
Sharing Big Buck Bunny in XIA

Benjamin Bramble
UW-Madison

Stephen Brown
UW-Madison

Abstract

The Internet has evolved rapidly over the last twenty
years, flowing away from early Telnet designs to a more
content-oriented nature. Researchers developed XIA to
redesign the underpinnings of the Internet to accom-
modate not only today’s Internet traffic, but allow fu-
ture innovators to add principals as technology changes.
Within this architecture we sought to create a video
streaming application using the foundation that XIA pro-
vides. We present a novel approach to using DAGs in or-
der to facilitate network-level failover for content chunk
delivery. We capitalize on the connectionless nature of
XIA’s chunking protocol by creating content servers that
simply host content without any need for connection-
handling. We also use a centralized directory to foster
the lookup of CIDs based on video name. Our streaming
video application is publicly available and should help
guide future XIA application developers.

1 Introduction

With the accelerated demand of video services such as
Skype and Netflix, video traffic has grown to dominate
Internet traffic [8]. The original ARPANET, includ-
ing Internet Protocol, was designed for survivability and
sharing information in an end-to-end manner [2]. The ar-
chitects at the time built IP around FTP and Telnet, the
then-predominant means of transferring files and remote
logging. However, by 2010 the proportion of traffic de-
voted to Telnet and FTP is miniscule, with patterns be-
ing dominated by services such as peer-to-peer, video,
and web traffic [1]. As the number of available IPv4 ad-
dresses shrank, Internet leaders identified the problems
with IP and published the IPv6 RFC (RFC 2460) in 1998.
Fifteen years later, IPv6 is approaching 1% of global In-
ternet traffic [6]. The slow rate at which IP evolves leaves
much to be desired.

Today, IP is still the ”narrow waist” of the networking

stack that forces all traffic to match the protocol. How-
ever, brave researchers at CMU and UW-Madison have
been developing a replacement for IP – one which will
expand the narrow waist to allow the Internet to evolve
to meet changing demands [4]. Hence, they created the
eXpressive Internet Architecture (XIA) which, unlike IP,
provides for richer network layer semantics that go be-
yond simple host-to-host communications – this plays
well into the current content-based traffic patterns of the
internet today.

Few applications currently exist that are able to lever-
age XIA’s strengths in interesting ways. Therefore, our
goal was to create a video streaming app that leverages
XIA’s strengths (failover, content oriented, and intrinsic
security of CIDs) to create a product that surpasses what
can be done in IP today.

We describe an application architecture that is able to
stream video without interruption even in the presence
of content server churn. It accomplishes this by uti-
lizing the connectionless nature of XIA’s chunk request
mechanism combined with the expressiveness afforded
by XIA’s DAG addressing mechanism. Our applications
support two modes of failover - one at the network layer,
and one at the application layer. The features of this ap-
plication clearly surpass the functionality that could be
possible in an IP-based network.

Our final application streams the popular video clip
from the Blender Institute called Big Buck Bunny. The
XIA prototype included this video clip with their exam-
ple applications so it seemed appropriate to launch it as
our demo video. As such, we grew quite fond of the title
character and include references whenever possible.

The remainder of this paper is organized as follows:
We discuss XIA and other related work in Section 2.
Section 3 describes our application architecture and de-
sign features. Section 4 goes into our implementation
details, describing how we constructed each entity of the
architecture. Section 5 describes various scenarios that
afforded us a means to test our application in interest-



ing ways. In Section 6, we discuss the central ques-
tions raised by our work. In Section 7, we describe the
challenges we faced, particularly from our perspectives
as application developers. Finally, in Section 8, we de-
scribe some recommendations for XIA and in Section 9,
we discuss possible avenues of future work. Finally, we
conclude in Section 10

2 Background

As discussed above, researchers developed XIA as an
alternative to IP. The architecture supports a variety of
principal types such as administrative domains, hosts,
services, content, and allows for new principal creation
to support its goal of evolvability. This eXpressive In-
ternet Protocol (XIP) operates by identifying principals
with eXpressive Identifiers (XID) that allow routers to
create forwarding tables with entries for hosts (HID), ad-
ministrative domains (AD), or content (CID) to name a
few. When a client wants to connect to another principal,
it creates a Directed Acyclic Graph (DAG) representation
of its intended destination; in turn the network is able to
service the request in a flexible manner. XIA supports
the notion of fallback by expressing additional addresses
in the DAG in the event that the intent is unavailable at
the current XID. This allows XIA to deliver a request
based on the client’s intent represented by the DAG. We
further discuss the manner in which we create our DAGs
to support fallback in Section 3.3.

