeypots simulate services and passively log connections. Medium
interaction honeypots also simulate services, but they respond to the attacker. High interaction honeypots
emulate an entire system, and pure honeypots are full-fledged machines in a network. One advantage of a
low interaction honeypot over a high interaction one is that it is easier to deploy and maintain. However,
they are more easily detected. In contrast, high interaction honeypots are more difficult to detect but are
harder to maintain.[8]

3.1 Deployed Honeypots

1. Dionaea is a low interaction honeypot that detects automated malware by emulating different proto-
cols such as SMD, HTTP, FTP, TFTP, MSSQL, MySQL, and SIP. It emulates a vulnerable Windows
2000 system.

2. Kippo is a medium interaction SSH honeypot that emulates the shell. It simulates common linux
commands and a fake file system. Commands issued by attackers are logged and can be replayed.

3. Amun is a low interaction honeypot aimed at capturing autonomous spreading malware. It works by
emulating a number of vulnerability modules,monitoring ports, and logging shellcode and downloads
away for later analysis. Amun can also be extended with custom XML modules. [5]

4. Artillery is a low interaction honeypot that listens on common ports and detects connection attempts.
When any connection is detected, the corresponding IP address is blacklisted via an iptables rule. It
can also detect SSH brute force attacks and derail them by blacklisting the IP address. File monitoring
is another service it provides; it can be configured to monitor certain directories and send an alert email
if a change is detected.

5. Glastopf is a low interaction honeypot that emulates webserver vulnerabilities such as SQL injection
and file inclusion. It works by providing a dynamic attack surface that can participate in multi-stage
attacks. It fools attackers into thinking that their attacks were successful and captures the malware
that is ultimately transmitted.

3.2 Other Honeypots

1. Honeyd is a very popular honeypot in off-cloud settings, and there are numerous studies attesting to
its effectiveness. However, its dependence on DHCP prohibited us from including it in our study.

2. Artemisa is a VoIP honeypot which emulates a vulnerable VoIP client. It is no longer maintained,
however, and we were unable to fully install it on our instances.
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3. HiHat is an analysis tool which can transform any PHP application into a high-interaction honeypot.
We launched several such instances, but none of them produced any meaningful traffic.

4. Honeybot is a Windows-based honeypot. While we were able to launch several instances of Honeybot,
they produced very few results.

4 Methodology

4.1 Cloud providers

In this study, we focus mainly on Amazon EC2 and Windows Azure, although we did also set up honeypots
in IBM Smartcloud and ElasticHosts. Table 1 summarizes the features of the different clouds, as well as the
locations of our deployed instances.

Cloud Provider Operating System Service Instances Datacenters
Amazon EC2 Ubuntu 12.04 LTS IaaS 22 North Virginia, Tokyo, Singa-

pore, Ireland, North Califor-
nia, North Oregon, Sydney, Sao
Paulo

Windows Azure Ubuntu 12.04 LTS IaaS 14 East US, East Asia, Southeast
Asia, West Europe, West US

IBM Smartcloud Redhat Enterprise
Linux 6.3

IaaS 5 Canada, Germany, Japan, West
US, Singapore

ElasticHosts Ubuntu 12.04 LTS IaaS 1 Los Angeles,USA

Table 1: A summary of cloud instances

4.1.1 p0f Fingerprinting Tool

p0f is a versatile passive OS fingerprinting tool. p0f can identify the system of machines that connect to
your box, machines you connect to, and even machines that merely go through or near your box (even if the
device is behind a packet firewall). We used p0f logs to extract the following data about the attacker:

1. Attacker’s IP address

2. Operating System used by attacker to launch attacks e.g. Linux 2.6, Windows XP etc.

3. Port/Service targetted by attacker e.g. SSH, HTTP etc.

4. Attacker’s mode of connection to internet e.g. ethernet/modem, DSL etc.

5. Number of network hops between attacker and honeypot instance

6. Uptime of attacker’s machine

7. Time of attack

4.1.2 Analyzer Setup

To analyze the data generated across various honeypot instances, the following infrastructure was designed:

