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INTRODUCTION 
As graphics rendering becomes cheaper and cheaper, physics and AI are coming to dominate 
the cost of generating each frame of a real-time game. Furthermore, technology to control the 
cost of rendering exists in the form of hardware, visibility culling and level-of-detail, whereas 
few cost control methods have been described for physics or AI. Simulation level-of-detail is 
the term given to a range of techniques for reducing the cost of AI and physics without 
significantly reducing the quality of the behaviors they generate. In this paper I describe a 
specific technique, proxy simulations, that can reduce the cost of AI and physics without 
sacrificing the game-play. 

AI and physics are the same in the sense that each is intended to generate changing 
(dynamic) state in an environment. Typically, AI is seen as the high-level controller – what to 
do - while physics takes care of the details – how to do it. One useful way to look at AI and 
physics is as simulators that implement a particular model of the world, producing motion and 
state that conform to that model. In this view, the Tetris model is that blocks fall from above in 
a random orientation and build piles on the floor. The Tetris simulator is code that makes sure 
that happens. Similarly, a car racing game defines an idealized model of car and driver 
behavior, while the simulator implements that model to produce the actual motion. 

The key idea behind simulation level-of-detail is that it doesn’t matter how the model is 
implemented, provided a player experiences the right thing. In particular, we are free to 
substitute a cheaper implementation if it produces the same experiences as the full simulation. 
In most games, players experience only things they can see and hear. These things are 
typically restricted to a relatively small region of space. For example, players only see their 
immediate surroundings in a first person shooter game. In battle strategy games, the fog-of-
war generally restricts views. This suggests a good strategy for cheap implementations: avoid 
doing work for things the player cannot see. 

Game developers frequently choose to ignore the motion of some out of view objects. For 
example, Joe Adzima recently described the AI for Midtown Madness1, in which cars are 
simulated only within a sphere around the viewer and are reflected at the boundaries. No work 
is done for parts of the city beyond the sphere. These existing approaches are acceptable if 
nothing should ever happen far from the view to influence the game-play. Hence, while they 
work for games with local action, they are not applicable for games where events beyond the 
view may have a major impact on the outcome of the game, such as global strategy games. 
For example, it makes a difference if your out-of-view opponent can accumulate enough 
resources to launch an attack on your base. Some work must be done to ensure that the 
attack happens at all – if nothing is done for out-of-view motion then nothing new can ever 
enter the view by itself. 



The best way to think about motion and outcomes is in terms of events: the model says that 
certain things should happen in the world that are important to the game-play, and any 
implementation must ensure that those things do happen. On the other hand, there is no need 
to be concerned with other events, which is where savings can be found. For example, as your 
opponent is gathering resources, it doesn’t matter which paths their workers take, only that the 
workers gather a certain amount by a certain time, triggering the important attack event. 

Discrete event simulation is a programming technique for managing events and their effects 
that can be used to produce cheap simulations. The program maintains an ordered list of 
future events that must be processed. It steps through this list processing one event at a time. 
Each event processing step might modify some program state, and might lead to the addition 
of new events or the removal of existing events. For example, in a strategy game there could 
be events scheduled for the start of each attack. Games are frequently scripted with events 
and rules to process them, but in general some computation is performed on a continual basis 
and the events are detected as they occur. Discrete event simulation predicts when events will 
occur, and avoids any computation between events.  This saves work. 

In this paper I will show how expensive AI and physics can be replaced with discrete event 
simulations that generate indistinguishable event sequences at much lower cost. I will begin 
with a discrete event model for determining which moving objects are visible. I will then 
describe a traffic simulation in which expensive dynamics are replaced with a cheaper 
implementation. Significant speedups result. Along the way I will demonstrate techniques for 
verifying that the outcomes of the cheap simulations are indistinguishable from those of the 
expensive ones, an important concern for consistent, predictable game-play. All of the work 
described in this paper was conducted with Okan Arikan and David Forsyth, both from the 
University of California at Berkeley. 