The XIA development team released Version 1.0 of
their prototype in mid-March 2013. With it came sev-
eral example applications designed to copy basic net-
work tools like traceroute and ping as well as some more
advanced applications such as file chunk transfer clients.
Among these, XIA’s demo also included a sample video
server, which could be used to deliver video to a Fire-
fox browser with HTML5. We borrowed profusely from
the video server code when creating our CID Directory
Server and Content Servers, discussed in Sections 3.1
and 3.2 respectively.

While we were able to adapt the video server to our
needs, we saw a need to step away from the confines of
Firefox and create a stand-alone C++ client application.
In turn, this allowed us to implement our rich failover
mechanisms. Much of the Video Client borrows from an
example chunk copy client that used chunking to receive
files from a server. We describe our Video Client in Sec-
tion 3.3.

The XIA prototype also includes a sample network
that runs on Click within the confines of the provided
virtual machine. In order to create a richer setting in
which to test our applications, however, we created a
simple network topology that expanded upon the basic
demo network. A discussion of our particular network

can be found in Section 4.5.

3 Application Architecture

We designed our architecture to take advantage of XIA’s
support for connectionless retrieval of content chunks.
In the spirit of this, our design consists of simple, bare-
bones content servers which simply host the content in
their content caches. In addition, we built a CID Direc-
tory Server that maintains a list of content server loca-
tions, as well as a list of CIDs that correspond to a given
video. The CID Directory Server facilitates client lookup
of content locations. And finally, to round out the herd,
we include a video client which simply streams the video
from the content servers.

3.1 Content Servers
The XIA API enables a new usage model in the design
of clients and servers when dealing with content. It al-
lows clients to request content chunks without ever hav-
ing to establish a TCP-like connection with the host on
the other end. In turn, this allows the content servers to
be vastly simpler than their equivalent in an IP-based net-
work, as they no longer have to handle client connections
and respond to requests. As such, our content servers
are very simple: they simply are programs which upload
video chunks to their content caches. Since the content
caches enable connectionless access to the content, the
programs themselves do not need to handle any connec-
tions. In fact, they do not even have to remain running.

3.2 CID Directory Server
In order to provide clients with a means by which to
locate the video content they seek, our architecture in-
cludes a CID Directory Server (CDS). For any given
video, the CDS keeps both a list of content server lo-
cations (ADs and HIDs) as well as a list of CIDs for the
video. If a client connects and requests information for
Big Buck Bunny, the CDS can respond with the list of
Big Buck Bunny content locations. In subsequent RTTs,
the client can request groups of CIDs by specifying entire
ranges.

In our architecture, the CDS is a traditional multi-
threaded server which accepts connections from clients
and handles requests. However, in future versions, it
could easily be replaced by an out-of-band means such
as a website.

3.3 Video Client
The role of the Video Client is quite straightforward: it
streams a video from the network and plays it for the

2



Figure 1: Sample interaction: After setting up a con-
nection with the CID Directory Server (CDS) and in-
dicating what video the client would like to watch, the
video transfer will proceed as follows: the Video Client
will contact the CID Directory Server to acquire a list of
CIDs. The client will then issue chunk requests, which
will get serviced by one of the content servers. Finally,
the network transports the chunks back to the client,
which then adds them to its video stream.

enjoyment of its user. In order to do this, it must first
establish a connection with the CDS and indicate that it
wishes to stream a video (e.g. Big Buck Bunny). The
CDS then responds with a list of content server locations.
Next, the client repeatedly requests groups of chunks
which we refer to as chunk windows. For each chunk
window, the client sends the server the range of CIDs
it wishes to acquire. For our application, we found that
using a chunk window of 50 allowed for fewer transac-
tions with the CDS without sacrificing a low rebuffer-
ing ratio time. The server then responds with the list
of actual CIDs. The client then constructs DAGs us-
ing the server information combined with the CIDs, and
sends out chunk requests for the entire window. Next,
the application goes into an idle mode as it waits for
the chunks to be transported and delivered. It does this
by repeatedly calling XgetChunkStatuses() (a function
included in the XIA API), and waiting for it to return
with READY TO READ. In the meantime, if the chunk
does not exist or is in transit, it returns a vague WAIT-
ING FOR CHUNK status code.