1. Backend infrastructure

The backend infrastructure collects the data from various honeypot instances across the globe, processes
it and persists it in a local database for subsequent analysis. It is written completely in Python. The
main modules involved are:
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(a) Extractor This module extracts the various log files like p0f log, honeypot-specific log files and
honeypot database files from various honeypot instances. It is triggered daily once by a cron job
and uses scp for securely copying the data from remote honeypot instances to the local machine.

(b) Processor This module processes the log and database files and extracts information relevant to
analysing honeypot data. The main sub-modules comprising this data cleanup phase are:

i. Converter The local datastore is a MySQL database. But many honeypots store their data
in sqlite3 databases. These has to be programatically converted to MySQL format to allow
data integration.

ii. Parser The p0f log files have to be parsed to extract various parameters like attacker IP
address, OS details, distance from honeypot instances etc.

iii. Enricher The extracted data is further enriched in this phase. For example, for each IP
address found in the p0f logs, the country of origin is determined from a local IP address to
country lookup database. Also, the md5 hashes of downloaded malwares are analysed using
VirusTotal public API to determine the identity of the malware.

(c) DataLoader Once the raw data in the log and database files has been cleaned, processed, and
enriched, relevant information is persisted in a local MySQL database to facilitate data analytics.

2. Frontend infrastructure

The frontend infrastructure analyses the data collected by the backend infrastructure, shows visual-
isations via charts and infers trends and attack patterns. It was designed using PhP and uses the
Highcharts charting library extnesively for the visualization of our attack and attacker profile data.

5 Results

5.1 Attacker Profile

5.1.1 Geographical Location

The top countries from which attacks originated were essentially the same between EC2 and Azure. As can
be seen in Figure 1 both clouds saw the most attacks from China and the United States, followed by Russia,

Figure 1: Attacks by Country
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Figure 2: Attacker IP Addresses

Taiwan, Brazil, and Romania. Additionally, our instances were able to isolate a handful of IP Addresses
that were responsible for thousands of connection attempts, as can be seen in Figure 2.

5.1.2 SSH Credentials

Both clouds saw a large number of automated SSH brute force attacks. The most common username was
“root”. Other usernames such as “sa” and “mysql” were attempted, but to a far lesser extent. As for
passwords, attackers most commonly tried the empty sting (“”), “123456”, and “password.” Attackers also

Figure 3: Common Attack Credentials
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Figure 4: Most Downloaded Malwares

tried variations of common passwords that users find easy to type such as “qwerty” and “1qaz2wsx.” The
results from EC2 can be seen in Figure 3. The results from Azure are nearly identical and are ommitted.

5.1.3 Malware

Our dionaea instances were successfully able to log the malware that attackers attempted to download onto
our systems. As can be seen in Figure 4 most of these were variations of the Conficker / Downadup / Kido
worm.

Figure 5: Common Attack Commands
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Figure 6: Attacker Operating Systems

5.1.4 Commands

Attackers who successfully logged into the emulated SSH terminals on our Kippo instances followed a consis-
tent attack vector. Upon logging in, they usually would enter “w” to observe the other users currently logged
into the system. From there, commands such as “ls” and “cpuinfo” were commonplace. “wget” was used
frequently, ostensibly to fetch malicious data to install. The frequency distribution of attacker commands
can be seen in Figure 5.

5.1.5 Operating Systems

A comparison of attacker Operating Systems can be seen in Figure 6. The honeypots in EC2 received roughly
the same number of attacks from Linux-based attackers as Windows-based attackers. Our Azure instances
received roughly 50% more attacks from Windows-based attackers.