VISIBILITY FOR MOVING OBJECTS 
There are several methods that can be employed to determine if a moving object is visible. 
Simplest among them is placing a bounding volume around the object and testing it against the 
view volume on every frame. This method is the least efficient, because every object must be 
touched on every frame. A better variant, that culls more moving objects, works by associating 
each object with a cell, or multiple cells, in a decomposition of the environment, and only 
renders objects in visible cells. The decomposition may be tiles, an octree, a BSP tree, or 
anything else that a visibility system could use. With most implementations of this method, 
every object is checked on each frame to see if it has left or entered a cell. So this method also 
requires looking at every object on every frame, but more objects will be detected as invisible. 

A very efficient method incorporates a discrete event view of visibility into the cell-association 
method just described. Assume for the moment that every moving object is a point. We begin 
by associating every object with the cell that it intersects. Further assume that we can predict 
exactly when each object will enter a new cell, and put an event in the queue for that time. We 
know that, until such an event occurs, the associations are correct between moving objects 
and cells. More importantly, the data structures do not need to be modified until an event 
occurs, avoiding costly operations. 



When an event comes to the head of the queue, we know that an object is leaving its current 
cell, so we determine which cell it is entering, add the object to that cell and make a new 
prediction for when the object will leave the cell. We insert a new event into the queue for the 
new leaving time, and remove the object from its old cell. If we keep doing this, we can be sure 
that at all times the data structures associating objects to cells are correct, and so we can be 
sure that we will render the right set of moving objects. 

The real case is slightly more complex. Objects generally have extents, so we actually need 
two types of event: one for an object starting to enter a new cell and one for an object 
completely leaving an old cell. Also, we possibly cannot exactly predict when these events will 
occur. If, instead, we always predict that they occur too early, we can test the situation when 
the event comes to the head of the queue for processing, and re-insert it at a later time if 
necessary. Alternatively, if we ensure that entry events come up too soon, and exit events 
come up too late, then all the visible objects will still be found, but some objects that shouldn’t 
be visible will also be sent to the graphics pipeline. While less efficient, it isn’t a problem. With 
these modifications, the discrete event visibility algorithm will always maintain the correct 
object-cell associations. 

Below I give psuedocode for the algorithm, assuming we do re-prediction if the event comes 
up too early. PredictNextEntry(O) returns the time of the time at which the object is 
predicted to enter its next new cell. Entered?(O) returns the cell that object O is entering, or 
NULL if it isn’t yet entering any cell. PredictExit(O,C) returns the time at which an object is 
expected to leave the cell C, while Exited?(O) returns the cell that O is exiting, or NULL if it 
isn’t on the verge of leaving anything. InsertQueue(Q,E) inserts the event E into a priority 
queue Q. DeleteMin(Q) deletes and returns the minimum time entry in the queue. 
AddToCell(O,C) associates object O with cell C, while RemoveFromCell(O,C) removes 
the association between O and C. 

 function Initialize() { 
  for all moving objects O { 
   E.object = O 
 
   E.time = PredictNextEntry(O) 
   E.type = enter 
   InsertQueue(Q,E) 
    
   E.time = PredictExit(O,O.currentCell) 
   E.type = exit 
   InsertQueue(Q,E) 
  } 
 } 
 
 function ProcessEnter(E) { 
  C = Entered?(E.object) 

if ( C == NULL ) { 
   E.time = PredictNextEntry(E.object) 
   E.type = enter 
   InsertQueue(Q,E) 
  } 
  else { 



   AddToCell(E.object, C) 
 
   E.time = PredictNextEntry(O) 
   E.type = enter 
   InsertQueue(Q,E) 
    