A key feature to the Video Client is its ability to sup-
port seamless failover between different Content Servers.
Ideally, the client should just be able to send out its DAG
and let the network find a Content Server that has the
chunk. In this manner, the application will see no down-
time in the midst of content server churn. Thus, a user

should not be able to notice changes in the stream, even
while in the midst of the most action-packed sequences
of Big Buck Bunny.

To accomplish this vision of anycast-like semantics
and seamless fallback, the Video Client uses the DAGs
in a rather unconventional fashion. Instead of utiliz-
ing the fallback paths for scoping and refinement, the
DAGs encode alternate content servers as fallback paths.
Thus, the client constructs its DAGs to include the CID
it wishes to find, as well as several locations where it
could expect to find the CID. In turn, these DAGs allow
the client to insulate itself from Content Server churn.
As long as at least one of the Content Servers is up and
running, the network can satisfy the request.

The client also includes application-level failover
which, after sending out a chunk request, relies upon
continuous WAITING FOR CHUNK messages as the
signal that the network could not find the content. This
mechanism is intrinsically imprecise and would be hard
to configure in practice. We offer a discussion of a new
return code for XgetChunkStatus() in Section 8.2. The
client’s response in the face of such an event is an open
question. One potential option would be to contact the
CID Directory Server and request a new set of fresh con-
tent server locations. However, because of the network-
level failover, this should only be necessary if the entire
current set content servers become unavailable.

4 Implementation

The applications that constitute our network consist en-
tirely of programs written in C++. They are loosely
based off of the XIA sample applications.

4.1 Content Server
We constructed our Content Server programs to simply
open video files and upload them to their content caches.
Following that, they can either terminate immediately
without taking down the content, or else wait for some
period of time before removing the content. We utilize
this flexibility later for testing the scenarios described in
Section 5.3. We also attempted to set the TTL of the
content chunks, but were unable to find success with the
functions provided in XIA’s API.

4.2 CID Directory Server
We base the CID Directory Server loosely off of XIA’s
sample video server. It follows the traditional server
model of opening up an XSocket upon which to listen
for connections and spinning off a new thread to han-
dle each connection. The type of requests it can handle
include requests for the locations of a video (by video

3



name), requests for a list of CIDs of a particular range,
and requests for the videos available for streaming.

4.3 Video Client
The Video Client consists of 2 main components:

1. The Chunk Fetcher Thread

2. The Video Player Thread

Another important, though lesser piece of our archi-
tecture is the thread-safe Chunk Queue which serves as
the buffer into which we insert chunks prior to playing.
We describe each of our components below.

4.3.1 Chunk Fetcher Thread

The Chunk Fetcher thread retrieves the chunks and popu-
lates the Chunk Queue with chunks for the Video Player
thread to play. It does this by maintaining an Xsocket
connection to the CID Directory Server through which it
repeatedly requests the CID lists for each chunk window.
It then combines those CIDs with the ADs and HIDs of
the content server locations, and sends out a chunk re-
quest using the XrequestChunks() function from the XIA
API. Upon receipt of the chunks, the Chunk Fetcher de-
posits them into the Chunk Queue.

We support application-level failover by counting the
number of WAITING FOR CHUNKS messages that are
returned in response to the chunk request. The exact
value to use for the threshold is unclear – in our testing in
a VM with trivial RTTs, four messages was sufficiently
high. However, in the context of a real network, the
reliance upon the WAITING FOR CHUNKS is intrinsi-
cally unreliable and overly sensitive to how far away the
content might be.