Additionally, we found that many attacks originate from very old Operating Systems – this phenomenon
was especially noticeable in EC2 and visible to a lesser extent in Azure. Roughly 27% of attackers in EC2
used Linux 2.6 or older, and 28% used Windows 2000 or XP. This proportion was much smaller in Azure:
Linux 2.6 comprised only 6.52% of attackers, while Windows 2000 and XP made up 10.86% of attackers.

Lastly, the number of OS systems which were not detected by p0f v2 OS fingerprinting tool were con-
siderably higher in Azure as compared to EC2. This indicates that the proportion of attackers using newer
versions of OS like Windows Vista, Linux etc. and newer types of OS like Android OS is more in case of
Windows Azure than EC2.

5.2 Cloud Discussion

5.2.1 Amazon EC2 vs Windows Azure

Amazon EC2 and Windows Azure services share a lot of similarities. They both offer infrastructure as a
service (IaaS) where customers can launch virtual machines to be run in the cloud. Additionally, they both
provide a wide variety of operating systems to use including many Linux and Windows distributions. They
also have a few key differences listed below.

1. Azure puts a bigger focus on Windows-based operating systems than EC2. Windows Azure lists
Windows operating systems first when selecting instance operating systems. Also, Azure charges the
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same price per hour for Windows or Linux while EC2 charges significantly less for Linux operating
systems.

2. The default way to access instances differs between them. Amazon EC2 provides users a private key
file used to connect to instances via SSH. Windows Azure uses passwords for connecting to instances
by default. These configurations can easily be changed after connecting to instances for the first time
though.

3. Amazon EC2 easily allows all TCP or UDP ports to be opened for an instance. Windows Azure only
allows ports to be allowed one by one.

Like the services themselves, our results across Amazon EC2 and Windows Azure were similar. We
found that attacks originated from similar locations across the two services. Also, SSH login credentials and
attacked services were comparable. Furthermore, we did not find any major differences between the time of
attacks between Amazon EC2 instances and Windows Azure instances. They both had rather bursty attack
patterns. There were a few minor differences between the two services though, which are listed below.

1. A higher proportion of the attacks on Azure originated from operating systems released after 2003.
This was drawn from the the number of fingerprints marked as ”unknown” by p0f v2 (which was
released in 2003). These ”unknown” operating systems are most likely ones which were released since
then. The number of such systems was far greater on Azure than on EC2.

2. Azure saw a higher proportion of Windows-based attacks than did EC2. This may be due to Azure
greater emphasis on Windows-based instances.

5.2.2 IBM Smartcloud

In addition to EC2 and Azure, we also had success in IBM Smartcloud, albeit to a lesser extent. We elected
not to offer a comparision of IBM Smartcloud with the other clouds due to the lesser amount of collected
data. We summarize our IBM Smartcloud results briefly by IP geographical location, SSH credentials, and
attacker OS.

The six most common origin regions for the IP addresses that were used to communicate with our
honeypots were China, United States, South Korea, Germany, India, and Taiwan. 40.3% of IP addresses
were from China, 9.1% were from the US, and 7.8% were from South Korea. Germany, India, and Taiwan
were tied at 3.9% of addresses.

In terms of SSH credentials, we found that the most common usernames by far was “root” which was used
in 47% of the cases. After this were “www”, “user”, and “testuser” with 3.3%, 2.3%, and 2.3% frequency.
Strangely, the most common password attempted was “〉〉radumadalina〈〈 ” at 35.2% frequency, which was
closely followed by the blank string “” at 28.6%. The next two most attempted passwords such as “123456”
and “password” were used in less than 1% of the total cases.

As for the operating system, Windows and Linux were the most common with 94.0% and 4.5% of traffic,
respectively. More specifically, Windows 2000, XP, and 2003 and Linux 2.6 were the most frequently used
versions.

5.3 Honeypot Review

A honeypot-by-honeypot comparison of data can be seen in Table 2. Based on the number of attacks received,
it is clear that Dionaea and Kippo are very effective honeypots to deploy in a cloud-based environment. The
other honeypots faired relatively poorly, as they only received port scans and no attacks.