   E.time = PredictExit(O,O.currentCell) 
   E.type = exit 
   InsertQueue(Q,E) 
  } 
 } 
 
 function ProcessExit(E) { 
  C = Exited?(E.object) 

if ( C == NULL ) { 
   E.time = PredictNextExit(E.object,E.object.currentCell) 
   E.type = exit 
   InsertQueue(Q,E) 
  } 
  else { 
   RemoveFromCell(E.object, C) 
  } 
 } 
 
 function MainLoop() { 
  Initialize() 
  while true { 
   E = DeleteMin(Q); 
   if ( E.type == enter ) 
    ProcessEnter(E); 

else 
    ProcessExit(E) 
  } 
 } 
 
A big assumption was made in designing the discrete event algorithm: we could predict when 
every object would enter or leave a cell. Clearly the assumption is reasonable if the motion is 
of a very simple form, such as ballistic motion. It is also a reasonable assumption if the 
complete path is known ahead of time, as may be the case with motion capture playback. In 
the following sections I will argue that adequate predictions are also available for more 
complex motion, and in the process work can be saved. 

A similar algorithm by Sudarsky and Gotsman uses explicit temporal bounding volumes for 
objects2, which does not require a decomposition of the environment. The basic ideas are the 
same, however, and they also assume that predictions of future motion can be made cheaply. 

SAVING WORK 
In the visibility scheme above, the simulation performs two tasks: it makes predictions about 
when objects will enter or leave cells, and it generates state for objects that turn out to be 
visible. This means there is a lot of work we are potentially free to avoid doing: prediction 
means we don’t have to generate moment to moment motion for visibility computations, and 



the fact that the viewer can’t see out of view objects means we don’t need to produce state for 
rendering. However, making predictions and getting the things in view correct may require 
simulating all of the objects all of the time. For example, in a traffic simulation, the motion of 
one car influences the motion of the following car, which influences the car behind that, and so 
on through all the cars in the simulation – including those in view. If we are to capture all of 
these interactions perfectly, we may need to run the full simulation. The motion of the car 
clearly also affects the time at which it moves from one visibility cell to another, so to get that 
right may also require the full simulation. 

But players almost never care about all the details of the out of view motion. In particular, a 
player generally only cares about how out of view motion affects their experience, which 
generally requires whatever’s out of view to eventually come into view. While getting the right 
thing to happen in view might require getting all the right things to happen out of view, it is 
generally not the case. For instance, in a driving game the player cares that the right number 
of cars, roughly, are in view, and that they see the right set of cars behaving reasonably when 
they turn a blind corner. But the player doesn’t care about how far apart two cars are on the 
other side of the city. 

We can establish the following broad requirement:  we need to make sure things appear in 
roughly the right place at roughly the right time, but we need not generate moment to moment 
motion for out of view objects. To do this we will employ two different simulators: an in-view 
simulator for visible motion and a proxy simulator for out of view motion. The in-view simulator 
takes care of visible objects, and we can just use the regular simulator limited to the set of 
things in view. This will ensure that the viewer always sees the right thing on a moment to 
moment basis. The proxy simulator must make sure that out of view objects enter the view at 
the right place and the right time. More specifically, this means that the proxy must be able to 
make reasonable predictions for when out of view objects will enter and leave visibility cells, 
because if that information is correct, then the object will be seen when it should be. 

A proxy simulation must save work, and the best way to get big savings is to avoid even 
considering every object on every frame. This suggests a discrete event model for the proxy 
simulation, because it allows us to ignore objects between events. To decide when events will 
occur, we do not need to run the full simulation – instead we can use approximations of 
various forms. As long as those approximations are reasonable, they will not impact badly on 
what the viewer sees. 

With a discrete event simulation, objects don’t really have any state between events. This 
poses a problem if the player sees previously out of view objects, because those objects will 
have no good state. It is therefore necessary for the proxy to provide a way to quickly fill in 
what happens to objects between events, so that they can be given state if they become 
visible. It is generally safe to use approximations, although the proxy might have to maintain 
additional state to make sure that the reconstruction is reasonable. 