4.3.2 Video Player Thread

The Video Player thread’s main task is to remove chunks
from the chunk queue and play them to the user. In
order to play the video, we incorporate the code base
of Plogg, a simple Ogg Theora video player [3], which
plays ogg files using SDL and Sydney Audio. The Video
Player Thread retrieves chunks from the Chunk Queue
and plays the reconstructed stream using Plogg.

4.4 DAG Structure
Figure 2 shows a sample DAG used by our Video Client
when requesting a chunk. We construct it in a manner
which allows failover to take place starting at any stage
of the primary path. For example, if the request reaches
the primary host and is unable to find the content, the re-
quest will pass to the fallback path and get routed to the

second Content Server’s AD. If the request fails earlier
(i.e. the primary host could not be located), the request
is again able to pass to the fallback route. This affords
the network sufficient flexibility to find the CID. As long
as any one of the content servers is live, the request will
succeed and result in the CID getting located and trans-
ported back to the Video Client. Note that it is necessary
to include fallbacks from each HID, since content can be
taken down at any time at a given host, and it will take
time before the other entities (and routing tables) get up-
dated to match this altered state.

Figure 2: Example DAG. This DAG includes multiple
routes: a primary route through the first Content Server
and several fallback routes through the second Content
Server.

4.5 Network Topology

The XIA prototype comes bundled with a simple net-
work topology that can be used to test simple application
scenarios. However, since the network only contains two
ADs, each with a single router and host, it was too sim-
ple for the tests we wished to run. Therefore, we created
the network shown in Figure 3. This network was flex-
ible enough to allow us to host content servers in multi-
ple locations, including in the same AD and neighboring
ADs. This network topology follows in the footsteps of
the XIA sample topology, as it uses Click to run multiple
hosts on a single virtual machine.

5 Evaluation

In order to evaluate the effectiveness of our architecture,
we present a number of scenarios which test several fail-
ure conditions. All scenarios were tested within the net-
work topology we described in Section 4.5. We omit a
benchmark analysis because of the performance limita-
tions imposed by our virtual machine. Many of these sce-
narios require the starting and stopping of applications at
different points in time; we represent all timing numbers
in seconds unless otherwise indicated.

4



Figure 3: Our custom network topology consisting of
four ADs, each with a single router and host. The Video
Client is configured to run at HID0, the CID Directory
Server is located on HID1, and Content Servers 1 and 2
are located on HID3 and HID2 respectively

5.1 Scenario 1: No Content at an HID

Our first scenario is summarized by Figure 4a. In this
setup, we launch a Video Client at HID0, a CID Direc-
tory Server at HID1, and two Content Servers – one at
HID2 and another at HID3. We next configure the CID
Directory Server to provide both locations of the Content
Servers to any clients looking for Big Buck Bunny. We
configure the Content Server at HID3 to host the content
for 30 seconds and the Content Server at HID2 to host
the content for 30 seconds.

At time 0, we launch the Video Client, the CID Di-
rectory Server, and the Content Server at HID3. The
video begins to play, and at time 15, we launch the Con-
tent Server at HID2. At time 30, the first Content Server
removes its content, and the network is forced into fol-
lowing the DAG’s fallback route to the second Content
Server. Finally, at time 60, the second Content Server
removes its content, and the video immediately stops.

When running this scenario in our VM, we found that
there is no noticeable pause in the video at time 30. The
DAG prescribes the fallback formula and the network
will seamlessly transition to following the fallback paths.
application-level failover never kicks in and is not neces-
sary in this scenario.

Figure 4: (a): In Scenario 1, two content servers are run-
ning, and the client is able to seamlessly continue playing
without regard for which content server it is getting the
content from. (b): In Scenario 3, the client is contend-
ing with the situation of a flaky content server that goes
down and then back up again. In this case, the client is
able to resume the video from right where it left off.

5.2 Scenario 2: No Host at an AD

Our second scenario simulates a case where a host goes
down by including an invalid HID as the primary route
in the DAG. In this setup, we launch a Video Client at
HID0, a CID Directory Server at HID1, and a Content
Server at HID3. We next configure the CID Directory
Server to provide firstly the location of an invalid host
(HID9) and secondly the valid host (HID3). This will
cause all chunk requests of the client’s DAGs to first go to
the AD of the invalid host, and then, once finding that the
host does not exist, the request will head to the fallback
path. This scenario does not require any complex timing:
at time 0, all applications are simply launched.