6 Limitations

There were several limitations of our study with respect to what and how we tested the honeypots in the
various clouds.
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Honeypot Port Scans (EC2) Port Scans (Azure) Attacks (EC2) Attacks (Azure) Our Rating
Dionaea 262318 11,438 11,413 111 5 Stars
Kippo 61220 61,269 77,399 47803 5 Stars
Artillery 41,490 16,319 0 0 3 Stars
Amun 32775 18,782 0 0 2 Stars
Glastopf 7409 - 0 - 1 Star

Table 2: A summary of port scans and attacks

1. Our comparative study is limited to EC2 and Azure, since they are the only clouds which currently
offer free, easy-to-use services. ElasticHosts allowed for a 5-day trial, which we used to launch a single
instance. However, the narrow timeframe for this single instance constituted a prohibitively-small
sample size, from which we were unable to derive any meaningful results. IBM Smarcloud provided
free hosting for Red Hat Linux instances, but we ran into difficulty when launching instances. IBM
Smartcloud offers very little in the way of pre-configured machine images; thus, the amount of required
setup prevented us from launching more than a few instances. The number of successfully launched
instances was comparatively few relative to EC2 and Azure, and thus we were unable to include IBM
Smartcloud in our cross-cloud analysis.

2. Because of the limitations on free accounts, our study was further limited to micro-instances on EC2
and Azure. It is possible that many attackers ignored our micro instances, given their small size; larger
instances would likely be more effective platforms from which to study attackers in the cloud.

3. Our study was limited to low interaction honeypots, with the lone exception of Kippo, a medium-
interaction honeypot. Low and Medium interaction honeypots have the advantage of being easier to
set up in the cloud, but are generally not as attactive to attackers. We investigated the use of high
interaction honeypots such as HiHat; however, these instances did not generate any meaningful data.

4. Our honeypot study is confined to Linux-based instances. While we did launch several instances of
Honeybot, a Windows-based honeypot, it produced very little meaningful data.

5. Many of the honeypots took a long time to configure correctly; this in turn limited the results we were
able to collect. This difficulty can be attributed to a couple of reasons: 1) many of the honeypots are
no longer maintained and have not received updates in many years, and 2) most of the honeypots lack
up-to-date documentation, if any at all.

6. Our analysis of attacker operating systems was limited to pre-2003 systems. This limitation stems from
our use of an outdated version of p0f. We used the version of p0f from the Ubuntu repository since it
was easiest to configure and install across our many instances. However, that version was released in
2003 and thus, doe not contain fingerprint information for newer Operating Systems.

7 Conclusion

In our study we were able to determine a basic attacker profile by deploying a variety of honeypots in
several cloud instances such as Amazon EC2, Microsoft Azure, and IBM Smartcloud. We found that attacks
mostly come from China and the US. The most commonly attempted user was “root” and most commonly
attempted passwords were “” and “123456”. The services that were targeted most frequently were SSH and
HTTP. In terms of OS, Linux 2.6 and Windows 2000/XP were the most popular, and ethernet/modem was
the connection protocol used the most. The timing of attacks was very random and bursty across all the
regions and we could not identify any particular time of the day when hackers are most active.

Overall, we can say that the attack traffic in EC2 and Azure is rather similar. By most of our metrics
(Country of Origin, Login Credentials, Targeted Services, and Protocols), the clouds presented few differ-
ences. The most significant distinction observed was the choice of attacker Operating System, where Azure
saw a higher rate of Windows-based attacks.
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We were also able to identify the honeypots which are most effective in the cloud setting. Dionaea and
Kippo performed very well and produced copious amounts of useful data. The other honeypots – Amun,
Artillery, and Glastopf – were not as effective, given that they received little traffic beyond port scans.
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