The general guide to building a proxy simulation is as follows: 

1. Decide which out of view behaviors you wish to maintain. 



2. Determine how to predict visibility cell entry/exit events such that those behaviors will be 
maintained. 

3. Determine what state is needed to reconstruct the motion of objects that become visible, 
and how to keep track of that state. 

4. Test the quality of the results. 

Next I describe in detail a proxy simulation for a traffic model, which demonstrates each of the 
above steps. Some existing approaches could be slotted into the framework of proxy 
simulations. Our work is distinguished by the types of things we accurately model with our 
cheap system. For example, Midtown Madness avoids work for out of view cars, but their 
system would fail if a viewer could identify and cared about particular cars leaving the view. 
Say your virtual partner was on the way to hospital in an ambulance – you wouldn’t want them 
reflected at the boundary to head back to you. Nor could you ignore the traffic along the route, 
because the ambulance would arrive at the wrong time. Our system handles identifiable cars 
moving over large areas, getting things like travel times correct at significantly lower cost. 

CHEAP TRAFFIC SIMULATION 
 

The traffic model simulates tricycle cars moving through a maze-like network of roads (Figure 
1 and Figure 2). Each road is a visibility cell, open only at the ends. A cell and portal algorithm3 
is used to identify at run-time roads that are visible from the current viewpoint. I describe 
behaviors from the accurate simulation that we might wish to maintain, and a proxy that 
reproduces those behaviors at a significantly reduced cost, as indicated by various 
experiments. 

 

Figure 1: A view of the city traffic simulation. The cars move through a maze-like 
network of streets, stopping at intersections as shown here. Note that each car is 
uniquely numbered, allowing a viewer to track its progress if desired. 



 

Figure 2: A map view of the city while a proxy is in use. The red cells are the 
roads potentially visible from the view shown in Figure 1. The other cells have an 
intensity that corresponds to the number of events processed by the proxy for 
that road over the course of the previous second of simulation time. Most of the 
roads are gray, indicating that no events were processed and hence that no work 
was done for those roads. 

 

The accurate model takes time-steps of fixed length 0.01s. On each step it sets the 
acceleration for each car to be used throughout the step, and then numerically integrates the 
motion of each car. Numerical integration is necessary because the orientation and wheel 
rotations for each car are specified via a differential equation with no closed form solution. The 
time-step must be kept short because it is the only opportunity for control. Longer time-steps 
cause cars to overshoot intersections and potentially pass through each other, so manipulating 
the step length does not produce efficiency gains without introducing major visible errors. In 
any case, the longest useful time-step for 30fps rendering is 0.033s. 

Cars moving under the accurate model exhibit the following behaviors that we seek to 
maintain: 

• Random path: Each car takes a random path through the city, with the exception that a car 
will not turn onto a road that is packed with other cars, unless there is no alternative. Out of 
view cars managed by the proxy should also make random choices. 

• Stop signs: The cars obey stop-sign rules at intersections: the come to a stop, wait their 
turn to move into the intersection, and then pass through, allowing the next car in. 



• Acceleration profile: Between intersections, each car follows a pre-defined acceleration 
profile, except that cars slow to avoid collisions with the car in front. If the car in front stops, 
so will the follower, causing queues to form at intersections as cars line up waiting to enter. 
When a car enters the view, its velocity and other state should be consistent with the 
acceleration profile and the cars around it. For instance, a car in an intersection queue 
should not be moving, and a car that has just moved into an intersection should be moving 
slowly, because it hasn’t had time to gain speed. 

• Traffic density: Traffic density in the city follows a particular pattern. Some intersections 
with many incoming lanes typically have long queues, because only one car at a time can 
pass through the intersection, regardless of how many can reach it. Other intersections 
rarely have queues, because they may have few incoming lanes or the roads in may be 
blocked by busy intersections that restrict flow. 

Together, all of these properties lead to one meta-property that is visible to a viewer and 
sensitive to all of the others: car travel times. A viewer can measure travel times by noting the 
location of a car at two distinct points in time. If cars don’t stop, or jump the queues at 
intersections, they will get places too fast. If traffic density is too high or low, the car will spend 
the wrong amount of time stuck in queues. Cars following the wrong acceleration profile will 
move too fast or slow.  