When running this scenario on our VM, we found
that the video simply starts up immediately without trig-
gering any of the application-level failover mechanisms.
Clearly, the DAG used by the client is rich enough to sup-
port a scenario where the the primary host is unreachable.

5



5.3 Scenario 3: Content Down and Back
Up Again

We summarize our third scenario in Figure 4b. It at-
tempts to simulate a case of a single flaky content server
being responsible for the content. In this setup, we
launch a Video Client at HID0, a CID Directory Server
at HID1, and a Content Server at HID3 configured to
host the content for 30 seconds. At time 30, the content
server goes down and the video stops playing. Appli-
cation failover triggers in the client, but with no result
because there are no other content servers up. Next, at
time 45, we restart the Content Server at HID3 and the
video smoothly resumes from where it left off.

This scenario demonstrates the advantages of XIA’s
connectionless chunk request mechanism. Video stream-
ing resumed immediately after its stopping point without
any need for connection setup.

6 Discussion

6.1 The Proper Layer of Failover

One of the purposes of this project was to explore how
streaming failover might occur in an XIA-based net-
work. As noted in Section 3.3, our video client sup-
ports application-level failover not unlike what can be
done in IP today. However, given the connectionless na-
ture of chunk requests and the expressiveness of XIA’s
DAG, the door opens for failover to take place at the net-
work layer. This has many advantages. First, network-
level support for failover has the opportunity to effec-
tively eliminate client downtimes in the face of changing
content server dynamics. If failover is performed at the
application layer, clients may experience an insignificant
amount of downtime as they wait for timeout to occur
and for a new connection to be set up to a new backup
server. This set of delays can be especially damaging to
traffic like video, which is sensitive to jitter. Second, it
reduces application-level complexity. Rather than requir-
ing clients to include highly-optimized logic to support
failover on the fly, XIA has the opportunity to abstract
away this complexity.

While network-level failover does violate the End-to-
End Argument [7], we note that a failover mechanism
can apply to other principal types such as SIDs. Hence,
such functionality has the opportunity to improve perfor-
mance and reduce complexity for a vast number of use
cases.

6.2 Limitations of the DAG for Content
Failover

Given today’s implementation of XIA’s DAG requests,
we admit that there are some severe limitations with our
approach. Failover as we have proposed it would not
be practical in the context of a real application due to
the limited number of fallback paths allowed in a DAG.
Since XIA limits DAGs to having only four fallback
paths [4], a video client is only able to include at most
two content servers in a DAG. While this effectively al-
lows an application to specify a single backup server, this
would fall short of the flexibility and power of anycast-
like semantics. Allowing DAGs to specify a greater num-
ber of fallback paths would open the door for develop-
ers to harness the full potential of network-level failover.
The four-fallback path limitation is also malevolent to
our approach in that it disallows our video client’s DAGs
from being able to take advantage of scoping and refine-
ment.

7 Challenges

In addition to our stated project goal of creating a stream-
ing video application specific to XIA, we also were in the
unique position of being among the first XIA small de-
veloper teams without any prior XIA experience. Our
experience creating a network application while navigat-
ing the XIA network configurations and beginner’s wiki
guide allow us to present our experience to the XIA re-
search community and offer recommendations to assist
future developers. The following sections describe the
challenges of developing for Version 1.0 of the XIA Pro-
totype.

7.1 Network Setup
While the XIA Prototype’s sample topology is simple to
establish and run, we ran into great difficulty when im-
plementing our own custom network topology. Although
it might seem like a trivial task, we ended up having to
invest a considerable amount of time and effort into trou-
bleshooting our topology.

To begin with, the XIA requires xsockconf.ini files
that link a application with a specific Click port. These
files are absolutely necessary for directing the network
traffic to the appropriate host. The wiki pages specify
that the network reads these files to establish the basic
services. However at the time of writing, the wiki still
has a TODO for telling developers where to place these
files. After many frustrating days, we eventually sent an
email to the XIA help desk, who politely informed us
that XIA requires the xsockconf.ini files to be located in
the directory from which the executables are launched.