We choose travel times as the primary thing to get right with the proxy. Individually, the other 
properties should be satisfied within the visible regions, but in hidden regions the viewer 
cannot directly determine the density, or detect whether cars are stopping at intersections, so 
the proxy need not be concerned with such things unless they influence travel times. 

There is, however, one potential difficulty. If a viewer is expecting a car to appear, and it 
doesn’t, they can reasonably infer that there must be a busy intersection between them and 
the car. If they go looking for that intersection, they should be able to find it. In other words, a 
viewer can infer things about the out of view world based on what they see in view, and any 
things a viewer might later see, such as the density of traffic at an intersection, must be 
consistent with those inferences. 

A Discrete Event Traffic Proxy 
Recall the task of a proxy: to produce predictions for when an object enters and leaves visibility 
cells, and to maintain state so that cars that become visible can be correctly updated. The 
visibility cells in the city correspond to roads. So the proxy must predict when a car will enter 
and leave a road, which is intimately related to when cars enter and leave intersections. Roads 
keep pointers to the cars that are on them, and cars keep pointers to the roads they intersect. 
Cars will become visible either when they drive from an invisible road onto a visible one, or 
when the viewer moves and sees a new road. 

The a high level, the proxy simulates the motion of out of view cars by jumping them from 
intersection to intersection without determining precisely what happens along the way. The 
time it takes to move from one location to the next is estimated based on the expected 
acceleration profile of the cars, and the known locations of other nearby cars. Work is saved by 
avoiding acceleration setting routines and numerical integration, but the time it takes to get 



from one place to another is captured well by the discrete model, along with all the other 
important aspects of the model. The following sections describe in detail how this is done. 

Two events are used to predict when cars will enter and leave roads, and each car may have 
zero or one events in the queue. The proxy only does work when one of these events comes 
up, and only considers at most three cars on each event. This results in significant cost 
savings.* The events are: 

• Enter events occur when a car might reach the end of a road and enter an intersection. 
We schedule these events optimistically, and test whether the car is really entering the 
intersection only when the event is processed. 

• Exit events occur when a car moves out of an intersection and onto a road proper. 

I describe the processing of these events below, as well as how they are scheduled. Two 
additional data structures are required: 

• An intersection waiting list: each intersection maintains a list of cars either in the 
intersection or stopped at stop signs waiting to enter (but not cars in queues behind cars 
stopped at the line). The list is ordered on the time the car got to its stop sign. If the list 
contains any cars, the first one is always in the process of passing through the intersection. 

• A lane list: each lane on a road (at least one in each direction) maintains an ordered list of 
cars on the lane, with the car that is farthest along the lane at the head of the list. Cars in 
the intersection that are heading into the lane are at the end of the list. In addition to 
helping schedule events, the lane lists record the location guarantees --- a car is only on a 
lane list if it is on the road corresponding to the lane. 

Cars store pointers back into any intersection and lane lists that they are currently on. 

There are three possible situations when an Enter event is processed: 

1. If the car is not at the head of its lane, we do nothing. The car must be in a queue behind 
another car, and it can’t leave the road (and enter a new road) until that car moves. The car 
will be considered again when the car in front of it actually enters the intersection. 

2. If the car is at the head of its lane, but there is already a car in the waiting list, then we do 
nothing. The car cannot move until the car ahead of it on the waiting list gets through the 
intersection, at which point this car will be considered again. 