6



It was an easy fix, but not one that is altogether intuitive
for someone unacquainted with the inner workings of the
XIA network daemons.

In addition, other files spread throughout the pro-
totype needed alterations to allow XIA to function.
/etc/hosts.xia stores the RE addresses for the various
hosts and routers but does not warrant a mention in the
wiki. Another problem arose when we tried to create
more than six hosts. This change led to a storm of ini-
tialization errors with little useful error text. Eventually,
after several hours of debugging, we discovered the cause
of the problem: the file /etc/click/xia address.click con-
tains 6 hard-coded HID addresses. Adding more hard-
coded HIDs to this file fixed the problem. To our knowl-
edge, the xia address.click file was not mentioned any-
where in the wiki.

Ultimately, we created our own xsockconf directory
which includes our Click topology files and launching
scripts. Central to its success is the makefile, which car-
ries out many of the duties done by the xianet script in the
sample topology. It distributes configuration files to all
of the relevant directories, and then starts up the various
daemons that run the network.

7.2 Playing Video

We found that playing video at a low-level within the
context of a C++ program is not trivial. The realm of
video playback is vast with a myriad number of video
formats to choose from, and few example applications.
At first, we naively thought that we could just follow
some tutorials and get a video to play within a few dozen
lines of code. However, we soon discovered that any
foray into video playing would require extensive use of
third party libraries and platform-specific technologies.
Fortunately, we discovered Plogg, a relatively simple
video player that uses the Ogg Theora Library in con-
junction with the Sydney Audio library and Simple Di-
rectMedia Layer (SDL) to decode and play an ogg video
file. Plogg, however, has not been updated in over two
years, and as such, has fallen behind the updates of other
libraries. To get it working, we needed to roll SydneyAu-
dio back a few revisions. Also, inexplicably we could not
get video playing to work on one of our VM’s (the client
was able to play only the audio).

7.3 XIA API Change

In mid-march, the XIA 1.0 API was released, which in-
cluded several changes to the fundamental XSocket func-
tions. To cope with this, we needed to spend a large
amount of time adapting our code to work with the lat-
est API changes. Luckily, the XIA update also included

updates to some of the XIA sample applications, and we
were able to fashion our alterations after those.

7.4 XIA Update Invalidated Our Approach

On April 9, an update to XIA’s source snapshot was
pushed to the XIA github repository, which included
the following commit message: ”Fixed intra-ad routing
between hosts”. We found that this update invalidates
our approach to using DAGs, as it prevents all of the
network-level failover scenarios from successfully work-
ing. When running our applications in two VM’s - one
with the version of XIA released on April 5, and one with
the version of XIA released on April 11, we find that our
architecture only works with the old version of XIA.

7.5 Bug in Sample XIA Video Server Ap-
plication

We were slowed by the presence of an existing bug in the
sample XIA video server application. As forewarned by
the comment at the top of the sample program, ”seems
to have some issue currently ... for multiple clients”, the
bug had to do with multi-threading. In case this bug has
not yet been discovered by the author of video server.c, it
occurs at line 282, where a local variable for acceptSock
is passed into pthread create() instead of a dynamically-
allocated integer. Each request-handling thread was re-
ferring to the same socket descriptor.

8 Recommendations for XIA

In this section, we present a number of suggestions for
XIA, from a developer perspective.

8.1 Network Package instead of Script

As mentioned in Section 7.1, we encountered a great
deal of difficulty in creating our own custom Click-based
topology. We eventually were able to create our own
xsockconf bundle through heavy reliance on examin-
ing existing start scripts and performing trial and error.
Clearly such challenges represent an incredible burden
on any beginning XIA developer, and we feel that the
process should be streamlined. In order to accomplish
this, we recommend that a basic network package file
(similar to our xsock config directory) be included as
part of XIA’s standard files. Such a package would be
of tremendous help to beginning developers with little
Click experience and would drastically lower the activa-
tion energy for folks who are interested in writing their
own XIA applications.

7



8.2 Additional Request Chunk Response
Code

In Section 4.3.1, we mentioned the difficulties faced
when implementing application-level failover. In partic-
ular, we found ourselves restricted by the limited set of
response codes that can be returned by XgetChunkSta-
tuses(). There are currently four response codes in to-
day’s XIA API:

1. READY TO READ if the requested chunk is
ready to be read.

2. INVALID HASH if the CID hash does not match
the content payload.

3. WAITING FOR CHUNK if the requested
chunk is still in transit.

4. REQUEST FAILED if the specified chunk has
not been requested

The problem lies in identifying a request that fails
when it gets to a host that does not have the CID
we are looking for. Currently, XgetChunkStatuses()
will handle such an event by repeatedly returning back
WAITING FOR CHUNK, which is indistinguishable
from the output indicating a chunk in transit. We
were forced to rely upon the receipt of multiple WAIT-
ING FOR CHUNK messages as a signal to indicate that
application-level failover should occur. It is unclear how
an application developer could set such a threshold with
much confidence. Given this, we propose that a new re-
turn code be added to XrequestChunks():

• CHUNK NOT FOUND if the specified chunk
does not exist at the location

This new status code would be of incredible use to any
application developer in need of supporting application-
level content probing.

8.3 Increase the Number of Fallback Paths
Allowed in a DAG

As discussed in Section 6.2, our approach is severely
limited by the four-fallback-path limit imposed by XIA’s
DAG specification. Backup-server failover semantics are
workable in the current limitation space, but would re-
quire no fewer than eight fallback paths in order to sup-
port scoping and refinement. If anycast-like failover se-
mantics were desired, this fallback-path limit would have
to be substantially increased.

9 Limitations & Future Work

9.1 Port to a Physical Network
Due to the nature of our video architecture residing
within a virtual machine with limited resources, the per-
formance of our video stream was never able to play a
video without a large amount of buffering. This was due
to the limited resources allotted to our virtual machine,
which was unable to handle the stress of the many net-
work daemons needed to run the Click topology. Thus,
to assess the performance of our applications and tech-
niques, testing would need to take place on a physical
network.

The relocation of applications to a physical network
would also open the door to testing true failure scenarios
as well as client migration.

9.2 A Content Server-Aware CDS
Our current implementation of the CID Directory Server
merely includes hard-coded ADs and HIDs for the var-
ious Content Servers. Obviously, such a technique is
not workable in a real architecture and would need to
be replaced by some form of content server registration.
Content Servers could be configured to contact the CID
Directory Server periodically in order to establish liveli-
ness. This would allow the CID Directory Server to send
fresh lists of Content Servers to the clients based on its
current network knowledge.

Also, it is unclear how a CID Directory Server might
determine which set of Content Server locations to send
back to a connecting host. It could do this by choosing
Content Servers on the basis of fewest hops, geographic
location, or some means of client information gathering
akin to that done by the Video Control Plane architecture
[5].

9.3 Video Client User Experience
The current version of the Video Client is very bare-
bones, and would not be suitable for distribution to an
actual user base. To approach beta-quality functionality,
one would need to introduce basic user services such as
video selection and a GUI.

9.4 Source and Demo Video
A github repository for our source can be found at
https://github.com/StephenBrownCS/
xia-video-streaming

A tar archive of our source files can be found at
http://cs.wisc.edu/∼sbrown/downloads/

8

https://github.com/StephenBrownCS/xia-video-streaming
https://github.com/StephenBrownCS/xia-video-streaming
http://cs.wisc.edu/~sbrown/downloads/xia-video-streaming.tar


xia-video-streaming.tar

A video demonstrating scenarios 1 and 3 can be found at
http://cs.wisc.edu/∼sbrown/sharing big buck bunny in
xia.html

A tar archive of this report can be found at
http://cs.wisc.edu/∼sbrown/downloads/
xia-video-streaming-report.tar

10 Conclusion

In the last thirty years, the primary use of the Internet
has evolved from Telnet, email, and FTP traffic to web
and video centric services. However, the protocol con-
straining the usefulness of that traffic has changed only
at a glacial speed. In response, service developers have
had to tunnel, encapsulate, and perform other tricks to
squeeze as much performance as possible out of the cur-
rent Internet architecture.