3. If the car is free to enter the intersection, add it to the randomly selected road that it is 
moving onto, and schedule an Exit event for the car. The time for this event is determined 
by computing how long it will take the car to get through the intersection if it follows the pre-
defined acceleration profile, assuming that there is no car close in front to slow it down 

                                            

* The discrete event models maintains a priority queue, and the cost of the queue is O(n log n) for n cars with one 
event each, while the cost of the simulation is O(n). But the constant involved with the queue is so small 
compared to the constant involved with accurate simulation that it takes more objects than the size of the universe 
for the queue to be more expensive. 



through the intersection. In the accurate simulation such close proximity through an 
intersection is extremely rare, because the soonest one car can enter the intersection is 
when the car in front gets out the other side, typically moving too fast and too far ahead to 
catch. 

 

Figure 3: When a car, A, exits an intersection, it may also be necessary to 
consider the next car to enter the intersection, B, and the car stopped behind it, 
C. 

Exit events are processed as follows (see Figure 3): 

• An Enter event is scheduled for the car, A, for the soonest time that it could reach the end 
of the road. That time is computed using the pre-defined acceleration profile assuming that 
no other car slows this one. The only time another car is likely to slow this one is if the 
leader is forced to wait at the stop sign, and the follower catches it there. But in most such 
cases the leader will still be on the lane waiting to enter the intersection when the event we 
are scheduling comes up for processing, and according to the rules for Enter events 
above, we will delay moving this car into the intersection until the one in front makes space. 
There are still cases, however, when we will fail to detect a delay because the leading car 
has already entered the intersection when this optimistic Exit event is processed. In such 
cases the proxy will slightly reduce a car’s travel time. 

• An Exit event signifies that car A has left an intersection, so any car that is waiting to 
enter that same intersection is now free to do so. Hence, if there is a car, B, on the waiting 
list we move that car into the intersection, change its guarantee and schedule an Exit 
event for it as described in case 3 of the Enter event processing list above. 

• If we moved car B into the intersection in the previous step, that car must have been 
waiting at the stop line, and there may be a queue of cars behind it. The next car, C, on the 
queue will have no event pending if it was stopped behind B, but it is now free to reach the 
intersection. Hence, we schedule an Enter event for car C, for the time it takes for a 
stopped car to go from first in line to the end of road, which can be computed based on the 
acceleration profile. 

By processing events as above in the correct order, the proxy maintains the correct set of 
roads for every out of view car. Work is only performed when an event is processed, resulting 



in efficient simulation. The various queues are correctly maintained, so we know which 
intersections are busy and which cars are where. This gives us enough information to 
reconstruct anything the viewer might infer from their knowledge of the model. The 
assumptions made in scheduling future events introduce some errors, but we claim that they 
are small, and our experiments described below support that. It remains to discuss how state 
is set when an object re-enters the view. 

Generating Complete State 
The proxy must supply complete state for cars that re-enter the view. This can happen in two 
ways: 

• Arrival: the car may drive onto a visible road when it enters an intersection. But cars 
always enter an intersection from a standing start and aligned along the road, so we know 
its correct position (the end of the road), speed (zero) and orientation. We do not know the 
correct rotation angle for each wheel, which is determined by the length of the path traveled 
by the wheel. But we can safely assume that a viewer has no idea exactly which path a 
wheel has taken, so we set the rotations randomly. 

• Exposure: the viewer may turn a corner and reveal an entire road and all the cars on it. 
We isolate the road, shifting it back in time to the entry time for the first car on the road, and 
simulating just the road forward from there to the current time, adding cars at the time they 
entered according to the proxy, and stopping all the cars in a queue at the end of the road 
(where they must be stopped, or they would not be on the road). This process generates 
highly accurate state for cars re-entering the view, but significant lag may result when a 
busy road comes into view. This lag could be reduced with a more aggressive 
approximation strategy, such as simply placing all the cars on the road stationary in a 
queue, at the expense of greater errors. This would certainly be a requirement for gaming. 