In an attempt to improve the infrastructure of the In-
ternet, not just for today but for the foreseeable future,
researchers at UW-Madison and CMU developed XIA.
The architecture is perfectly suited to support today’s
content-oriented applications by allowing the network to
natively resolve the client’s intent. It is within that frame-
work that we set out to develop a streaming video appli-
cation that incorporates XIA’s strengths.

To accomplish this, we created a video application ar-
chitecture which leverages the connectionless nature of
XIA’s chunk requests, and the expressiveness of its DAG
addressing. Our architecture supports failover at both the
network and application-levels, and offers interesting in-
sights into the problems XIA application developers face.
Based on our experiences, we were able to make several
recommendations toward improving XIA.

We believe that XIA has opened exciting new opportu-
nities for network application developers. It was our pri-
mary goal to create a working streaming video applica-
tion, but we hope that our work will help carve a path for
future application developers who wish to explore XIA.

References

[1] Chris Anderson and Michael Wolff. The Web is
Dead. Long Live the Internet. http://www.wired.
com/magazine/2010/08/ff webrip/all/, August 2010.

[2] David Clark. The Design Philosophy of the DARPA
Internet Protocols. In ACM SIGCOMM Computer
Communication Review, volume 18, pages 106–114.
ACM, 1988.

[3] Chris Double. Plogg.
https://github.com/doublec/plogg, February 2010.

[4] D. Han et al. XIA: Effcient Support for Evolvable
Internetworking. Proc. 9th USENIX NSDI, 2012.

[5] Xi Liu, Florin Dobrian, Henry Milner, Junchen
Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. A
case for a coordinated internet video control plane.
In Proceedings of the ACM SIGCOMM 2012 con-
ference on Applications, technologies, architectures,
and protocols for computer communication, pages
359–370. ACM, 2012.

[6] Yves Poppe. IPv6: A 2012 Report
Card. http://www.circleid.com/posts/
20121128 ipv6 a 2012 report card/, November
2012.

[7] Jerome H. Saltzer, David P. Reed, and David D.
Clark. End-to-end arguments in system design.
ACM Transactions on Computer Systems (TOCS),
2(4):277–288, 1984.

[8] Doug Webster. The Cisco Visual Networking (VNI)
Forecast 2009-2014. http://blogs.cisco.com/news/
cisco vni forecast 2009-2014/, June 2010.

9

http://cs.wisc.edu/~sbrown/downloads/xia-video-streaming.tar
http://cs.wisc.edu/~sbrown/sharing_big_buck_bunny_in_xia.html
http://cs.wisc.edu/~sbrown/sharing_big_buck_bunny_in_xia.html
http://cs.wisc.edu/~sbrown/downloads/xia-video-streaming-report.tar
http://cs.wisc.edu/~sbrown/downloads/xia-video-streaming-report.tar
http://www.wired.com/magazine/2010/08/ff_webrip/all/
http://www.wired.com/magazine/2010/08/ff_webrip/all/
http://www.circleid.com/posts/20121128_ipv6_a_2012_report_card/
http://www.circleid.com/posts/20121128_ipv6_a_2012_report_card/
http://blogs.cisco.com/news/cisco_vni_forecast_2009-2014/
http://blogs.cisco.com/news/cisco_vni_forecast_2009-2014/

	Introduction
	Background
	Application Architecture
	Content Servers
	CID Directory Server
	Video Client

	Implementation
	Content Server
	CID Directory Server
	Video Client
	Chunk Fetcher Thread
	Video Player Thread

	DAG Structure
	Network Topology

	Evaluation
	Scenario 1: No Content at an HID
	Scenario 2: No Host at an AD 
	Scenario 3: Content Down and Back Up Again

	Discussion
	The Proper Layer of Failover
	Limitations of the DAG for Content Failover

	Challenges
	Network Setup
	Playing Video
	XIA API Change
	XIA Update Invalidated Our Approach
	Bug in Sample XIA Video Server Application

	Recommendations for XIA
	Network Package instead of Script
	Additional Request Chunk Response Code
	Increase the Number of Fallback Paths Allowed in a DAG

	Limitations & Future Work
	Port to a Physical Network
	A Content Server-Aware CDS
	Video Client User Experience
	Source and Demo Video

	Conclusion