The Simulation Loop 
The primary simulation loop has to manage the transitions of cars from non-visible to visible 
and vice versa. It also has to run the event processing loop for the proxy simulation and call 
the in-view simulator to generate state for in view objects. One complication is that the in-view 
simulator must not simulate across events from the proxy, because one of those events might 
be a car entering the view, which would then need to be simulated. We assume that visible 
roads are marked for each frame before the simulation code is called. The outline of the 
simulation loop for one frame is: 

1. Test all the cars that were visible on the previous frame to see if they are still visible now. If 
not, the car must be taken over by the proxy, so an event may have to be scheduled: if the 
car is in an intersection, schedule an Exit event as in case 3 of Enter event processing 
above; if the car is waiting at an intersection, we do nothing, as the car will be considered 
next when the car ahead of it clears the intersection; otherwise, schedule a Enter event 
based on the time the car entered the road. 

2. Test all the roads that are currently visible to see if they were visible on the previous frame. 
Make all the cars on newly visible roads visible according to the Exposure rules above, 
and bring them under the control of the in-view simulator. 



3. Repeatedly, run the in-view simulator up to the next event time and process the next event. 
Do this until the frame time is up. 

Speedup Results 
The city traffic environment using the proxy described above generates visually reasonable 
behavior when compared to a full model. It also achieves significant speedups, allowing the 
simulation of cities larger than could be handled with an accurate simulation alone. We 
performed a set of experiments to determine the proxy’s efficiency, and another to measure its 
quality. 

 

Figure 4: The speedups achieved by the proxy simulation. The proxy achieves 
almost two orders of magnitude speedup for 12800 cars in the simulation. 

We determined the simulation computation speedup achieved as the number of cars in the 
simulation is increased, by comparing the time taken to simulate one frame of dynamics at 
20fps (0.05s of simulated time per frame) with the full model and the proxy. The city size was 
increased along with the number of cars, keeping the overall density constant. For each data 
point we averaged timing data from four runs each of ten minutes duration with different sets of 
initial conditions. A different animated viewpoint was used for each run to simulate a moving 
viewer. All computations were performed on a Pentium III 800. The speedup is plotted in 
Figure 4. The data indicates that it is possible to fully simulate only 2000 cars in real-time on 
this machine, while the proxy could simulate 12800 cars using only 0.07 seconds of real time 
for each second of virtual time.  

Measuring Quality  
It is a hopeless task to measure the quality of a proxy simulation by comparing its precise 
behavior to that of the accurate simulation. Small differences at one point will lead to wild 
changes in the details of other motion. But the predictions made by a proxy for the motion of 



cars do not need to exactly match what the full simulation would do – viewers expect variations 
in behavior and the details are not what matters. A good real world example is driving home 
from work. It is completely reasonable to call home and tell someone waiting that you are 
leaving work. The details of your drive will vary from day to day, and you won’t always arrive at 
exactly the same time, but your estimate will still be reasonable. The person waiting for you 
does not care which other cars you came across on your drive home, only that you arrived in 
reasonable time. 

 

Figure 5: The average time taken by a car to reach various way-points on a fixed 
route, as estimated by the full model and the proxy model. The way-points are 
numbered from 1 to 10 across the bottom. The error bars represent one standard 
deviation. The averages were computed by fixing the path of one car, then 
running multiple simulations with the other cars starting out in different 
configurations. Ten simulation runs were averaged for each data point using the 
1600 car city. The times estimated by the proxy are reasonably close to those 
estimated by the full model, with a roughly 1% difference in the estimated means, 
and almost the same variance. The proxy produces the smaller estimate, which 
is as expected. All the assumptions made in predicting event times in the proxy 
ignore potential delays. Without those delays cars under the proxy go faster. This 
could be remedied by explicitly increasing the predicted event times by an 
appropriate amount. 

We can turn to statistics to formalize this idea and produce quantitative assessments.  A 
viewer effectively takes measurements of certain things, like how long it takes to get 
somewhere. Those measurements will show variation depending on the details of what is 
happening. We can talk about the variation in terms of the mean behavior and the standard 
deviation. The accurate model produces one set of average behaviors, and the proxy will 



produce another. If the statistical behavior of the proxy simulation is indistinguishable from that 
of the accurate one, then the viewer cannot tell the difference. 

A tough test for the quality of the proxy is to examine the statistics it produces for travel times. 
We do this by fixing the path of one car, and running multiple simulations with the other cars 
starting in different configurations. We then compare the average time it takes the car to follow 
its path when the proxy is employed and when the accurate model is employed. This 
experiment is the virtual equivalent to determining how long it takes to drive home from work, 
and checking how both the accurate and proxy models estimate how that time varies over 
different days. The results are plotted in Figure 5. Note the similarity in the statistics, and the 
absence of significant bias over long periods of time (the mean travels times are almost the 
same). 

These results indicate that the proxy achieves significant speedups while producing very 
accurate estimates of system behavior. Note, however, that the cost of the system still grows 
as more and more out of view objects are introduced. This is to be expected: we still do some 
work for every out of view object, so as more are added more time is spent working on them, 
reducing efficiency. The only way to avoid this drop is to ignore some objects completely, by 
adding and deleting them at a boundary. 

RELATED REFERENCES 
There are now a few papers out there on various aspects of simulation level-of-detail, or 
simulation culling. My colleagues and I have published previously on the topic of dynamics 
culling, which is an extreme case of level-of-detail in which no work at all is done for out of 
view objects4. However, the techniques in that paper are limited to objects that do not move 
over large distances, and so can be statically bound for visibility purposes. 

Jessica Hodgins and Deborah Carlson first coined the term simulation level of detail5. They 
describe a hopping robot avoid-the-puck game in which robots that are further from the viewer 
are replaced with simpler dynamic models. They discuss the problem of ensuring that their 
approximations don’t change the outcome of the game. Also on the theme of simulation level-
of-detail, Setas, Gomes and Rebordão6 describe tree models with several levels of detail for 
populating virtual terrain. The trees blow in the wind, with more distant trees using simpler (and 
cheaper) dynamic models. 

The NueroAnimator technique described by Grzeszczuk and Terzopoulos7, and the Synthetic 
Motion Capture approach by Yu and Terzopoulos8 may also be viewed as simulation level of 
detail techniques, because both produce implementations that are relatively cheap to evaluate 
when compared to the accurate simulation. However, no attention is paid to the errors that 
these techniques introduce. In particular, the synthetic motion capture fish exhibit significantly, 
and noticeably, different behavior when compared to their fully simulated counterparts, which 
may be unacceptable in a gaming environment. 

CONCLUSION 
This paper has presented simulation level-of-detail, and proxy simulations in particular. It 
leaves open a number of questions. The specific example of traffic simulation demonstrates 
that many aspects of the proxy design are tightly tied to the particular system that is to be 



approximated. Regardless, the broad outline in the Saving Work section provides a guide to 
employing similar techniques in other areas. Of particular interest is extending to proxy models 
for bots and other autonomous agents. 

My colleagues and I have done some work on proxies for large numbers of path planning bots 
in a tile-based world. The bots must get from one point to another according to a user or AI’s 
orders. The primary cost in such a system is path planning and collision avoidance. Our work 
uses random delays in travel times to simulate the effects of inter-object interactions, such as 
waiting for another bot to clear the path. High speedups result, and it is possible to simulate 
many thousands of bots in real time. 

The problem of avoiding computation for out of view objects is similar to that of avoiding 
network traffic for out of view objects in networked multi-player games. In particular, to avoid 
sending data, you must know that which objects are visible for each user. Normally, this is 
done by a central server, which may lead to poor scaling in future systems. The problem in 
avoiding the server is that you need to know where an object is in order to know that you don’t 
need its data, but of course you have to communicate to determine the location. By predicting 
future locations, as proxy simulations do, the position information would need to be sent less 
often, thus reducing communication overhead. 

The primary take home point from this paper is that it is possible to save very large amounts of 
simulation time by avoiding unnecessary work, particularly work for out-of-view systems. 
Moreover, such work can be avoiding while maintaining a detailed, consistent world model. 
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